CS 4644 / 7643-A: LECTURE 5
DANFEI XU

Topics:
* Backpropagation
* Neural Networks

 Jacobians

 PS1/HW1 are out! Due Sep 19th

* Project:
e Teaming thread on piazza
 Next lecture will be on how to pick a project
* Proposal due Sep 24th. Must have formed a team before then.
 Will send out instruction after the next lecture

wox |— — —log(p) —

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Machine Learning Example Gograta |

=

u 1 p L
— T [“loee) ——
dL JL dp du
ow 0p oudw

Chain rule and Backpropagation!

Adapted from slides by: Marc'Aurelio Ranzato, Yann LeCun

Recap: Computation Graph

We will view the function / model as a
computation graph

Key idea: break a complex model into
atomic computation nodes that can be
computed efficiently.

Graph can be any directed acyclic
graph (DAG)

Modules must be differentiable to
support gradient computations for
gradient descent

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

) A General Framework Gegrgia |

=

Directed Acyclic Graphs (DAGs)

@)
R}
o\l
O\O

O

A computation node

L

2

Slide credit: Stanford CS231n Instructors

“local gradient”

v

Slide credit: Stanford CS231n Instructors

0z
ox

¥

“local gradient”

Z

oL
0z

“Upstream
gradient”

Slide credit: Stanford CS231n Instructors

0z
ox

¥

“local gradient”

Z

oL
0z

“Upstream
gradient”

Slide credit: Stanford CS231n Instructors

“local gradient”
52 0z

\ % -
o <
“Downstream f
gradients” B2) 70
Oy 0z

%
“Upstream

gradient”

Slide credit: Stanford CS231n Instructors

L

“local gradient”
= oy 0z

X S
(93 (9\e 8:1: =~

“‘“Downstream © f
gradients”

oL

Y 0z
/IJB/Z 1
2=y Upstream
= "7 .
gradient”

Slide credit: Stanford CS231n Instructors

¥

D

L

“local gradient”
= oy 0z

X S
(93 (9\e 8:1: =~

“‘“Downstream © f
gradients”

oL

Y 0z
/IJB/Z 1
2=y Upstream
= "7 .
gradient”

Slide credit: Stanford CS231n Instructors

¥

D

Backpropagation: a simple example

f(z,y,2) = (z +y)z
eg.x=-2,y=95,z=-4

e of _ of - \ Chain rule:
g — * 5z Of _ Of oq
of of of Oy 0q oy
Want: 8y 0z Upstr/;am chal
gradient gradient

)

Patterns in backward flow

add gate: gradient distributor
max gate: gradient router
mul gate: gradient switcher

-1000@2\ -20.00
200 _/ 1.00

Gradients add at branches

7

Duality in Fprop and Bprop

FPROP BPROP
s > TRy
UD') lllllll
> TRy

COPY
A

.Q
.
‘e
L 4

Step 1: Compute Loss on Mini-Batch: Forward Pass

q = f1(x)

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Neural Network Training Gegrala |

Step 1: Compute Loss on Mini-Batch: Forward Pass

q = f1(x) v = f,(q)

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Neural Network Training Gegrala |

Step 1: Compute Loss on Mini-Batch: Forward Pass

q = f1(x) v = f2(q) L=f3(v)

Note that we must store the intermediate outputs of all layers!

This is because we will need them to compute the gradients (the gradient
equations will have terms with the output values in them)

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

) Neural Network Training Gegrala |

Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass

q = f1(x) v = f2(q) L=f3(v)

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Neural Network Training Gegrala |

Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass

q = f1(x) v = f2(q) L=f3(v)

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Neural Network Training Gegrala |

Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass

q = f1(x) v = f2(q) L=f3(v)

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Neural Network Training Gegrala |

Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass
Step 3: Use gradient to update all parameters at the end

dL
ow,

Gradient Descent!

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Georgia !E

Tech

So far:
Linear classifiers: a basic model
Loss functions: measures performance of a model

Backpropagation: an algorithm to calculate gradients of
loss w.r.t. arbitrary differentiable function

Gradient Descent: an iterative algorithm to perform
gradient-based optimization

Next:
What are neural networks?
Non-linear functions
How do we run backpropagation on neural nets?

