CS 4644-DL / 7643-A: LECTURE 7
DANFEI XU

Topics:
e Convolutional Neural Networks: Past and Present
* Convolution Layers

Administrative:

* Assighnment due on Sep 17t (with 48hr grace period)
e List of TA —expertise up on Piazza

* Proposal template and prompt released.

* Proposal due Sep 24t 11:59pm (No Grace Period)

e Start finding a project team if you haven’t!

Jacobians

Given a function f: R™ = R™, we have the Jacobian matrix] of shape m X n,

oF:
where Ii,j = L

ax]'
A
-VTfl- 8331 8mn
I I I
~ 0z oz, | | | |
V] Ofm Ofm
axl 833n

Recap: Vector derivatives

Scalar to Scalar
reR,yeR
Regular derivative:

dy
oz
If x changes by a

small amount, how
much will y change?

cR

oO—

Vector to Scalar Vector to Vector
reRY yeR zeRN yecRM
Derivative is Gradient; Derivative is Jacobian:
ay N Ay Yy 0 vy Mx N dy OYn
% 6 R <%>n N ﬁxn ()I R (%)T“m B ({).T)m

For each element of x, ifit For each element of x, if it changes
changes by a small amount, by a small amount, how much will
how much will y change? each element of y change?

= =

Slide credit: Stanford CS231n Instructors

Summary (Lecture 5 — here):

Neural networks, activation functions

NNs as Universal Function Approximators
Neurons as biological inspirations to DNNs
Vector Calculus

Backpropagation through vectors / matrices

Next: Convolutional Neural Networks

Image Maps

M =i\

FuIIy Connected

Input

Convolutions
Subsampllng

lllustration of LeCun et al. 1998 from CS231n 2017 Lecture 1

Slide credit: Stanford CS231n Instructors

A bit of history...

The Mark | Perceptron machine was the first
implementation of the perceptron algorithm.

"00000

EOUENCE INDICATORS

The machine was connected to a camera that used
20x%20 photocells to produce a 400-pixel image.

1 fw-24+b6>0

0 otherwise

() =

recognized
letters of the alphabet

MAIN
SEQUENCE

update rule: STEP BUTTONS

’u_.?.,-(t -+ 1) = u!vi(t) —— O(dJ — yj(t));lfjﬂi,

Frank Rosenblatt, ~1957: Perceptron

This image by Rocky Acosta is licensed under CC-BY 3.0

Slide credit: Stanford CS231n Instructors

https://en.wikipedia.org/wiki/File:IBM_Automatic_Sequence_Controlled_Calculator_Sequence_Indicators.jpg
https://creativecommons.org/licenses/by/3.0/us/

A bit of history...

+l

('fl,-l

Quantizer
+|

Inpuq

lines —>—oQutput

a's are adjustable

Widrow and Hoff, ~1960: Adaline/Madaline

Slide credit: Stanford CS231n Instructors

A bit of history...

recognizable math

input output
pattern pattern p
error
E,

Rumelhart et al., 1986: First time back-propagation became popular

Slide credit: Stanford CS231n Instructors

-
O
e
D
L
Y
O
=
O
<C

[Hinton and Salakhutdinov 2006]

500

——f

=

2000 units

sauIyoB|\ UuewzZ)og paloLIsey

Reinvigorated research in

Deep Learning

Fine-tuning with backprop

RBM:-initialized autoencoder

Pretraining

lllustration of Hinton and Salakhutdinov 2006 by Lane
Mclntosh, copyright CS231n 2017

Slide credit: Stanford CS231n Instructors

First strong results

Acoustic Modeling using Deep Belief Networks
Abdel-rahman Mohamed, George Dahl, Geoffrey Hinton, 2010
Context-Dependent Pre-trained Deep Neural Networks

for Large Vocabulary Speech Recognition
George Dahl, Dong Yu, Li Deng, Alex Acero, 2012

