
Machine Learning Applications

CS 4644-DL / 7643-A: LECTURE 7
DANFEI XU

Topics:
• Convolutional Neural Networks: Past and Present
• Convolution Layers



Administrative:
• Assignment due on Sep 17th (with 48hr grace period)
• List of TA – expertise up on Piazza 
• Proposal template and prompt released.
• Proposal due Sep 24th 11:59pm (No Grace Period)
• Start finding a project team if you haven’t!
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Jacobians

Given a function 𝑓:ℝ! → ℝ", we have the Jacobian matrix J of shape 𝒎× 𝒏 ,
where J#,% =

&'!
&("

Figure source: https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant
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Recap: Vector derivatives
Scalar to Scalar

Regular derivative:

If x changes by a 
small amount, how 
much will y change?

Vector to Scalar

Derivative is Gradient:

Vector to Vector

Derivative is Jacobian:

For each element of x, if it changes 
by a small amount, how much will 
each element of y change?

Slide credit: Stanford CS231n Instructors

For each element of x, if it 
changes by a small amount, 
how much will y change?



Summary (Lecture 5 – here):
• Neural networks, activation functions
• NNs as Universal Function Approximators
• Neurons as biological inspirations to DNNs
• Vector Calculus
• Backpropagation through vectors / matrices



Next: Convolutional Neural Networks

Illustration of LeCun et al. 1998 from CS231n 2017 Lecture 1

6 Slide credit: Stanford CS231n Instructors



Frank Rosenblatt, ~1957: Perceptron

The Mark I Perceptron machine was the first 
implementation of the perceptron algorithm. 

The machine was connected to a camera that used 
20×20 photocells to produce a 400-pixel image. 

recognized 
letters of the alphabet

update rule:

A bit of history...

This image by Rocky Acosta is licensed under CC-BY 3.0

Slide credit: Stanford CS231n Instructors

https://en.wikipedia.org/wiki/File:IBM_Automatic_Sequence_Controlled_Calculator_Sequence_Indicators.jpg
https://creativecommons.org/licenses/by/3.0/us/


Widrow and Hoff, ~1960: Adaline/Madaline

A bit of history...

Slide credit: Stanford CS231n Instructors



Rumelhart et al., 1986: First time back-propagation became popular

recognizable math

A bit of history...

Illustration of Rumelhart et al., 1986 by Lane McIntosh, 
copyright CS231n 2017

Slide credit: Stanford CS231n Instructors



[Hinton and Salakhutdinov 2006]

Reinvigorated research in 
Deep Learning

A bit of history...

Illustration of Hinton and Salakhutdinov 2006  by Lane 
McIntosh, copyright CS231n 2017

Slide credit: Stanford CS231n Instructors



First strong results
Acoustic Modeling using Deep Belief Networks
Abdel-rahman Mohamed, George Dahl, Geoffrey Hinton, 2010
Context-Dependent Pre-trained Deep Neural Networks 
for Large Vocabulary Speech Recognition
George Dahl, Dong Yu, Li Deng, Alex Acero, 2012

Illustration of Dahl et al. 2012 by Lane McIntosh, 
copyright CS231n 2017

Figures copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission. 

Imagenet classification with deep convolutional 
neural networks
Alex Krizhevsky, Ilya Sutskever, Geoffrey E Hinton, 2012

Slide credit: Stanford CS231n Instructors



A bit of history:

Hubel & Wiesel,
1959
RECEPTIVE FIELDS OF SINGLE 
NEURONES IN
THE CAT'S STRIATE CORTEX

1962
RECEPTIVE FIELDS, BINOCULAR 
INTERACTION
AND FUNCTIONAL ARCHITECTURE IN
THE CAT'S VISUAL CORTEX

1968...
Cat image by CNX OpenStax is licensed 
under CC BY 4.0; changes made

12Slide credit: Stanford CS231n Instructors

https://commons.wikimedia.org/wiki/File:Figure_35_03_05.jpg


Hierarchical organization

Illustration of hierarchical organization in early visual 
pathways by Lane McIntosh, copyright CS231n 2017

