CS 4644 [/ 7643-A

DEEP LEARNING: LECTURE 3
DANFEI XU

e Linear Classifier (cont.)
* SVM / Hinge Loss
e Softmax Classifier and Cross-Entropy Loss

e Gradient Descent

Georgia @1
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MISC

Make sure you know how to use Google Colab
PS1 release 08/29

Use Piazza!

Start to find your project team!

Shared sample project report in @6 on Piazza.

) Types of Machine Learning Gegrgia |
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Recap:

Supervised Unsupervised Reinforcement
Learning Learning Learning
Train Input: {X,Y} Input: {X} Supervision in
. : form of reward
Learning output: f Learning
X oY, output: P(x) No supervision on
e.g. P(y|x) Example: Clustering, what action to take
density estimation,
etc.
N\ ~ J

Very often combined, sometimes within the same model!

) Types of Machine Learning e



Recap: W &, # Reality

model class —%

horse _person

Types of Errors and Generalization Gegrala)
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Recap:

Algebraic Visual Geometric
Viewpoint Viewpoint Viewpoint
- One template Hyperplanes
Jx, W) =Wx per class cutting up space

N

plane

frog horse ship truck

Stretch pixels into column
Sl = o] [
3 ] ‘ : n +| 3. =| 43 Dog score
DEIEE] - | R EEI R
w b

Adapted from from CS 231n slides



This time:
fx,W)=Wx

1.Define a loss function that
quantifies our unhappiness with the
scores across the training data.

Gk 5 LErET 5 45 2. Come up with a way of efficiently
automobile -08 -0897 6.04 4.64 finding the parameters that minimize
bird . 53l 2.65 H H H H

i pedis jop s the loss function. (optimization)

deer 4.48 -4.19 2.64

dog 8.02 3.58 5=.55

frog Su 718 4.49 -4.34

horse 1../0i6 =437 -1.5

ship -0.36 -2.09 -4.79

truck -0.72 -2.93 6.14

) Loss Function and Optimization Gegrala |
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A loss function that tells how
good the current classifier is

Suppose: 3 training examples, 3 classes.
With some W the scores f(x,W)=Wx are:

Given a dataset of examples:
N
{(x3, ¥i)}iza

Where x; is image and
y; is (integer) label

cat
car

fog 1.7 2.0 -3.1

High Loss Low Loss  High Loss

Loss over the dataset is a sum
of loss over examples:

1
L=3 LG W),y

Adapted from from CS 231n slides
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Multiclass SVM loss:

Given an example (x; ;)
where x; is the image and
where y; is the (integer) label,

and using the shorthand for the
scores vector: s; = f(x; W) Notation: Sy,IS the score given by the classifier for

the correct label class of the i-th example (y;)
the SVM loss has the form:

L_z 0 ifs,, =2s;+1
L Sj— Sy, + 1 otherwise
J#Yi

= z max(0,s; —s,, + 1)
J#Yi

) Performance Measure for Scores Gegrgia |
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Multiclass SVM loss: Loss = 0:

. U L1 margin ]
Given an example (x;;) 1 T - score’
where x; is the image and scores for other classes score for correct class
where y; is the (integer) label,
and using the shorthand for the ( . . )
scores vector: s = f(x;, W) Hinge Loss
L;
the SVM loss has the form:
L_Z'O ifs, >s;+1
P sj— Sy, + 1 otherwise t— Sy,
J#yi Sj
1
= z max(0,s; —s,, + 1) \ J

J#Yi

) Performance Measure for Scores Gegrgia |
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Multiclass SVM loss: Suppose: 3 training examples, 3 classes.
With some W the scores f(x,W)=Wx are:

Given an example (x; ;)
where x; is the image and
where y; is the (integer) label,

and using the shorthand for the
scores vector: s = f(x;, W)

the SVM loss has the form: cat 32 1 3 22

Li=) max(Osi-s,+D| car 5.1 4.9 2.5
J#Yi

=max(0,5.1-3.2+1) + frog -1 7 20 '3.1
max(0, -1.7-3.2 + 1)
=max(0,2.9) + max(0,-3.9) Losses:| 2.9