Imagenet classification with deep convolutional

neural networks

Alex Krizhevsky, llya Sutskever, Geoffrey E Hinton, 2012

Al

b ——e

192

13

125
13
o

ek

3 dense

192 192

128 Max
poaling

dense

Deep Neural
Network

C1)

HMM

pre-training
|
|
I |
I |
Tt 1t 1
Spectrogram

lllustration of Dahl et al. 2012 by Lane Mclntosh,
copyright CS231n 2017

Figures copyright Alex Krizhevsky, llya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Slide credit: Stanford CS231n Instructors

A bit of history:

Hubel & Wiesel,
1959

RECEPTIVE FIELDS OF SINGLE
NEURONES IN
THE CAT'S STRIATE CORTEX

1962

RECEPTIVE FIELDS, BINOCULAR
INTERACTION

AND FUNCTIONAL ARCHITECTURE IN
THE CAT'S VISUAL CORTEX

1968...

t t
X @1
{ ' Electrical
signal from
L \\ brain
o‘ {
Stlmulus
N\

Stimulus ~ Response

Cat image by CNX OpenStax is licensed
under CC BY 4.0; changes made

Slide credit: Stanford CS231n Instructors

https://commons.wikimedia.org/wiki/File:Figure_35_03_05.jpg

Hierarchical organization

Retinal ganglion cell
receptive fields

lllustration of hierarchical organization in early visual
pathways by Lane Mcintosh, copyright CS231n 2017

LGN and V1
simple cells

Simple cells:
Response to light
orientation

Complex cells:
Response to light
orientation and movement

Hypercomplex cells:

response to movement
with an end point

N\

No response Response
(end point)

Slide credit: Stanford CS231n Instructors

A bit of history:

Neocognitron
[Fukushima 1980]

“sandwich” architecture (SCSCSC...)
simple cells: modifiable parameters
complex cells: perform pooling

\E@><ﬁ/\
\,

(AT
L&

Slide credit: Stanford CS231n Instructors

A bit of history:

Gradient-based learning applied to
document recognition

[LeCun, Bottou, Bengio, Haffner 1998]

Image Maps
Input
Con % Fu IIy Connected
Subsampl ng
LeNet-5

Slide credit: Stanford CS231n Instructors

A bit of history:

ImageNet Classification with Deep
Convolutional Neural Networks
[Krizhevsky, Sutskever, Hinton, 2012]

L —F 3 A %-4.]
\ —l-. 31 Akl
A i\ X | I N\
W \ \\ 2 \ 3 ' \
% \\| s \ — . 192
—’ 128 A"
‘,—:". I . \
b 1
‘ J1 |l | I
| P = \ 3 t
\ [\ A\
k \ F
\ C—
1
24 le i, Max i Max
WUara \ pooling pooling

e
\ ‘1
8 \/ 2048 \ldv'r.(-
L \
1
“
>~ »
dense
3 048

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

“AlexNet”

Slide credit: Stanford CS231n Instructors

Classification

mite]

motor scooter

mite

scooter

black widow lifeboat
cockroach amphibian moped cheetah
tick fireboat bumper car snow leopard
starfish drilling platform golfcart Egyptian cat
.

rilie mushroom cherry adagascar ca
vertible | agaric dalm | monkey
grille mushroom grape spider monkey
pickup jelly fungus elderberry titi
beach wagon gill fungus rdshire bullterrier indri
fire engine | dead-man's-fingers currant howler monkey

Retrieval

Fast-forward to today: ConvNets are everywhere

Figures copyright Alex Krizhevsky, llya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Slide credit: Stanford CS231n Instructors

Fast-forward to today: ConvNets are everywhere

Figures copyright Shaoging Ren, Kaiming He, Ross Girschick, Jian Sun, 2015. Reproduced with 7 .
permission. Reproduced with permission. [Farabet et al_’ 2012]
[Faster R-CNN: Ren, He, Girshick, Sun 2015]

Slide credit: Stanford CS231n Instructors

Fast-forward to today: ConvNets are everywhere

Autonomous Driving: GPUs & specialized chips are fast and compact
enough for on-board compute!

https://www.nvidia.com/en-us/self-driving-cars/

https://blogs.nvidia.com/blog/2021/01/27/lidar-sensor-nvidia-drive/

Slide credit: Stanford CS231n Instructors

Fast-forward to today: ConvNets are everywhere

- K, bl) :
mages are examples of pose estimation, not actually from Toshev & Szegedy
Mclintosh.