13Slide credit: Stanford CS231n Instructors



A bit of history:

Neocognitron
[Fukushima 1980]

“sandwich” architecture (SCSCSC…)
simple cells: modifiable parameters
complex cells: perform pooling

14Slide credit: Stanford CS231n Instructors



A bit of history:
Gradient-based learning applied to 
document recognition
[LeCun, Bottou, Bengio, Haffner 1998]

LeNet-5

15Slide credit: Stanford CS231n Instructors



Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission. 

A bit of history:
ImageNet Classification with Deep 
Convolutional Neural Networks
[Krizhevsky, Sutskever, Hinton, 2012]

“AlexNet”

16Slide credit: Stanford CS231n Instructors



Fast-forward to today: ConvNets are everywhere
Classification Retrieval

Figures copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission. 

Slide credit: Stanford CS231n Instructors



Figures copyright Shaoqing Ren, Kaiming He, Ross Girschick, Jian Sun, 2015. Reproduced with 
permission. 

Fast-forward to today: ConvNets are everywhere

[Faster R-CNN: Ren, He, Girshick, Sun 2015]

Detection Segmentation

[Farabet et al., 2012]
Figures copyright Clement Farabet, 2012. 
Reproduced with permission. 

Slide credit: Stanford CS231n Instructors



Fast-forward to today: ConvNets are everywhere

Slide credit: Stanford CS231n Instructors

https://blogs.nvidia.com/blog/2021/01/27/lidar-sensor-nvidia-drive/

https://www.nvidia.com/en-us/self-driving-cars/

Autonomous Driving: GPUs & specialized chips are fast and compact 
enough for on-board compute!



Fast-forward to today: ConvNets are everywhere

[Toshev, Szegedy 2014]

[Guo et al. 2014]

Images are examples of pose estimation, not actually from Toshev & Szegedy 2014. Copyright Lane 
McIntosh.

Figures copyright Xiaoxiao Guo, Satinder Singh, Honglak Lee, Richard Lewis,
and Xiaoshi Wang, 2014. Reproduced with permission. 

Slide credit: Stanford CS231n Instructors



Fast-forward to today: ConvNets are everywhere
Generalized convolution: spatial convolution

Choi et al., 2019

Kamnitsas et al., 2015



Fast-forward to today: ConvNets are everywhere
Generalized convolution: temporal convolution

Bai et al., 2018



Fast-forward to today: ConvNets are everywhere
Generalized convolution: graph convolution

Kipf et al., 2017



[Vinyals et al., 2015]
[Karpathy and Fei-Fei, 
2015]
[Radford, 2021]

Image-to-textNo errors Minor errors Somewhat related

A white teddy bear sitting in 
the grass

A man riding a wave on 
top of a surfboard

A man in a baseball 
uniform throwing a ball

A cat sitting on a 
suitcase on the floor

A woman is holding a 
cat in her hand

All images are CC0 Public domain:
https://pixabay.com/en/luggage-antique-cat-1643010/
https://pixabay.com/en/teddy-plush-bears-cute-teddy-bear-1623436/
https://pixabay.com/en/surf-wave-summer-sport-litoral-1668716/
https://pixabay.com/en/woman-female-model-portrait-adult-983967/
https://pixabay.com/en/handstand-lake-meditation-496008/
https://pixabay.com/en/baseball-player-shortstop-infield-1045263/

Captions generated by Justin Johnson using Neuraltalk2

A woman standing on a 
beach holding a surfboard
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https://pixabay.com/en/luggage-antique-cat-1643010/
https://pixabay.com/en/teddy-plush-bears-cute-teddy-bear-1623436/
https://pixabay.com/en/surf-wave-summer-sport-litoral-1668716/
https://pixabay.com/en/woman-female-model-portrait-adult-983967/
https://pixabay.com/en/handstand-lake-meditation-496008/
https://pixabay.com/en/baseball-player-shortstop-infield-1045263/
https://github.com/karpathy/neuraltalk2
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Text-to-Image

[Reed, 2016]
[Zhang, 2017]
[Johnson, 2018]
[Ramesh, 2021]
[Frans, 2021]
[Saharia, 2022]
[Ramesh, 2022]

“An avocado armchair”



Convolutional Neural Networks



The connectivity in linear layers doesn’t always make sense

Limitation of Linear Layers

Q: How many parameters?