=29+0
=29 Adapted from from CS 231n slides

=
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Multiclass SVM loss:

Given an example (x; ;)
where x; is the image and
where y; is the (integer) label,

and using the shorthand for the
scores vector: s = f(x;, W)

the SVM loss has the form:

L; = Z max(0,s; — sy, + 1)
J#Yi

=max(0,1.3-49+1) +
max(0,2.0-4.9 +1)

= max(0, -2.6) + max(0, -1.9)
=0+0

=0

) SVM Loss Example

Suppose: 3 training examples, 3 classes.
With some W the scores f(x,W)=Wx are:

cat 3.2

car 5.1

frog -1.7
Losses: 2.9

2.0
0.0

2.2
2.5
-3.1

Adapted from from CS 231n slides

Georgia J&]

Tech

=



Multiclass SVM loss: Suppose: 3 training examples, 3 classes.

Given an example (x;y;) With some W the sores f(x,W)=Wx are:

where x; is the image and
where y; is the (integer) label, :

and using the shorthand for the
scores vector: s = f(x;, W)

the SVM loss has the form: cat 1.3 2.2

L = Zﬁyi max(0,s;-sy,+1)  car 5.1 4.9 2.5
frog -1.7 2.0 -3.1

Losses: 2.9 0 12.9

Adapted from from CS 231n slides

L=(2.9+0+12.9)3
5.27

) SVM Loss Example Gegrgla |
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Multiclass SVM loss: Suppose: 3 training examples, 3 classes.
With some W the scores f(x,W)=Wx are:

L; = z max(0,s; — sy, + 1)
J#Yi

Q: What happens to loss if
car image scores change a
bit (e.g., £ 0.1)? cat

No change for small values 5 1 2.5

frog -1.7 2.0 -3.1

2.2

Adapted from from CS 231n slides

Georgia &
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Suppose: 3 training examples, 3 classes.

Multiclass SVM loss:
With some W the scores f(x,W)=Wx are:

L; = z max(0,s; — sy, + 1)
J#Yi

Q: What is min/max of loss
value?

cat 3.2 1.3 2.2

[0,in] car 5.1 4.9 2.5

frog -1.7 2.0 -3.1

Adapted from from CS 231n slides

Georgia &
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Suppose: 3 training examples, 3 classes.

Multiclass SVM loss:
With some W the scores f(x,W)=Wx are:

L; = z max(0,s; — sy, + 1)
J#Yi

Q: At initialization W is =
close to 0 so all s = 0. o o
What is the loss? cat 3.2 1.3 2.2

car 5.1 4.9 2.5
frog -1.7 2.0 -3.1

num_class - 1

Adapted from from CS 231n slides

Georgia &
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Multiclass SVM loss: Suppose: 3 training examples, 3 classes.
With some W the scores f(x,W)=Wx are:

1
L; = EZ- max(0,s; — sy, + 1)
JFYi

Q: What if we used mean
instead of sum?

1.3 2.2

cat
No difference car 5.1 4.9 2.5
Scaling by constant frog 1.7 20 -3.1

Adapted from from CS 231n slides

Georgia &
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Multiclass SVM loss:
Li = ;. max(0,s; — sy, +1)

def hinge loss vec(x, y, W):
X (d): input example vectors
y (int): class label
W (C x d): weight matrix

scores = W.dot(x) # calculate raw scores
margins = np.maximum(0, scores - scores[y] + 1) # calculate margins s j - s {yi} + 1
margins[y] = 0 # exclude yi from the loss sum

loss_i = np.sum(margins). # sum across all j (classes)
return loss_1i

Adapted from from CS 231n slides
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flz, W) =Wz
L= % 2511 D jzy, max(0, f(zis W); — f(zi; W)y, +1)

E.g. Suppose that we found a W such that L = 0.
Q: Is this W unique?