[Toshev, Szegedy 2014]

frame: t-3 t-2 t-1 t

[GUO et al 2014] Figures copyright Xiaoxiao Guo, Satinder Singh, Honglak Lee, Richard Lewis,

“enemy+diver” .
and Xiaoshi Wang, 2014. Reproduced with permission.

Slide credit: Stanford CS231n Instructors

Fast-forward to today: ConvNets are everywhere

Generalized convolution: spatial convolution

! —
! ‘ ;c
! i ; . E
| e = > | &
A 1 | (N N [(| Jhendl 3
e remnees T ,/ . <
a /,, < Conv6 L=
Conv4 cones FC1 FC2
Point Cloud Conv?2 Conv3
Convl
Choi et al., 2019
93 adjacent Conv. with
18 kernels

Segmentation

patches
@ of 93 voxels

Kamnitsas et al., 2015

4x258 015 40x178 40x13? 80x9° / /

Subsampled 3% adjacent Subsampled Normalpixel

(3:1) patches

16x153

Fast-forward to today: ConvNets are everywhere

Generalized convolution: temporal convolution

o U1 Do Yr—29r—19r O -
Output Residual block (k, d) ; ‘Residual block (k=3, d=1) 2<T1) 5 :
: : : -1 °T :
d=4 Dmfom 1 7 Convolutional Filter
Re:U : i —— Identity Map (or 1x1 Conv) ‘
Hidden WeightNorm ; ; 5
: [} : : ;
: Dilated Causal Conv : : !
=2 H t 1x1 Conv . :
Dm;:out (optional) E ' ‘
Hidden e :
E WeightNorm E : | | H

: [: :

d=1 : Dilated Causal Conv : :

L @ P To T --- Tr—1 TT
AV iput e NS I R FrTTTn
To T1 T2 ‘e T 9T 1T Z = (Zl 2)

Bai et al., 2018

Fast-forward to today: ConvNets are everywhere

Generalized convolution: graph convolution

Hidden layer Hidden layer
Ve = 75 B
Input el e Output
7\ o [e] o N
ReLU T RelLU
[E— 3 <] ® —»l_/L_. \ < 9 '—b"_/\—'b R——

Kipf et al., 2017

No errors Image-to-text

[Vinyals et al., 2015]
[Karpathy and Fei-Fei,
2015]

[Radford, 2021]

A white teddy bear sitting in A man in a baseball A woman is holding a
the grass uniform throwing a ball cat in her hand

All images are CCO Public domain:
A man riding a wave on A cat sitting on a A woman standing on a hilps./oixabay.com/enibaseball-nlaver-shorisiop-infield-1045263)

top of a surfboard suitcase on the floor beach holding a surfboard Captions generated by Jusin Johnson using Neuralialk2

24

https://pixabay.com/en/luggage-antique-cat-1643010/
https://pixabay.com/en/teddy-plush-bears-cute-teddy-bear-1623436/
https://pixabay.com/en/surf-wave-summer-sport-litoral-1668716/
https://pixabay.com/en/woman-female-model-portrait-adult-983967/
https://pixabay.com/en/handstand-lake-meditation-496008/
https://pixabay.com/en/baseball-player-shortstop-infield-1045263/
https://github.com/karpathy/neuraltalk2

Text-to-Image

[Reed, 2016]
[Zhang, 2017]
[Johnson, 2018]
[Ramesh, 2021]
[Frans, 2021]
[Saharia, 2022]
[Ramesh, 2022]

“An avocado armchair”

25

Convolutional Neural Networks

The connectivity in linear layers doesn’t always make sense

'

1024 x 1024
Pixel Image

:>|

~1M element
Vector (M)

Fully-

Connected
Layer (N)

)

Limitation of Linear Layers

Q: How many parameters?
M*N (weights) + N (bias)

Hundreds of millions of
parameters for just one layer

More parameters => More
data needed & slower to
train / inference

Is this necessary?