Neural Network

Linear
classifier

http://maxpixel.freegreatpicture.com/Play-Wooden-Blocks-Tower-Kindergarten-Child-Toys-1864718
https://creativecommons.org/publicdomain/zero/1.0/deed.en

(Deep) Representation
Learning for Classification

A function that transforms raw data space into a linearly-separable space

Moon shape Data, Non-Linearly Separable

Sigmoid J

Tanh (2D) —
FC (1000->2) |
Tanh |
|
]

FC (2->1000)
Input (2D)

https://khalidsaifullaah.github.io/neural-networks-from-linear-algebraic-perspective

Neural networks: the original linear classifier

(Before) Linear score function: f = Wz

r e RP. W e REOXP

Slide credit: Stanford CS231n Instructors

Neural networks: 2 layers

(Before) Linear score function: f = Wz
(Now) 2-layer Neural Network f = Wy max(0, Wiz)

r e RP W, e REXP W, e RO*H

(In practice we will usually add a learnable bias at each layer as well)

Slide credit: Stanford CS231n Instructors

Neural networks: 3 layers

(Before) Linear score function: f = Wz

(Now) 2-layer Neural Network ~ f = W3 max(0, Wiz)
or 3-layer Neural Network

f = W3 max(O, W maX(07 Wlx))

r e RP. W, e REXP W, ¢ RH2XH1 17, ¢ ROXH2

(In practice we will usually add a learnable bias at each layer as well)

Slide credit: Stanford CS231n Instructors

Neural networks: hierarchical computation
(Before) Linear score function: f = Wz

(Now) 2-layer Neural Network f = W3 max(0, Wiz)

X | W1 h @ W2 S

3072 100 10

r e RP W, e REXP W, e RO*H

Slide credit: Stanford CS231n Instructors

Neural networks: why is max operator important?
(Before) Linear score function: f = Wx

(Now) 2-layer Neural Network

=W,

max|(0,

Wiz)

The function max(0, z) is called the activation function.
Q: What if we try to build a neural network without one?

f — WQWl.I'

Slide credit: Stanford CS231n Instructors

Neural networks: why is max operator important?
(Before) Linear score function: f = Wx

(Now) 2-layer Neural Network

=W,

max|(0,

Wiz)

The function max(0, z) is called the activation function.
Q: What if we try to build a neural network without one?

J=WolWix W3 = WolW; € RCXH,f = Wix

A: We end up with a linear classifier again!

(Non-linear) activation function allows us to build non-linear functions with NNs.

Slide credit: Stanford CS231n Instructors

Aside: Universal Function Approximators

Claim: Neural Networks with certain non-linear activation functions are
universal function approximators.

- What the heck are universal function approximators?
- Why are NNs considered universal function approximators?
- Why does it matter?

Aside: Universal Function Approximators

Claim: Neural Networks with certain non-linear activation functions are
universal function approximators.

A quick primer on approximation theory.

A branch of mathematics that deals with how functions can be approximated by
simpler or more tractable functions, while maintaining some measure of
closeness to the original function.

Example: approximating f(x) = e”*.
e* are known as transcendental functions: you cannot calculate its value with
finitely many basic algebraic operations like multiplication, addition, and power.

But we can approximate e* with a polynomial with bounded error:

S
k=1 k!

Adapted from https.//tivadardanka.com/blog/universal-approximation-theorem

Aside: Universal Function Approximators

Claim: Neural Networks with certain non-linear activation functions are
universal function approximators.

NNs as function approximators

A single layer network with a sigmoid activation o = - can be written as

+e~X

Is the family of single layer network with sigmoid activation enough to
approximate any reasonable function (more on this next slide)?

M
T:{E UiO'(WlTx+bi):Wi;bi E]RN)vi ER}
i=1

Adapted from https.//tivadardanka.com/blog/universal-approximation-theorem

Aside: Universal Function Approximators

Claim: Neural Networks with certain non-linear activation functions are
universal function approximators.

The universal approximation theorem (Cybenko, G. 1989)

Theorem 1. Let o be any continuous discriminatory function. Then finite sums of
the form
N

G(x) = ; ao(yix + 6)) 2)
=1
are dense in C(1,). In other words, given any f € C(I,) and ¢ > 0, there is a sum, G(x),
of the above form, for which
|G(x) = f(x)|<e forall xel,.

Plain English: as long as the activation function is sigmoid-like and the function to
be approximated is continuous, there exists a neural network with a single hidden

layer that can approximate it with certain error.

Adapted from https.//tivadardanka.com/blog/universal-approximation-theorem

Aside: Universal Function Approximators

Claim: Neural Networks with certain non-linear activation functions are
universal function approximators.

A 1-D example of the universal approximation theorem

4

== function to learn

We want to approximate g(x) bounded ;
by some small error € (shaded band) with
a single layer NN F(x)

2

-4 -3 -2 -1 0 1 2 3 4

Adapted from https.//tivadardanka.com/blog/universal-approximation-theorem

Aside: Universal Function Approximators

Claim: Neural Networks with certain non-linear activation functions are
universal function approximators.