Let’s look at an example

Adapted from from CS 231n slides

Georgia 6]
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Multiclass SVM loss:

Before:
Suppose: 3 training examples, 3 classes. =max(0, 1.3-4.9+1)
With some W the scores f(x,W)=Wx are: +max(0, 2.0 -4.9 + 1)
‘ = max(0, -2.6) + max(0, -1.9)
=0+0
=0

With W twice as large:
= max(0, 2.6 - 9.8 + 1)

cat 2.2 +max(0, 4.0 - 9.8 + 1)
= max(0, -6.2) + max(0, -4.8)
car 5.1 2.9 010

0

frog -1.7 2.0 | -3.1

Adapted from from CS 231n slides

) SVM Loss Example Gegrgla |

=



flz, W) =Wz
L= % Zf\; D jzy, max(0, f(zis W); — f(zi; W)y, +1)

E.g. Suppose that we found a W such that L = 0.
Q: Is this W unique?

No, 2W also has L=0
How do we choose between W, 2W, and 1e+7W?

Adapted from from CS 231n slides

Georgia @1
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Regularization intuition: fitting a polynomial function

@ 1in vata g
O O
O |O

O

Adapted from from CS 231n slides
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Regularization intuition: fitting a polynomial function
f
1 f,

y
O Train Data

Adapted from from CS 231n slides
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Regularization intuition: fitting a polynomial function
f
1 f,

y
O Train Data

X

Regularization balances the simplicity of the function and

loss, so we don’t overfit to the noises in the data
Adapted from from CS 231n slides
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Regularization

NZL (i, W), 4:) + AR(W)

\ J w_/
Y
Data loss: Model predictions  Regularization: Prevent the model
should match training data from doing too well on training data

Adapted from from CS 231n slides
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Reference: https://icml.cc/Conferences/2004/proceedings/papers/354.pdf

Regularization A= regularization strength
(hyperparameter)

NZL (@i, W), yi) + AR(W)

N v J W_/

Data loss: Model predictions  Regularization: Prevent the model

should match training data from doing too well on training data
Simple examples More complex (DNN-specific):
L2 regularization: R(W) = >, >, W, Dropout
L1 regularization: R(W) = >, >, W] Batch/layer normalization

Elastic net (L1 + L2): R(W) = ZkZlﬂW,f,, + [Wki| Stochastic depth, fractional pooling, etc

) Regularization Gograla)



https://icml.cc/Conferences/2004/proceedings/papers/354.pdf

Regularization: Implement a simple L2 regularizer

L(W) = % D Li(f (@i, W), u:) + AR(W)

=1

def 12 regqularized hinge loss(x, y, W, reg_coeff):
data loss = 0
# calculate dataset loss
for i in range(x.shape[0]):
data loss += hinge loss _vec(x[1], y[i], W)

# calculate weight regularization loss
reg loss = np.sum(np.square(W)) * reg coeff

return data loss + reg loss

Regularization Gograla)
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What if we want probabilities?

We need a different classifier!*

Class Probabilities

cat 3.2 067
car 5.1

frog - 1 = 7 Cat Car Fr.og

Raw class scores

*Technically we can get probability from SVM classifiers too, see Platt scaling

) Performance Measure using Probabilities Ge°’9'aﬁ


https://en.wikipedia.org/wiki/Platt_scaling

Softmax Classifier (Multinomial Logistic Regression)
mm \Want to interpret raw classifier scores as probabilities

Sv.
eVt | goftmax

s = f(x;;0) po(Y = yilX = x;) = y €5 | Function
j

Probabilities
must be >= 0

cat 3.2 24.5 0.13

How do we compute
exp

car 51 |—164.0 LS 0.87 | theloss?
frog | -1.7 0.18 0.00

Unnormalized log- Unnormalized
probabilities / logits probabilities

Adapted from from CS 231n slides
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Softmax Classifier (Multinomial Logistic Regression)
Want to interpret raw classifier scores as probabilities

Sv:
- _ e | softma
s = f(x:0) po(Y = yilX =x) = 55| Fo e
]

We maximize the probability of pg (y;|x;)!