Georgia
Tec

Al

=

Image features are spatially
localized!

Smaller features repeated across
the image

Edges

Color

Motifs (corners, etc.)

No reason to believe one feature Can we induce a bias in the
tends to appear in a fixed location. design of a neural network
Need to search in entire image. layer to reflect this?

) Locality of Features Gegrola)

=

Convolution: A 1D Visual Example

Input function: f()

Kernel/filter function: g()

Convolution: f * g()

(f*g)(t) = /_00 f(r)g(t —7)dr.

I I | T T I I I
[T R — :lﬂoea under f(xat-) [
pabo .. R D U R f(x)

: . -t
(15 T EEEEEEEEEE IR at-v)

: ; (f+gt)
04_. R -
o2k -SSR NS ST R P e b

ol I l i i ! 1
2 15 1 0.5 0 0.5 1 15 2
t &t
I I I I I I I 1 1 I
z z ()
: : att-v)
DSbk:ccccceeetencnnnens sa s e s e (f*gn)
ol ; :
-15 1 0.5 0 0.5 1 15 2 25 3

&t

From https://en.wikipedia.org/wiki/Convolution

Convolution (Fr9) = [" f(n)glt - 7) dr.

1-D Convolution is defined as the integral of the product of two functions
after one is reflected about the y-axis and shifted.

Intuitively: given function f and filter g. Convolution Cross-correlation
How similar is g(—x) with the part of f(x) f f

that it's operating on.
P J g \ g \
Cross-correlation is convolution without

the y-axis reflection. Pkg A g+f ,/PI_

For ConvNets, we don't flip filters to A]_m _E]Am m_m 1N
improve efficiency, so we are really using 4 N

Cross-Correlation Nets!

From https://en.wikipedia.org/wiki/Convolution

) Locality of Features Gegrola)

=

Convolution in Computer Vision (non-Deep)

Convolution with Sobel Filter (Edge Detection)

114741 t1.0 -1
4|16|26| 16| 4 G, =|4+2 0 -2|*A
21% 7 |26|41|26| 7 :+1 0 -1
4|16|26| 16| 4 +1 +2 +1
1] al7]a]n G,=[0 0 0]|x*xA
-1 -2 -1

Locality of Features Gegrola)

=

Intuition for pattern recognition and learning using convolution

g(): filter / pattern template 0; ,,,,,,,,,,,,,,,,,,, '''''''''''''''''' ''''''''''''''''''' '.......... o | | e itont9 |
D'G_E ? f(:))@)
f):signal / observed data R e S e
L . . : :
f*g(): how well data matches with the oo
template e A [P]
e
1 S T - S| —— g
For Convolution Layers in NN:) VRS S S S S S ——s
* g() as the weights to learn o
e f() as the input to the layer From https://en.wikipedia.org/wiki/Convolution
 f*g() as the of the layer (result of convolution)

» Discrete instead of continuous convolution (sum instead of integral)
* g() and f() may be N-dimensional, where N > 1

Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

input activation
Wx
1 1 2 119
3072 0 x 307 10
weights
1 number:

the result of taking a dot product
between a row of W and the input
(a 3072-dimensional dot product)

2-D Convolution Layer

32x32x3 image -> preserve spatial structure

32 height

32 width

2-D Convolution Layer

32x32x3 image

ox5x3 filter
32 £/
I Convolve the filter with the image
i.e. “slide over the image spatially,

computing dot products at each

location”
32

2-C

’ ConVOIUtIOn Layer Filters always extend the full

. ————— depthofthe input volume
32x32x3 image /
oxox3 filter
32 7
I Convolve the filter with the image
i.e. “slide over the image spatially,

computing dot products”