M*N (weights) + N (bias)

Hundreds of millions of 
parameters for just one layer

More parameters => More 
data needed & slower to 
train / inference

Is this necessary? 

1024 x 1024
Pixel Image

~1M element
Vector (M)

Fully-
Connected
Layer (N)



Image features are spatially 
localized!

Smaller features repeated across 
the image

Edges

Color

Motifs (corners, etc.)

No reason to believe one feature 
tends to appear in a fixed location. 
Need to search in entire image.

Locality of Features

Can we induce a bias in the 
design of a neural network 
layer to reflect this?



Convolution: A 1D Visual Example

Convolution
From https://en.wikipedia.org/wiki/Convolution

Input function: 𝑓()

Kernel/filter function: 𝑔()

Convolution: 𝑓 ∗ 𝑔()



Convolution

Locality of Features

1-D Convolution is defined as the integral of the product of two functions 
after one is reflected about the y-axis and shifted. 

From https://en.wikipedia.org/wiki/Convolution

Intuitively: given function 𝑓 and filter 𝑔. 
How similar is 𝑔(−𝑥) with the part of 𝑓(𝑥)
that it’s operating on. 

Cross-correlation is convolution without 
the y-axis reflection.

For ConvNets, we don’t flip filters to 
improve efficiency, so we are really using 
Cross-Correlation Nets!



Convolution in Computer Vision (non-Deep)

Locality of Features

Convolution with Gaussian Filter (Gaussian Blur) Convolution with Sobel Filter (Edge Detection)



Intuition for pattern recognition and learning using convolution

Convolution

From https://en.wikipedia.org/wiki/Convolution

g(): filter / pattern template 

f(): signal / observed data

f*g(): how well data matches with the 
template

For Convolution Layers in NN:
• g() as the weights to learn 
• f() as the input to the layer
• f*g() as the output of the layer (result of convolution)
• Discrete instead of continuous convolution (sum instead of integral)
• g() and f() may be 𝑁-dimensional, where 𝑁 ≥ 1



3072
1

Fully Connected Layer
32x32x3 image -> stretch to 3072 x 1 

10 x 3072 
weights

activationinput

1 number: 
the result of taking a dot product 
between a row of W and the input 
(a 3072-dimensional dot product)

1
10

33



32

32

3

2-D Convolution Layer
32x32x3 image -> preserve spatial structure

width

height

depth



32

32

3

2-D Convolution Layer

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially, 
computing dot products at each 
location”



32

32

3

2-D Convolution Layer

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially, 
computing dot products”

Filters always extend the full 
depth of the input volume



32

32

3

2-D Convolution Layer
32x32x3 image
5x5x3 filter

1 number: 
the result of taking a dot product between the 
filter and a small 5x5x3 chunk of the image
(i.e. 5*5*3 = 75-dimensional dot product + bias)



32

32

3

2-D Convolution Layer



32

32

3

2-D Convolution Layer
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32

3

2-D Convolution Layer



32

32

3

2-D Convolution Layer



32

32

3

2-D Convolution Layer
32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation map

1

28

28



32

32

3

2-D Convolution Layer
32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation maps

1

28

28

consider a second, green filter
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32

3

Convolution Layer

activation maps

6

28

28

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!