A 1-D example of the universal approximation theorem

4

=== function to learn
—— neural network

We want to approximate g(x) bounded ;
by some small error € (shaded band) with
a single layer NN F(x)

2

1

The universal approximation theorem >
guarantees the existence of such an F(x)

... but it doesn’t tell us how to get it or
what the size of the model (M) should be

-4 -3 -2 -1 0 1 2 3 4

Adapted from https.//tivadardanka.com/blog/universal-approximation-theorem

Activation functions

(Before) Linear score function: f = Wz
(Now) 2-layer Neural Network f = Wy max(0, Wiz)

r e RP W, e REXP W, e RO*H

(In practice we will usually add a learnable bias at each layer as well)

Slide credit: Stanford CS231n Instructors

Activation functions

S|gmo|d Leaky RelL U)
o(z) = i max(0.1z, x)
53 0 To Br——t 10

tanh

Maxout
tanh(x)

max(w{ T + by, wd x + by)

RelLU ELU

max(0,2) ey 220

Slide credit: Stanford CS231n Instructors

Activation functions

Sigmoid
o(z) = H%

tanh |

RelLU
max (0, x)

ReLU is a good default
choice for most problems

Leaky RelLU)
max(0.1x, x)

Maxout
max(w{ T + by, wd x + by)

ELU

T x>0
ae®—1) =<0

Slide credit: Stanford CS231n Instructors

Why are they called Neural Networks, anyway?

Slide credit: Stanford CS231n Instructors

https://www.flickr.com/photos/fbobolas/3822222947
https://www.flickr.com/photos/fbobolas
https://creativecommons.org/licenses/by/2.0/

Impulses carried toward cell body

\ dendrite

presynaptic
terminal

cell ——
body

Impulses carried away
from cell body

This image by Felipe Perucho
is licensed under CC-BY 3.0

Slide credit: Stanford CS231n Instructors

https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/

Impulses carried toward cell body

\ dendrite

presynaptic
terminal

axon

cell ——
body

Impulses carried away
from cell body

Zo wo

>@ synapse
axon from a neuron
woTo

This image by Felipe Perucho
is licensed under CC-BY 3.0

cell body

f (Z: w;x; + b)

w1
: Z: Wi 4 output axo;
activation
Wy Ly function

Slide credit: Stanford CS231n Instructors

https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/

Impulses carried toward cell body

\

cell ——
body

This image by Felipe Perucho
is licensed under CC-BY 3.0

1.0

0.8

0.6

0.4

0.2

0.0
-10 -5 0 5 10

/

Impulses carried away

dendrite

presynaptic
terminal

axon

»

from cell body

Wo

sigmoid activation function
1

l+e™™

>@ synapse
woTo

axon from a neuron

cell body f (Z wi; + b)

w11

Y

output axon

activation
function

Zw,':ci +b

Wo T2

Slide credit: Stanford CS231n Instructors

https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/

Impulses carried toward cell body

\ dendrite

presynaptic
terminal

cell ——
body

Impulses carried away
from cell body

Zo wo

>@ synapse
axon from a neuron
woTo

This image by Felipe Perucho
is licensed under CC-BY 3.0

f (Z w;x; + b)

cell body
. output axon
def neuron_tick(inputs):

Z w;x; + b
i
: ' o activation
" assume inputs and weights are 1-D numpy arrays and bias is a number """ f tion
cell_body sum = np.sum(inputs * self.weights) + self.bias W99 e
firing rate = 1.0 / (1.0 + math.exp(-cell_body sum)) # sigmoid activation func
return firing rate

w11

class Neuron:

Y

Slide credit: Stanford CS231n Instructors

https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/

Biological Neurons: Neurons in a neural network:
Organized into regular layers for
computational efficiency

@
S

4
Q

@
%

3
',‘
@

[
g’

K W
. /)‘\“'A‘\\ ‘ output layer

input layer
hidden layer 1 hidden layer 2

Slide credit: Stanford CS231n Instructors

https://www.maxpixel.net/Brain-Structure-Neurons-Brain-Network-Brain-Cells-582052
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Be very careful with your brain analogies!

Biological Neurons:
e Many different types
e Dendrites can perform complex non-linear computations
e Synapses are not a single weight but a complex non-linear dynamical
system

[Dendritic Computation. London and Hausser]

Slide credit: Stanford CS231n Instructors

Neural networks: Architectures

output layer
input layer
hidden layer

“2-layer Neural Net”\

“1-hidden-layer Neural Net”

2
(OC
o

.
=
A\

)
‘t
Vi
K
X\
‘;

tput layer

hidden layer 1 hidden layer 2

()

input layer

“3-layer Neural Net”, or
“2-hidden-layer Neural Net”

“Fully-connected” layers

Slide credit: Stanford CS231n Instructors

Example feed-forward computation of a neural network

#
f
X
h
h

28,
o ‘

input layer

Va
()

i
{
(U

’
%
)