32

2-D Convolution Layer
_— 32x32x3 image

5x5x3 filter w
=
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image

32 (i.e. 5*5*3 = 75-dimensional dot product + bias)

3 wliz +b

">~ 1 number:

2-D Convolution Layer

é%

32

2-D Convolution Layer

s

32

2-D Convolution Layer

32

2-D Convolution Layer

32

2-D Convolution Layer

activation map

_— 32x32x3 image

5x5x3 filter /
2
@>@ .

convolve (slide) over all

spatial locations
32 28

2-D Convolution Layer

A

_— 32x32x3 image

V
——0

I

32

5x5x3 filter

»
»

convolve (slide) over all

spatial locations

consider a second, green filter

activation maps

y .

L

28

For example, if we had 6 5x5 filters, we’'ll get 6 separate activation maps:

32

3

32

Convolution Layer

v

activation maps

y 4

28

.

We stack these up to get a “new image” of size 28x28x6!

Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions

32 28

»
L

CONYV,
RelLU
e.g.6

5x5x3
32 filters 28

Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions

32 28
CONV, CONV.
RelLU RelLU
5x5x 5x5x?
32 filters 8 filters

Preview: ConvNet is a sequence of Convolution Layers, interspersed with

activation functions

32

32

»
L

CONYV,
RelLU
e.g.6
5x5x3
filters

28

28

»
L

CONYV,
RelLU
e.g. 10
5x5x6
filters

10

24

v

CONV,
RelLU

24

Visualization of VGG-16 by Lane MclIntosh. VGG-16

PrEView [Zeller and Fergus 2013] architecture from [Simonyan and Zisserman 2014].
. . Linearl
Low-level Mid-level High-level Y
—> — — separable —
features features features .
classifier

STANT AR S AN

VGG-16 Conv1_1 VGG-16 Conv3_2

Preview

VGG-16

Low-level
features

Mid-level
features

High-level
features

v

separable

Linearly

classifier

onvil_1

Retinal ganglion cell
receptive fields

LGN and V1
simple cells

Complex cells:
Response to light
orientation and movement

Hypercomplex cells:
response to movement
with an end point

N

No response Response
(end point)

SRCINERERDONCITAYN

one filter =>
one activation map

example 5x5 filters
(32 total)

Activations:

Figure copyright Andrej Karpathy.

50

preview:

RELUSREIU RELUSRELL RELU RELU

CONV lCONVl CONV lCONVl CONV lCONVl FC

REEEEREN

'

i
Wi

T L

ﬁ] W 5

A closer look at spatial dimensions:

activation map

_— 32x32x3 image

5x5x3 filter
=
@>@ *

convolve (slide) over all
spatial locations

32 28

Conv2D in PyTorch

Conv2d

What are these?

CLASS torch.nn.Conv2d (in_channels, out_channels,

groups=1, bias=True, padding_mode="'zeros

!

kernel_size, stride=1, padding=0, dilation=1,

', device=None, dtype=None) [SOURCE]

Applies a 2D convolution over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size (N, Ciy,, H, W) and output
(N, Couty Hout, Wout) can be precisely described as:

out(Ni, Coutj) = bias(C’outj)

Cin—1
+ Z weight(Coys, , k) * input (N, k)
k=0

where x is the valid 2D cross-correlation operator, N is a batch size, C denotes a number of channels, H is a height of

input planes in pixels, and W' is width in pixels.

A closer look at spatial dimensions:

I

/X7 input (spatially)
assume 3x3 filter

A closer look at spatial dimensions:

I

/X7 input (spatially)
assume 3x3 filter

A closer look at spatial dimensions:

I

/X7 input (spatially)
assume 3x3 filter

The # of grid that the filter shifts
IS called stride.