Preview: ConvNet is a sequence of Convolution Layers, interspersed with 
activation functions

32

32

3

28

28

6

CONV,
ReLU
e.g. 6 
5x5x3 
filters



Preview: ConvNet is a sequence of Convolution Layers, interspersed with 
activation functions

32

32

3

CONV,
ReLU
e.g. 6 
5x5x3 
filters 28

28

6

CONV,
ReLU
10 
5x5x? 
filters



Preview: ConvNet is a sequence of Convolution Layers, interspersed with 
activation functions

32

32

3

CONV,
ReLU
e.g. 6 
5x5x3 
filters 28

28

6

CONV,
ReLU
e.g. 10 
5x5x6 
filters

CONV,
ReLU

….

10

24

24



Preview [Zeiler and Fergus 2013] Visualization of VGG-16 by Lane McIntosh. VGG-16 
architecture from [Simonyan and Zisserman 2014].



Preview



example 5x5 filters
(32 total)

one filter => 
one activation map

Figure copyright Andrej Karpathy.
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preview:

51



A closer look at spatial dimensions:

32

32

3

32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation map

1

28

28



Conv2D in PyTorch

What are these?



7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:



7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:



7x7 input (spatially)
assume 3x3 filter

The # of grid that the filter shifts 
is called stride.

E.g., here we have stride = 1

7

7

A closer look at spatial dimensions:



7x7 input (spatially)
assume 3x3 filter with stride = 1

7

7

A closer look at spatial dimensions:



7x7 input (spatially)
assume 3x3 filter with stride = 1

=> 5x5 output

7

7

A closer look at spatial dimensions:



7x7 input (spatially)
assume 3x3 filter with stride = 1

=> 5x5 output

7

7

A closer look at spatial dimensions:

But what about the features at the border?  



In practice: Common to zero pad the border
0 0 0 0 0 0

0

0

0

0

e.g. input 7x7
3x3 filter, applied with stride 1 
pad with 1 pixel border => what is the output?
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In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1 
pad with 1 pixel border => what is the output?

7x7 output!
in general, common to see CONV layers with 
stride 1, filters of size FxF, and zero-padding with 
(F-1)/2. (will preserve size spatially)
e.g. F = 3 => zero pad with 1

F = 5 => zero pad with 2
F = 7 => zero pad with 3

0 0 0 0 0 0

0

0

0

0



In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1 
pad with 1 pixel border => what is the output?

7x7 output!

0 0 0 0 0 0

0

0

0

0

N = input dimension
P = padding size
F = filter size
Output size = (N – F + 2P) / stride + 1
= (7 – 3 + 2 * 1) / 1 + 1 = 7



7x7 input (spatially)
assume 3x3 filter
applied with stride 2

7

7

A closer look at spatial dimensions:



7x7 input (spatially)
assume 3x3 filter
applied with stride 2

7

7

A closer look at spatial dimensions:

64



7x7 input (spatially)
assume 3x3 filter
applied with stride 2
=> 3x3 output!

7

7

A closer look at spatial dimensions:
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7x7 input (spatially)
assume 3x3 filter
applied with stride 3?

7

7

A closer look at spatial dimensions:

66



7x7 input (spatially)
assume 3x3 filter
applied with stride 3?

7

7

A closer look at spatial dimensions:

67



N

NF

F

Output size:
(N - F) / stride + 1

e.g. N = 7, F = 3:
stride 1 => (7 - 3)/1 + 1 = 5
stride 2 => (7 - 3)/2 + 1 = 3
stride 3 => (7 - 3)/3 + 1 = 2.33 :\

We use floor division to 
calculate output size:
(7 – 3) // 3 + 1 = 2 

68



Remember back to… 
E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially!
(32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn’t work well.

32

32

3

CONV,
ReLU
e.g. 6 
5x5x3 
filters 28

28

6

CONV,
ReLU
e.g. 10 
5x5x6 
filters

CONV,
ReLU

….

10

24

24

69



Remember back to… 
With padding, we can keep the same spatial feature dimension throughout the 
convolution layers.