4
A\

tput layer

D
)

hidden layer 1 hidden layer 2

forward-pass of a 3-layer neural network:

lambda x: 1.0/(1.0 + np.exp(-x)) # activation function (use sigmoid)
np.random.randn(3, 1) # random input vector of three numbers (3xl)

1 = f(np.dot(Wl, x) + bl) # calculate first hidden layer activations (4xl)

2 = f(np.dot(W2, hl) + b2) # calculate second hidden layer activations (4x1)

out = np.dot(W3, h2) + b3 # output neuron (1x1)

Slide credit: Stanford CS231n Instructors

Full implementation of training a 2-layer Neural Network needs ~20 lines:

import numpy as np
from numpy.random import randn

N, D_in, H, D_out = 64, 1000, 100, 10
X, y = randn(N, D_in), randn(N, D_out)
wl, w2 = randn(D_in, H), randn(H, D_out)

for t in range(2000):
h=1/ (1+ np.exp(-x.dot(wl)))
y_pred = h.dot(w2)
loss = np.square(y_pred — y).sum()
print(t, loss)

grad_y_pred = 2.0 x (y_pred - y)
grad_w2 = h.T.dot(grad_y_pred)

grad_h = grad_y_pred.dot(w2.T)

grad_wl = x.T.dot(grad_h * h x (1 - h))

wl —= le-4 * grad_wl
w2 —= le-4 x grad_w2

Slide credit: Stanford CS231n Instructors

Full implementation of training a 2-layer Neural Network needs ~20 lines:

import numpy as np
from numpy.random import randn

N, D_in, H, D_out = 64, 1000, 100, 10
x, y = randn(N, D_in), randn(N, D_out) Define the network
wl, w2 = randn(D_in, H), randn(H, D_out)

for t in range(2000):
h=1/ (1+ np.exp(-x.dot(wl)))
y_pred = h.dot(w2)
loss = np.square(y_pred — y).sum()
print(t, loss)

grad_y_pred = 2.0 x (y_pred - y)
grad_w2 = h.T.dot(grad_y_pred)

grad_h = grad_y_pred.dot(w2.T)

grad_wl = x.T.dot(grad_h * h x (1 - h))

wl —= le-4 * grad_wl
w2 —= le-4 x grad_w2

Slide credit: Stanford CS231n Instructors

Full implementation of training a 2-layer Neural Network needs ~20 lines:

import numpy as np
from numpy.random import randn

N, D_in, H, D_out = 64, 1000, 100, 10
X, y = randn(N, D_in), randn(N, D_out) Define the network
wl, w2 = randn(D_in, H), randn(H, D_out)

for t in range(2000):
h=1/ (1+ np.exp(-x.dot(wl)))
y_pred = h.dot(w2) Forward pass
loss = np.square(y_pred — y).sum()
print(t, loss)

grad_y_pred = 2.0 x (y_pred - y)
grad_w2 = h.T.dot(grad_y_pred)

grad_h = grad_y_pred.dot(w2.T)

grad_wl = x.T.dot(grad_h * h x (1 - h))

wl —= le-4 * grad_wl
w2 —= le-4 x grad_w2

Slide credit: Stanford CS231n Instructors

Full implementation of training a 2-layer Neural Network needs ~20 lines:

import numpy as np
from numpy.random import randn

N, D_in, H, D_out = 64, 1000, 100, 10
X, y = randn(N, D_in), randn(N, D_out) Define the network
wl, w2 = randn(D_in, H), randn(H, D_out)

for t in range(2000):
h=1/ (1+ np.exp(-x.dot(wl)))
y_pred = h.dot(w2) Forward pass
loss = np.square(y_pred — y).sum()
print(t, loss)

grad_y_pred = 2.0 x (y_pred - y)
grad_w2 = h.T.dot(grad_y_pred)

grad_h = grad_y_pred.dot(w2.T)

grad_wl = x.T.dot(grad_h * h x (1 - h))

Calculate the analytical gradients

wl —= le-4 * grad_wl
w2 —= le-4 x grad_w2

Slide credit: Stanford CS231n Instructors

Full implementation of training a 2-layer Neural Network needs ~20 lines:

import numpy as np
from numpy.random import randn

N, D_in, H, D_out = 64, 1000, 100, 10
x, y = randn(N, D_in), randn(N, D_out) Define the network
wl, w2 = randn(D_in, H), randn(H, D_out)

for t in range(2000):
h=1/ (1+ np.exp(-x.dot(wl)))
y_pred = h.dot(w2) Forward pass
loss = np.square(y_pred — y).sum()
print(t, loss)

grad_y_pred = 2.0 x (y_pred - y)
grad_w2 = h.T.dot(grad_y_pred)

grad_h = grad_y_pred.dot(w2.T)

grad_wl = x.T.dot(grad_h * h x (1 - h))