Finding a set of weights 6 that maximizes the

cat 3 _ 2 0 ] 1 3 probability of correct prediction: argmax re(yilx;)

softmax This is equivalent to:

car 5 1 EE— 087 arggnaXZlnpa(yilxi)

frog -1.7 0.00 L = —Inpa(yi|x;) = —ln< ) = —In(0.13)

Unnormalized log- 1. Maximum Likelihood Estimation (MLE):
Choose weights to maximize the likelihood of

prObabllltles / Ioglts observed data. In this case, the loss function is the
Negative Log-Likelihood (NLL).

Georgia &
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Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities
Sy:
e’vi

Softmax
Z]. e’ | Function

s=f(x;0) po(Y = yilX = x;) =

We maximize the probability of pg (y;|x;)!

Finding a set of weights 6 that maximizes the

cat 3 _ 2 0 ] 1 3 probability of correct prediction: argmax re(yilx;)

softmax This is equivalent to:

car 5 1 EE— 087 arggnaXZlnpa(yilxi)

frog |-1.7 0.00 (”/T< \>m< )

Unnormalized log-
probabilities / logits

Negative Log Likelihood (NLL)

) Cross-Entropy Loss Example Gograta |
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Softmax Classifier (Multinomial Logistic Regression)

cat
car

frog

3.2
5.1
-1.7

s = f(xi;0)

softmax 0.1 3
—* 0.87
0.00

Unnormalized log-
probabilities / logits

) Cross-Entropy Loss Example

po(Y = y;|X = x;) =

es)’i

Zj e’

2. Information theory view
maximize

agreement

Want to interpret raw classifier scores as probabilities

Softmax
Function

1.00
0.00
0.00

Correct
probs

Adapted from from CS 231n slides
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Softmax Classifier (Multinomial Logistic Regression)
mm \Want to interpret raw classifier scores as probabilities

Sy
- _ e | softma
s = f(x:0) po(Y = yilX =x) = 55| Fo e
]

2. Information theory view

cat 3.2 0.13 > agresment 1.00
softmax
Cross Entropy: H(p,q) = — Z p(x)In
car 5 ) 1 O ) 87 Cross Entropy Loss -> NLL O ' OO

frog |-1.7 0.00 | w@w.ro=-) polxompoix 0.00

yeY

Unnormalized log- = ~Inpo(ilx) Correct
probabilities / logits L= Z H(p,py) = —Z In . (yslx;) = NLL orobs
Adapted from from CS 231n slides

Georgia g}]
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Softmax Classifier (Multinomial Logistic Regression)

NLL and CrossEntropy are different loss functions in PyTorch!

CROSSENTROPYLOSS :
Expects unformalized

CLASS torch.nn.CrossEntropylLoss(weight=None, size_average=None, ignore_index=- 100, Ioglts asin p Ut (th €
reduce=None, reduction="mean', label_smoothing=0.0) [SOURCE] fu N Ctio N W| | | a p p |y

softmax & log on top)

NLLLOSS

CLASS torch.nn.NLLLoss(weight=None, size_average=None, ignore_index=- 100, reduce=None, EXpeCtS Iog
reduction="mean") [SOURCE] probabilities as input

(do softmax yourself!)

Georgia Jh

) Cross-Entropy Loss Example Tech |



Softmax Classifier (Multinomial Logistic Regression)

s = f(xi;0)

Q: What is the min/max of
possible loss L_i?