E.g., here we have stride = 1

A closer look at spatial dimensions:

I

/X7 input (spatially)
assume 3x3 filter with stride = 1

A closer look at spatial dimensions:

I

/X7 input (spatially)
assume 3x3 filter with stride = 1

=> 5x5 output

A closer look at spatial dimensions:

/X7 input (spatially)
assume 3x3 filter with stride = 1

=> 5x5 output

But what about the features at the border?

n practice: Common to zero pad the border

0/0|10]0]0]O0

e.g. input 7x7

0 3x3 filter, applied with stride 1

0 pad with 1 pixel border => what is the output?

n practice: Common to zero pad the border

010

0

0

0

0

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!
in general, common to see CONV layers with
stride 1, filters of size FxF, and zero-padding with
(F-1)/2. (will preserve size spatially)
e.g. F =3 => zero pad with 1

F =5 => zero pad with 2

F =7 => zero pad with 3

n practice: Common to zero pad the border

010

0

0

0

0

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

N = input dimension

P = padding size

F = filter size

Output size = (N — F + 2P) / stride + 1
=(7-3+2*1)/1+1=7

A closer look at spatial dimensions:

7
/X7 input (spatially)

assume 3x3 filter
applied with stride 2

A closer look at spatial dimensions:

7
/X7 input (spatially)

assume 3x3 filter
applied with stride 2

64

A closer look at spatial dimensions:

7
/X7 input (spatially)

assume 3x3 filter
applied with stride 2
=> 3x3 output!

A closer look at spatial dimensions:

7
/X7 input (spatially)

assume 3x3 filter
applied with stride 3?

66

A closer look at spatial dimensions:

7
/X7 input (spatially)

assume 3x3 filter
applied with stride 3?

67

Output size:
(N - F) / stride + 1

eg.N=7,F=3:
stride1=>(7-3)1+1=5
stride2=>(7-3)/2+1=3
stride 3=>(7-3)/3+1 =233\

We use floor division to
calculate output size:
(7-3)//3+1=2

68

Remember back to...
E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially!

(32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn’t work well.

32 28 24
CONYV, CONYV, CONYV,
RelLU RelLU RelLU
e.g.6 e.g. 10
9x5x3 ox5x6
32 filters 28 filters 24

Remember back to...
With padding, we can keep the same spatial feature dimension throughout the

convolution layers.

32

32

v

CONYV,
RelLU

e.g.6
5x5x3 filters
with 2 x 2

padding 6

32

32

v

CONV,
RelLU

e.g. 10
5x5x6

filters with

2x2 10
padding

32

4

CONV,
RelLU

32

Examples time:

Input volume: 32x32x3
Conv layer: 10 5x5 filters with
stride 1, pad 2

Output volume size: ?
(N—F + 2P) / stride + 1

N

Examples time:

Input volume: 32x32x3
Conv layer: 10 5x5 filters with
stride 1, pad 2

Output volume size:
(32+2%2-5)/1+1 = 32 spatially, so
32x32x10

N

Examples time:

Input volume: 32x32x3
Conv layer: 10 5x5 filters with
stride 1, pad 2

Number of parameters in this
layer?

N

Examples time: / /

Input volume: 32x32x
Conv layer: 10 5x5 filters with

stride 1, pad 2

<
<

Number of parameters in this layer?
each filter has 5*5*3 + 1 = 76 params (+1 for bias)
=> 7610 =760

Convolution layer: summary

Let's assume inputis W, xH; x C

Conv layer needs 4 hyperparameters:

- Number of filters K

- Thefilter size F

- The stride S

- The zero padding P

This will produce an output of W, x H, x K
where:

- W,=(W,-F +2P)/S + 1

- Hy=H,-F+2P)/S+ 1

Number of parameters: F2CK and K biases

Convolution layer: summary Common settings:

Let's assume inputis W, x H, xC "~ (Eozwser%ff - 132 64,128, 512

Conv layer needs 4 hyperparameters: . F=5g5=1p=2

- Number of filters K F=5,8 =2, P=7? (whatever fits)
F=1,8S=1,P=0

- Thefilter size F

- The stride S

- The zero padding P

This will produce an output of W, x H, x K
where:

- W,=(W,-F +2P)/S + 1

- Hy=H,-F+2P)/S+ 1

Number of parameters: F2CK and K biases

76

Example: CONV
layer in PyTorch

Conv layer needs 4 hyperparameters:
- Number of filters K
- The filter size F
- The stride S
- The zero padding P

Conv2d

CLASS torxch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0,

o ; [SOURCE]
dilation=1, groups=1, bias=True)

Applies a 2D convolution over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size (N, Ciy, H, W) and output
(N, Couts Hiiivs Wuut) can be precisely described as:
Cin—1
out(N;, Cout;) = bias(Cout,) + Z weight(Cou, , k) * input(NV;, k)
k=0
where % is the valid 2D cross-correlation operator, N is abatch size, C denotes a number of channels, H isa height of
input planes in pixels, and W is width in pixels.

e stride controls the stride for the cross-correlation, a single number or a tuple.
« padding controls the amount of implicit zero-paddings on both sides for padding number of points for each
dimension.
e dilation controls the spacing between the kernel points; also known as the a trous algorithm. It is harder to
describe, but this link has a nice visualization of what dilation does.
* groups controls the connections between inputs and outputs. in_channels and out_channels must both be
divisible by groups. For example,
o At groups=1, all inputs are convolved to all outputs.
o At groups=2, the operation becomes equivalent to having two conv
layers side by side, each seeing half the input channels, and producing
half the output channels, and both subsequently concatenated.

o Atgroups= in_channels, each input channel is convolved with its

own set of filters, of size: [%“-J g

The parameters kernel_size, stride, padding, dilation can either be:

* asingle int - in which case the same value is used for the height and
width dimension
« a tuple of two ints - in which case, the first int is used for the height

dimension, and the second int for the width dimension

77

PyTorch is licensed under BSD 3-clause.

https://pytorch.org/
https://github.com/pytorch/examples/blob/master/LICENSE

Conv features can grow really big really quickly...

224

224

32

224

224

256

224

224

Solution 1: 1x1 Convolution

64

56

56

1x1 CONV
with 32 filters

|

(each filter has size
1x1x64, and performs a
64-dimensional dot
product)

32

56

56

Solution 1: 1x1 Convolution

L

64

56

56

1x1 CONV
with 32 filters

|

(each filter has size
1x1x64, and performs a
64-dimensional dot
product)

Grows or shrinks feature
channel dimension

32

56

56

Solution 2: Pooling (downsampling)

- makes the representations spatially smaller
- saves computation (GPU mem & speed), allows go deeper
- operates over each activation map independently:

224x224x64

112x112x64

pool

(E—

> o 112
224 downsampling

224

81

Single depth slice

MAX POOLING

1 (1] 2| 4
5|16 | 7|38
312 |1]|0
1 (2|3 | 4

v

max pool with 2x2 filters
and stride 2 6 3

v

* Intuitively, only forward the most important features
in the region.

* Also improve spatial invariance (output is agnostic
to where the max value comes from)

82

Single depth slice

AVG POOLING

1 (1] 2| 4
56| 7|38
312 |1]|0
1 (2|3 | 4

average pool with 2x2
filters and stride 2

3.25

5.25

Pooling layer: summary

Let's assume inputis W, xH; x C
Pooling layer needs 2 hyperparameters:
- The spatial extent F (e.qg., 2)

- The stride S (e.g., 2)

This will produce an output of W, x H, x C where:
- W, =(W,-F)/S+1
- H,=(H,-F)/[S+1

Number of parameters?
0

A canonical (shallow) convolutional neural net

RELU RELU

CONV

RELU RELU

=)
=
L
02
=)
-
]
x

airplane

—-LEYTEE LI L

I (A I E.z &

85

Next Time:

e Convolutional Neural Nets!