Calculate the analytical gradients

wl —= le-4 * grad_wl

w2 —= le-4 x grad_wz Gradlent descent

Slide credit: Stanford CS231n Instructors

Full implementation of training a 2-layer Neural Network needs ~20 lines:

import numpy as np
from numpy.random import randn

N, D_in, H, D_out = 64, 1000, 100, 10
X, y = randn(N, D_in), randn(N, D_out)
wl, w2 = randn(D_in, H), randn(H, D_out)

for t in range(2000):
h=1/ (1+ np.exp(-x.dot(wl)))
y_pred = h.dot(w2)
loss = np.square(y_pred — y).sum()
print(t, loss)

grad_y_pred = 2.0 x (y_pred - y) ‘\\\\\

grad_w2 = h.T.dot(grad_y_pred) 4\7 matrix Calculate the analytical gradients
grad_h = grad_y_pred.dot(w2.T)

gm¢y1=xJﬂmﬂgm¢h*r1*(1—hH‘ How?

wl —= le-4 * grad_wl
w2 —= le-4 x grad_w2

Slide credit: Stanford CS231n Instructors

Next: Vector Calculus!

(OAN
oto}o
o
AN
0;0;0

tput layer

hidden layer 1 hidden layer 2

Va
()

input layer

How do we do backpropagation with neural nets?

Slide credit: Stanford CS231n Instructors

Recap: Vector derivatives

Scalar to Scalar
reR,yeR

Regular derivative:

dy
-~ €R

If x changes by a
small amount, how
much will y change?

o—

Slide credit: Stanford CS231n Instructors

Recap: Vector derivatives

Scalar to Scalar
reR,yeR

Regular derivative:

Oy
-~ €R

If x changes by a
small amount, how
much will y change?

o—

Vector to Scalar
zeRN yeR

Derivative is Gradient;

1, O 01

For each element of x, if it
changes by a small amount,
how much will y change?

o~
/

Slide credit: Stanford CS231n Instructors

Recap: Vector derivatives

Scalar to Scalar
reR,yeR
Regular derivative:

dy
oz
If x changes by a

small amount, how
much will y change?

cR

oO—

Vector to Scalar Vector to Vector
reRY yeR zeRN yecRM
Derivative is Gradient; Derivative is Jacobian:
ay N Ay Yy 0 vy Mx N dy OYn
% 6 R <%>n N ﬁxn ()I R (%)T“m B ({).T)m

For each element of x, ifit For each element of x, if it changes
changes by a small amount, by a small amount, how much will
how much will y change? each element of y change?

= =

Slide credit: Stanford CS231n Instructors

Backprop with Vectors

T Loss L still a scalar!

\
y/’

=—h

Slide credit: Stanford CS231n Instructors

Backprop with Vectors

D

L

\
/

Loss L still a scalar!

Z| D,

Vi

Slide credit: Stanford CS231n Instructors

Backprop with Vectors

D

L

\
/

Loss L still a scalar!

Z| D,

Vi

A

oL
0z

“Upstream gradient”

What's the shape of Z—i?

Slide credit: Stanford CS231n Instructors

Backprop with Vectors

D

L

\
/

Loss L still a scalar!

Z| D,
oL
0z DZ

“Upstream gradient”
It’'s a vector of size D, !
Intuitively: for each element
of z, how much does it

influence L?
Slide credit: Stanford CS231n Instructors

Backprop with Vectors

Loss L still a scalar!

D, [Z “local
'\ gradients”
Z| D,
/ | @
Dy y / 0z DZ

“Upstream gradient”

What about 9z and 9z ?
0x dy

Slide credit: Stanford CS231n Instructors

Backprop with Vectors

D. |x “@ocal Loss L still a scalar!
[Dz X Dx] Z DZ
Ox f _
0z .
/ [D, x Dy] OL D
D, (Y / Jacobian 0z | =z

matrices

“Upstream gradient”
0z 0z

What about — and — ?
0x ady

How much does each element in
x influence each element in z

Slide credit: Stanford CS231n Instructors

Backprop with Vectors

Loss L still a scalar!

matrices

What about oL and oL ?
dx ay

D, [Z “local
'\ gradients”
3 [Dz X Dx] Z DZ
i
0z f : :
Dy Y / Jacobian 0z | ~z

“Upstream gradient”

Slide credit: Stanford CS231n Instructors

Backprop with Vectors

matmul([1 x D,], [[D, x D4]])

Loss L still a scalar!

matrices

What about oL and oL ?
dx ay

Dx £ Matrix multiplication “local
\ gradients”
92 57~/[8z] [D,x D} Z1D,
> Oy O f ;
Q <
Dy Y / Jacobian 0z| ~z

“Upstream gradient”

Slide credit: Stanford CS231n Instructors

Backprop with Vectors

matmul([1 x D,], [[D, x D4]])

Loss L still a scalar!