Infimum is 0, max is unbounded (inf)

po(Y = y;|X = x;) =

es)’i

Zj e’

Cross-entropy loss:

L; = —log(pg (yilx;))

Want to interpret raw classifier scores as probabilities

Softmax
Function

Adapted from from CS 231n slides



Softmax Classifier (Multinomial Logistic Regression)

s = f(xi;0)

Q: At initialization all s will be
approximately equal; what is
the loss?

-log(1/C), e.g. -log(1/3)=log(3) = 1.1

po(Y = y;|X = x;) =

es)’i

Zj e’

Cross-entropy loss:

L; = —log(pg (yilx;))

Want to interpret raw classifier scores as probabilities

Softmax
Function

Adapted from from CS 231n slides



Q: Why softmax? ot [ 32 o rcusitin Why this?
car 51 |— ., l
frog |-1.7 i e
Raw class scores Po (Y = yllX = xl-) = Z] ey
Use logistic function as example. Same as general
softmax but for binary classification
e” 3] L(x)|— Lix)= ~logix). x€[0,1]
o(x) = 1+ ex N Lix) = — loga(x)
— L(x)= —0o(x)
Consider the following three basis for NLL: i
1. Squash and clip network value (x) to (0, 1] 2
2. (Negative) logistic function 1-
3. NLL with logistic function . —
—
'¥
-1




Q: Why softmax?

car

frog

Use logistic function as example. Same as general

softmax but for binary classification
ex
1+e*

o(x) =

3.2

-1.7

Raw class scores

Consider the following three basis for NLL:

1. Squash and clip network value (x) to (0, 1]

2. (Negative) logistic function
3. NLL with logistic function

51 |—

0.87

Class Probabilities Why this?
0.0 —
Frog ( | ) eSyi
peY = yilX = x;) = 5
, J
2je
> L(X)|— Lix)= —logix). x€[0,1]
N — Lix)= ~logotx)
= L(x)= —0o(x)
3 p
2 p
1 R
[ —_—
2 .¥
-4 -2 0 2 4

1. Squash & clip: no loss,
no learning!




Q: Why softmax? ; 33 Why this?
car 51 |— ., l
frog |-1.7 . e>i
Raw class scores pe(Y = yilX = x;) = Zj o5
Use logistic function as example. Same as general
softmax but for binary classification
e* 5 L(x)|— Lix) = -logix), xE[0,1]
O'(X) = 1+ ex N —— L(x) = —logo(x)
— L(x)= —0olx)
Consider the following three basis for NLL: .
1. Squash and clip network value (x) to (0, 1] 2]
2. (Negative) logistic function 1-
3. NLL with logistic function .
t T
-+ | = 0 2 2

2. Negative likelihood w/
logistic function: saturated loss
when classifier is very wrong



Q: Why softmax? ; 33

car 51 |—
frog -1.7

Raw class scores

Use logistic function as example. Same as general
softmax but for binary classification

ex
1+e*

o(x) =

Consider the following three basis for NLL:

1. Squash and clip network value (x) to (0, 1]
2. (Negative) logistic function

3. NLL with logistic function

Softmax is a normalization function that
behaves well with Cross Entropy Loss.

Class Probabilities

0.87

Why this?

|
e’vi

po(Y = yilX = x;) = Zjesj

3. NLL w/ logistic: Strong guidance
when classifier is wrong

5.

4

34

/ L(x)|— Lix)= —logix), x€[0,1]

— L(x)= —logao(x)
— L(x)= —0o(x)

-4 -2 0 / 4
Only saturate at convergence,
e.g.d(3) = 0.95




So, what is a loss function?

* |n this context, it’s a function that scores how well a model performs on a
task. We often focus on the parameters rather than the hypothesis class.

« If L(64,data) < L(68,,data), then 0 is considered better.

* Losses are different than metrics. Loss functions are designed for
optimization, which require properties like differentiability and
smoothness.

* Example: CrossEntropy is a loss function for the multi-class classification
task. Classification accuracy (how often the model is correct) is the metric.

* Losses can be used as metrics but are often not very interpretable.