32

32

3

CONV,
ReLU
e.g. 6 
5x5x3 filters 
with 2 x 2 
padding

32

32

6

CONV,
ReLU
e.g. 10 
5x5x6
filters with 
2 x 2 
padding 

CONV,
ReLU

….

10

32

32

70



Examples time:

Input volume: 32x32x3
Conv layer: 10 5x5 filters with 
stride 1, pad 2

Output volume size: ?
(N – F + 2P) / stride + 1
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Examples time:

Input volume: 32x32x3
Conv layer: 10 5x5 filters with 
stride 1, pad 2

Output volume size: 
(32+2*2-5)/1+1 = 32 spatially, so
32x32x10

72



Examples time:

Input volume: 32x32x3
Conv layer: 10 5x5 filters with 
stride 1, pad 2

Number of parameters in this 
layer?

73



Examples time:

Number of parameters in this layer?
each filter has 5*5*3 + 1 = 76 params      (+1 for bias)

=> 76*10 = 760
74

Input volume: 32x32x3
Conv layer: 10 5x5 filters with 
stride 1, pad 2
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Convolution layer: summary

Let’s assume input is W1 x H1 x C
Conv layer needs 4 hyperparameters:
- Number of filters K
- The filter size F
- The stride S
- The zero padding P

This will produce an output of W2 x H2 x K 
where:
- W2 = (W1 - F + 2P)/S + 1
- H2 = (H1 - F + 2P)/S + 1

Number of parameters: F2CK and K biases
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Convolution layer: summary

Let’s assume input is W1 x H1 x C
Conv layer needs 4 hyperparameters:
- Number of filters K
- The filter size F
- The stride S
- The zero padding P

This will produce an output of W2 x H2 x K 
where:
- W2 = (W1 - F + 2P)/S + 1
- H2 = (H1 - F + 2P)/S + 1

Number of parameters: F2CK and K biases

Common settings:

K = (powers of 2, e.g. 32, 64, 128, 512)
- F = 3, S = 1, P = 1
- F = 5, S = 1, P = 2
- F = 5, S = 2, P = ? (whatever fits)
- F = 1, S = 1, P = 0



Conv layer needs 4 hyperparameters:
- Number of filters K
- The filter size F
- The stride S
- The zero padding P

Example: CONV 
layer in PyTorch

PyTorch is licensed under BSD 3-clause.

77

https://pytorch.org/
https://github.com/pytorch/examples/blob/master/LICENSE


Conv features can grow really big really quickly…

3

224

224

224

224

32 256

224

224



Solution 1: 1x1 Convolution

64

56

56
1x1 CONV
with 32 filters

32
56

56
(each filter has size 
1x1x64, and performs a 
64-dimensional dot 
product)
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56

56
1x1 CONV
with 32 filters

32
56

56
(each filter has size 
1x1x64, and performs a 
64-dimensional dot 
product)

Grows or shrinks feature 
channel dimension

80

Solution 1: 1x1 Convolution



Solution 2: Pooling (downsampling)
- makes the representations spatially smaller
- saves computation (GPU mem & speed), allows go deeper
- operates over each activation map independently:

81



1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2 filters 
and stride 2 6 8

3 4

MAX POOLING

82

• Intuitively, only forward the most important features 
in the region.

• Also improve spatial invariance (output is agnostic 
to where the max value comes from)



1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

average pool with 2x2 
filters and stride 2 3.25 5.25

2 2

AVG POOLING

83
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Pooling layer: summary

Let’s assume input is W1 x H1 x C
Pooling layer needs 2 hyperparameters:
- The spatial extent F (e.g., 2)
- The stride S (e.g., 2)

This will produce an output of W2 x H2 x C where:
- W2 = (W1 - F )/S + 1
- H2 = (H1 - F)/S + 1

Number of parameters?
0



A canonical (shallow) convolutional neural net

85



Next Time:
• Convolutional Neural Nets!