What about oL and oL ?
dx ay

Dx £ Matrix multiplication “local

o/ s

925~/ D, xD,] 71,

0z

/ [D, x Dy] oL D

Dy Y m Jacobian 0z| =z
@ = ﬁz Y matrices “Upstream gradient”
Y

Slide credit: Stanford CS231n Instructors

Backprop with Vectors

matmul([1 x D,], [[D, x D4]])

Loss L still a scalar!

Dx £ Matrix multiplication “local
\ gradients”
oL D, x D,]

=0z = Z| D,
S~ <
“Downstream < Or f >
gradients” 0z)
D, |Y m Jacobian 0z| ~z

matrices

“Upstream gradient”

What about oL and oL ?
dx ay

Slide credit: Stanford CS231n Instructors

Gradients loss of wrt a variable have same dims as the original variable

D

L

D,

.\

“Downstream
gradients”

D

y

=

)

Loss L still a scalar!

Z| D,
oL
0z DZ

“Upstream gradient”

Slide credit: Stanford CS231n Instructors

Jacobians

Given a function f: R™ = R™, we have the Jacobian matrix] of shape m X n,

Of:
where]i,j = i

ax]'
A
-VTfl- 8371 8mn
I I I
~ 0z oz, | | | |
V] Ofm Ofm
axl 83311

Backprop with Vectors

4D input x:
1] —
(2] ——
(3] ——
1] —

f(x) = max(0,x)
(elementwise)

4D output z:
— [1]
— [0]
— [3]
—— [0]

Slide credit: Stanford CS231n Instructors

Backprop with Vectors

4D input x:
1] —
(2] ——
(3] ——
1] —

f(x) = max(0,x)
(elementwise)

What does % look like?

4D output z:
— [1]
— [0]
— [3]
—— [0]

Slide credit: Stanford CS231n Instructors

Backprop with Vectors

4D input x:
1] —
(2] ——
(3] ——
1] —

f(x) = max(0,x)
(elementwise)
[dz/dx]
1
(00
10]
O]

4D output z:
— [1]
— [0]
— [3]
—— [0]

Slide credit: Stanford CS231n Instructors

Backprop with Vectors
4D_inpu_t X:

[1]
(-2]
L

=8

—

.

_

_

f(x) = max(0,x)
(elementwise)

[dL/dz] [dz/dX]
[4-159][1
00

1

0]

4D output z:
— [1]
—— [0]
— [3]
— [0]
o [dL/dz] Upstream

[4-159] «— gradient

Slide credit: Stanford CS231n Instructors

Backprop with Vectors
4D_inpu_t X:

1
(-2
3

4D dL/dx:
[4 05 0]

—
—_—

_

1] —

«—

f(x) = max(0,x)
(elementwise)

[dL/dz] [dz/dX]
[4-159][1
00

1

4D output z:

—

.

_

_

1 <

0]

1

0]
3]
0]

[dL/dz] Upstream
[4-159] «— gradient

Slide credit: Stanford CS231n Instructors

Backprop with Vectors

For element-wise 4D Input x:

ops, jacobian is 1
sparse: off-diagonal
entries always zero! ! -2
Never explicitly form [3
Jacobian -- instead - _1 ;
use element-wise L .

multiplication

4D dL/dx:
[4 05 0]

—_—
—

e

e

«——

f(x) = max(0,x)
(elementwise)

[dL/dz] [dz/dX]
[4-159][1
00

1

0]

4D output z:
— [1]
— [0]
— [3]
— [0]
1L [dL/dz] Upstream

[4-159] «— gradient

Slide credit: Stanford CS231n Instructors

Backprop with Matrices (or Tensors)

[DyxM,]

[DyxM,]

Loss L still a scalar!

Z

f

Jacobian
matrices

»
>

dL/dx always has the
same shape as x!

[D,xM,]

Slide credit: Stanford CS231n Instructors

Backprop with Matrices (or Tensors) Loss L still a scalar!

dL/dx always has the

[DxM,] [same shape as x!
[D,xM,] \
~ (;il 9z Z] [DxM,]
“Downstream < O f]
gradients”) oL
D.xM / = [szMz]
| y y] J @% Jacobian Oz
4 7 0Y matrices “Upstream gradient”
[DyxMy] For each element of z, how

much does it influence L?