* Losses can always be used as metrics, but metrics often cannot be used as
loss functions (e.g., classification accuracy is not differentiable).



Summary: SVM and Softmax Classifier

* Loss function: performance measure to improve

* Find weights that better satisfies the objective
* Multiclass SVM Classifier

* Predicts class score

* Hinge loss: “maximum margin” objective: L; = Zjiyimax(O, Sj — Sy, T 1)
* Regularization

* Prevent overly complex function that only works well on the training set

e Softmax Classifier
* Predicts class probabilities
e To train softmax classifiers: use NLL and Cross Entropy Loss

) SVM and Softmax Classifier Gegroia |
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Input (and representation) Class Scores

Functional form of the model I
Including parameters Car Coffee Bird

Performance measure to improve Cup
Loss or objective function

Algorithm for finding best parameters
Optimization algorithm

%3

Class Scores

Model I:>
f(x,W)=Wx+b

Car Coffee Bird
Cup

Data: Image




Input (and representation) Class Scores

Functional form of the model I
Including parameters Car Coffee Bird

Performance measure to improve Cup
Loss or objective function

Algorithm for finding best parameters
Optimization algorithm

%3

Class Scores

Model I:>
f(x,W)=Wx+b

Car Coffee Bird
Cup

Data: Image




Strategy #1: A first very bad idea solution: Random search

bestloss = float("inf")
for num in xrange(1000):
W = np.random.randn(10, 3073) * 0.0001
loss = L(X train, Y train, W)
if loss < bestloss:
bestloss = loss
bestW = W
print 'in attempt %d the loss was %f, best %f' % (num, loss, bestloss)

Optimization Gograta |

=




Lets see how well this works on the test set...

scores = Whest.dot(Xte cols)
Yte predict = np.argmax(scores, axis = 0)

np.mean(Yte predict == Yte)

15.5% accuracy! not bad!
(SOTA is ~99.7%)

Adapted from from CS 231n slides
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Given a model and loss function, finding the 1 [W11 W12 = Win b1

best set of weights is a search problem Wy1 Wy - Wy, b2
Find the best combination of weights Wy1 Wy - W3, b3
that minimizes our loss function

Several classes of methods: | | Gradient
Random search Loss

Genetic algorithms (population-based
search)

Gradient-based optimization

1. Calculate the gradients of a loss
function with respect to a set
of parameters (w’s).

2. Update the parameters
towards the gradient direction
that minimizes the loss.

In deep learning, gradient-based methods
are dominant although not the only
approach possible

) Optimization Gograta |

=



Gradient Descent: Follow the Slope!



As weights change, the
gradients change as well

This is often somewhat-
smooth locally, so small
changes in weights produce
small changes in the loss

We can therefore think about
iterative algorithms that take
current values of weights and
modify them a bit

) The Loss Landscape

CE
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Tech
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We can find the steepest descent direction by
computing the derivative:

of _ . fw+h)—fw)
= 11m

W h—-0 h

Gradient is multi-dimensional derivatives

Notation: g—fv is the gradient of f(e.g., a loss function)
with respect to variable w (e.g., a weight vector).

g—f is of the same shape as w

w

Intuitively: Measures how the output changes as the
variable w changes by a small step size

Steepest descent direction is the negative gradient

Gradient descent: Minimize loss by changing
parameters

) Derivatives

Ax

Image and equation from:
https.//en.wikipedia.org/wiki/Derivative
#/media/File: Tangent_animation.gif

Georgia
Tech

Jh
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Calculate gradients: finite differences
current W: gradient dW:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

S

NN N D N N ) N

-
"
"
[

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

Calculate gradients: finite differences

W + h (first dim):

[0.34 + 0.0001,
-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25322

gradient dW:

S

NN N D N N ) N

-
"
"
[

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

Calculate gradients: finite differences

W + h (first dim):

[0.34 + 0.0001,
-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25322

gradient dW:

[-2.5,
?