Slide credit: Stanford CS231n Instructors

Backprop with Matrices (or Tensors) Loss L still a scalar!

dL/dx always has the

x 11
DM [Z local same shape as x!
\ gradients”
[DyxM;])
= \Lig % [DZXMZ]
“Downstream % 5 g
radients” 0z)
X ‘/7« Z z
o oL 8/ Jacobian 0z
= 7, 0Y matrices « —
D.xM.] = 0% Upstream gradient
y y For each element of y, how much For each element of z, how

does it influence each element of z? Much does it influence L?

Slide credit: Stanford CS231n Instructors

Backprop with Matrices (or Tensors) Loss L still a scalar!

dL/dx always has the

DM [T ‘local same shape as x!
\ gradients’
X
DM, < 9L 5 | 22| (DM X(DxM,)] 7] [DxM,]
“‘Downstream (92 6\7’ "
gradients” % [(D,xM,)*x(D,xM,)] | ~ 5L
D.xM / = [szMz]
[Y y] y @% Jacobian 0z
4 7 0Y matrices “Upstream gradient”
[DyxMy] For each element of z, how

Flatten the two matrices -> vector-

. . . . much does it influence L?
vector gradients -> jacobian matrices!

Slide credit: Stanford CS231n Instructors

Backprop with Matrices

X
Z
X
S,
v

Matrix Multiply

Yn,m — § Ln,dWd,m
d

A

84

Slide credit: Stanford CS231n Instructors

Backprop with Matrices y: [NxM]

13 9 -2 -6]
x: [NxD] > Matrix Multiply — " [5217 1]
[2 1 -3]

[3 4 2] Ynm = Y TndWd.m dL/dy: [NxM]

w: [DxM] __—— g : [2 3-3 9]

[32 1-1] Jacobians: [-8 14 6]

[2 13 2] dy/dx: [(NxM)x(NxD)]

[3 2 1-2] dy/dw: [(NxM)x(DxM)]

What does the jacobian matrix look like?

85 Slide credit: Stanford CS231n Instructors

Backprop with Matrices y: [NxM]
13 9 -2 -6]

x: [NxD] > Matrix Multiply — " [5217 1]
[2 1 -3]
[3 4 2] Ynm = Y TndWd.m dL/dy: [NxM]
w: [DxM] __—— g : [2 3-3 9]
[32 1-1] Jacobians: [-8 14 6]
[2 13 2] dy/dx: [(NxM)x(NxD)]
[3 2 1-2] dy/dw: [(NxM)x(DxM)]

For a neural net with
N=64, D=M=4096
Each Jacobian takes 256 GB of memory!
Must exploit its sparsity!

86 Slide credit: Stanford CS231n Instructors

Backprop with Matrices y: [NxM]
[13 9 -2 6]

x: [NxD] > Matrix Multiply — " [5217 1]
[2 [1T]-3]
[-3 4 2] Yn,m = Z%dwd,m dL/dy: [NxM]
w: [DxM] __—— g : [2 3-3 9]
[32 1-1] Q: Which part of y [-8 14 6]
[2 1 3 2] does a single element
[3 2 1-2] in x contribute to? I []

87 Slide credit: Stanford CS231n Instructors

Backprop with Matrices y: [NxM]
3 9 -2 -6])
x: [NxD] > Matrix Multiply — " [5217 1]
[2 1]-3]
[3 4 2] Ynm = Y TndWd.m dL/dy: [NxM]
w: [DxM] __—— g : [[2 3-3 9]
[32 1-1] Q: Which part of y [-8 14 6]
[2 1 3 2] does a single element
[3 2 1-2] in X contribute to? []
A:|Ty.q4 |affects the *I =
whole row Yn,,.
X w y

oL B Z OL ayn.m
a:Cn.d ayn.m axn.d

m

Recall the branching

gradient rule!
88 Slide credit: Stanford CS231n Instructors

Backprop with Matrices y: [NxM]
13 9 -2 -6]]

x: [NxD] > Matrix Multiply — " [5217 1]
[2[T]-3]
[3 4 2] Ynm = Y TndWd.m dL/dy: [NxM]
w: [DxM] __—— g : [[2 3-3 9]
[32 1-1] Q: Which part of y [-8146]
[2 1 3 2] does a single element
[3 2 1-2] in X contribute to?

A: |7y 4 |affects the
whole row Yn,,.

OL o aL ayn ,m
Ox n,d - OU n,m Ox n,d
Upstream local
gradient gradient

89 Slide credit: Stanford CS231n Instructors

Backprop with Matrices y: [NxM]
13 9 [2] -6

x: [NxD] > Matrix Multiply — " [5217 1]
[2 (1]-3]
[3 4 2] Ynm = Y TndWd.m dL/dy: [NxM]
w:[DxM] __— . « [12.3-3 9]
[3 2 1-1] Q: Which part of y Q: Howmuch [-8 14 6]
[2 1 3 2] does a single element does[r/.d
[32 1-2] in x contribute to? affect| Yn,m|?