2, \

(1.25322 - 1.25347)/0.0001

=25
i 121 1)

df(@) _ .
dx h—0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

Calculate gradients: finite differences

W + h (second dim):

[0.34,

-1.11 + 0.0001,
0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25353

gradient dW:

N
o

NN N D N N ) N

-
"
"
[

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

Calculate gradients: finite differences

W + h (second dim):

[0.34,

-1.11 + 0.0001,
0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25353

gradient dW:

[-2.5,

0.6,
o
t?

(1.25353 - 1.25347)/0.0001
=0.6

af(e) _

dx h—0

i 121 1)

?,..]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

Calculate gradients: finite differences

W + h (third dim):

[0.34,

-1.11,

0.78 + 0.0001,
0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

gradient dW:

o N
o

NN NI VYO

-
"
"
[

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

Calculate gradients: finite differences
W + h (third dim):

[0.34,

-1.11,

0.78 + 0.0001,
0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

gradient dW:

[-2.5,
0.6,
0,

N

(1.25347 - 1.25347)/0.0001

.25
0

W) _
dx h—0

f(z+h) — f(=)
h

7]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




dL f )
Several ways to compute — P

aWi lnt1 = 4la(1 - 1) 87 +822) +64(1 — z)(1 — 27)2(1 — 8z + 822)2 —
Manual 64x(1 — 27)%(1 — 8z + 82%)% — 2562(1 — ) (1 —
f(z) = 1y = 642(1 —1)(1 - 22)*(1 - 8+ 82%)? Differentiation 27)(1 — 8z + 827)?

Manual differentiation

. " " " f(x):
Symbolic differentiation o i -nces 002
xN"2(1-8x+8x"2)+64 (1
v"”‘"““’) -X0(1-20"2(1-8x+8
N x"2)"2-64x(1-2x)"2(1-8
. . . . . in closed-form, _S_vmb«?]ic_ i x+8x"_2)"2-25§x(£-x)(1-
Numerical differentiation L bl
64x (1-1) (1-2x)"2 (1-8x+8x"2)"2 e
Automatic differentiation
Differentiation Differentiation
A4
. T (x):
More on autodiff: v =) R
https://www.cs.toronto.edu/~rgrosse/courses/csc421 201 o) = (o, avtmen) e =HeR) /1
9/readings/L06%20Automatic%20Differentiation.pdf .
f App mat
Ex
N J

Georgia Jh

Computing Gradients Tech

=



https://www.cs.toronto.edu/~rgrosse/courses/csc421_2019/readings/L06%20Automatic%20Differentiation.pdf

Numerical vs Analytic Gradients

df() _ . f@+h) - f(@)
dx h —0 h

Numerical gradient: slow, approximate, easy to implement
Analytic gradient: fast, exact, error-prone (if implemented from scratch)

Almost all differentiable functions that you can think of have analytical
gradients implemented in popular libraries, e.g., PyTorch, TensorFlow.

If you want to derive your own gradients, check your implementation with
numerical gradient.
This is called a gradient check.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



The gradient descent algorithm

1. Choose a model: f(x, W) = Wx

2. Choose loss function: L; = |y — Wx;|?

3. Calculate partial derivative for each parameter: oL

Wi

4. Update the parameters: w; = w; — aa:.
5. Add learning rate to prevent too big of a step: w; = w; — aaa‘f,_

Repeat 3-5

) Gradient Descent Gegroia |

=




Composing simple functions creates complex analytical gradients

Compose into a

== )

—W-X
complex function 1+e

u 1 p L

w-x — —log(p) [—

1+e™u

Adapted from slides by: Marc'Aurelio Ranzato, Yann LeCun

) Decomposing a Function Gograta |

=



u 1 p L
w-X — = — —log(p) —
dL  JL dp du
ow  0p oudw

Next time: Chain rule and Backpropagation!

Adapted from slides by: Marc'Aurelio Ranzato, Yann LeCun

) Decomposing a Function Gograta |
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