A: |7y 4 |affects the
whole row Yn,,.

oL oL (?yn m

a-rn.d - ayn.m Oxn.(l

How do we

ic?
Ca |CU Iate th IS¢ 90 Slide credit: Stanford CS231n Instructors

Backprop with Matrices y: [NxM]
13 9 [2] -6
x: [NxD] > Matrix Multiply — " [5217 1]
[2 (1]-3]
[3 4 2] Ynm = Y TndWd.m dL/dy: [NxM]
w: [DxM] __—— g : [[2 3-3 9]
[3 2 1-1] Q: Which part of y Q: Howmuch [-8 14 6]
[2 1 3 2] does a single element does[r/.d
[32 1-2] in X contribute to? affect| Yn,m|?
A:|Tn . d |affects the D
whole row yn Yn,m = mewzm
OL oL ayn.m DY el

— = Wd,m

033,1_(1 - ayn.m O.CL’”_([ax”’d

How do we

ic?
ca |CU Iate th IS¢ 91 Slide credit: Stanford CS231n Instructors

Backprop with Matrices y: [NxM]
N3 9 [2] -6]]

x: [NxD] > Matrix Multiply — " [5217 1]
[2 [1T]-3]
[-3 4 2] Ynm = D Tn.dWd,m dL/dy: [NxM]
w: [DxM] __—— g : [[2 3-3 9]
[3 2 1-1] Q: Which part of y Q: Howmuch [-8 14 6]
[2 13] 2] does a single element does[r/.d
[32 1-2] in X contribute to? affect| Yn,m|?

A:|ryn 4 |affects the A:(wg m

whole row Yn,,.
o Z OL 0?/,1 m
01’,1 d 0% m 03371 d
/

Wd,m

92

Slide credit: Stanford CS231n Instructors

Backprop with Matrices y: [NxM]
13 9 [2] -6]]
x: [NxD] > Matrix Multiply — " [5217 1]
[2 (1]-3]
(-3 4 2] Ynm = D Tn.dWa,m dLidy: [NxM]
w: [DxM] __—— g : [[2 3-3 9]
[3 2 1-1] Q: Which part of y Q: Howmuch [-8 14 6]
[2 13] 2] does a single element does[r/.d
[32 1-2] in x contribute to? affect| Yn,m|?
A:|Tn .4 |affects the A: Wy m
whole row Yn,,.
OL Oyn.m oL =
0:1:,1 d Z M (')xn 4 — OYn.m Wdym= oYy, Oy, d
/ Just a dot product!

Wy
™m
b]
93 Slide credit: Stanford CS231n Instructors

Backprop with Matrices y: [NxM]
13 9 [2] -6
X: [NxD] > Matrix Multiply — " [5217 1]
[211]-3]
[-3 4 2] - Z%dwd,m dL/dy: [NxM]
w: [DxM] __—— g : [[2 3-3 9]
[3 2 1-1] Q: Which part of y Q: Howmuch [-8 14 6]
[2 113] 2] does a single element does[r/.d
[32 1-2] in X contribute to? affect| Yn,m|?
_ ~ A:|Tn,q |affects the A: Wy m
[NxD] [NxM] [MxD] \yhole row Yn.- |
OL (OL\ B OL OYnm OL OL
0_x N <0_y) v O:En d Z Y .m 033;1 d B - MYn,m S @wd

Just a matrix multiplication
No jacobian matrix needed!

94

Slide credit: Stanford CS231n Instructors

Backprop with Matrices

x: [NxD] > Matrix Multiply
[21]-3]
[-3 4 2] Yn,m = an,dwd,m
w: [DxM] __— <
[3 2 1-1]
[2 13| 2] .y -
(32 1-2] By similar logic:
[NxD] [NxM] [MxD] DxM] [DxN] [NXM:

oL _ (0L\ .z
oz \ Jy

oL _ (oL
ow oy

A

95

Slide credit: Stanford CS231n Instructors

Backprop with Matrices

x: [NxD] > Matrix Multiply
[21]-3]
[-3 4 2] Yn,m = an,dwd,m
w: [DxM] __— <
[3 2 1-1]
[2 13| 2] .y -
(32 1-2] By similar logic:
[NxD] [NxM] [MxD] DxM] [DxN] [NXM:

OL _ (0L s
oz \ Jy

oL _ (9L
ow 0y

A
—r— QO

For a neural net layer with
N=64, D=M=4096
The larges matrix (W) takes
up to 0.13 GB memory

96 Slide credit: Stanford CS231n Instructors

Summary:

Review backpropagation

Neural networks, activation functions

NNs as universal function approximators
Neurons as biological inspirations to DNNs
Vector Calculus

Backpropagation through vectors / matrices

Next Time: How to Pick a Project!

