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Topics:

• Reinforcement Learning Part 2

• Deep Q Learning (cont.)

• Policy Gradient

• Actor-Critic

• Advanced Policy Gradient Methods

• Applications



RL: Sequential decision making in an environment with evaluative feedback.

What is Reinforcement Learning?

⬣ Environment may be unknown, non-linear, stochastic and complex.

⬣ Agent learns a policy to map states of the environments to actions.

⬣ Seeking to maximize cumulative reward in the long run.
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Figure Credit: Rich Sutton



Markov Decision Processes (MDPs)

⬣ MDPs: Theoretical framework underlying RL

⬣ An MDP is defined as a tuple 

   : Set of possible states

   : Set of possible actions

        : Distribution of reward

        : Transition probability distribution, also written as p(s’|s,a)

   : Discount factor

⬣ Experience:  

⬣ Markov property: Current state completely characterizes state of the 

environment

⬣ Assumption: Most recent observation is a sufficient statistic of history



Algorithm: Value Iteration

Initialize values of all states to arbitrary values, e.g., all 0’s.

While not converged:

For each state:

Repeat until convergence (no change in values)

Value Iteration

Time complexity per iteration



Q-Learning: a model-free method for RL
Idea: represent the Q value table as a parametric function 𝑄𝜃(𝑠, 𝑎)!  

How do we learn the function?

𝑄′ 𝑠𝑡 , 𝑎𝑡 = (1 − 𝛼)𝑄 𝑠𝑡 , 𝑎𝑡 + 𝛼[𝑟𝑡 + 𝛾 max
𝑎

𝑄 𝑠𝑡+1, 𝑎 ]

= 𝑄 𝑠𝑡 , 𝑎𝑡 + 𝛼(𝑟𝑡 + 𝛾 max
𝑎

𝑄 𝑠𝑡+1, 𝑎 − 𝑄(𝑠𝑡 , 𝑎𝑡))

Now, at optimum, 𝑄 𝑠𝑡 , 𝑎𝑡 = 𝑄′(𝑠𝑡 , 𝑎𝑡) = 𝑄∗(𝑠𝑡 , 𝑎𝑡); This gives us:

0 = 0 + 𝛼(𝑟𝑡 + 𝛾 max
𝑎

𝑄 𝑠𝑡+1, 𝑎 − 𝑄(𝑠𝑡 , 𝑎𝑡))

Learning problem:
argmin𝜃||𝑟𝑡 + 𝛾 max

𝑎
𝑄𝜃 𝑠𝑡+1, 𝑎 − 𝑄𝜃(𝑠𝑡 , 𝑎𝑡)) ||

Target Q value



⬣ Q-Learning with linear function approximators

⬣ Has some theoretical guarantees

⬣ Deep Q-Learning: Fit a deep Q-Network

⬣ Works well in practice

⬣ Q-Network can take arbitrary input (e.g. RGB images)

⬣ Assume discrete action space (e.g., left, right)

Deep Q-Learning

Value per action dim



⬣ Minibatch of 

⬣ Forward pass:

⬣ Compute loss:

⬣ Backward pass:

Deep Q-Learning

State Q-Network Q-Values per action

State

Q-Network



⬣ In practice, for stability:

⬣ Freeze              and update                parameters   

⬣ Set                    at regular intervals or update as running average

⬣ 𝜃𝑜𝑙𝑑 = 𝛽𝜃𝑜𝑙𝑑 + 1 − 𝛽 𝜃𝑛𝑒𝑤

Deep Q-Learning



How to gather experience?

Environment Data

Update

Train

Challenge 1: Exploration vs Exploitation

Challenge 2: Non iid, highly correlated data



⬣ What should           be? 

⬣ Greedy? -> no exploration, always choose the most confident action

⬣ An exploration strategy:

⬣  

Exploration Problem



⬣ Correlated data: addressed by using experience replay

➢ A replay buffer stores transitions 

➢ Continually update replay buffer as game (experience) episodes are 

played, older samples discarded

➢ Train Q-network on random minibatches of transitions from the replay 

memory, instead of consecutive samples

⬣ Larger the buffer, lower the correlation

Experience Replay



Deep Q-Learning Algorithm

Epsilon-greedy

Q Update

Experience Replay



Case study: Playing Atari Games

Atari Games

⬣ Objective: Complete the game with the highest score

⬣ State: Raw pixel inputs of the game state

⬣ Action: Game controls e.g. Left, Right, Up, Down

⬣ Reward: Score increase/decrease at each time step

Figures copyright Volodymyr Mnih et al., 2013. Reproduced with permission. 



Case study: Playing Atari Games

Atari Games

https://www.youtube.com/watch?v=V1eYniJ0Rnk

https://www.youtube.com/watch?v=V1eYniJ0Rnk


Summary: Value-based RL

• Solving an MDP by modeling / learning the values (Q and V) of 
an optimal policy

• Examples: Value iteration, Q learning, DQN, SARSA, TD(0), …

• Pros: 
– Conceptually simple

– Efficient in discrete action space

• Cons: 
– Handling continuous / large action space is challenging.

– A proxy of what we actually want (a policy) 



⬣ Value-based RL

⬣ (Deep) Q-Learning, approximating          with a deep Q-network

⬣ Policy-based RL

⬣ Directly approximate optimal policy        with a parametrized policy 

⬣ Model-based RL

⬣ Approximate transition function       and reward function  

⬣ Plan by looking ahead in the (approx.) future!

Deep RL: Algorithm Categories

Different RL Paradigms



Deep Learning for Decision Making

Deep 

Neural Nets

state 

input

action 

output

Deep Learning for Decision Making

Problem: we don’t know the correct action label to supervise the output!

reward 𝑟𝑡

?

All we know is the step-wise task reward



Deep Learning for Decision Making

Deep 

Neural Nets

state 

input

action 

output

Deep Learning for Decision Making

Problem: we don’t know the correct action label to supervise the output!

reward 𝑟𝑡

All we know is the step-wise task reward

Can we directly backprop reward???

𝜕𝑟𝑡

𝜕𝜃



Image Source: http://karpathy.github.io/2016/05/31/rl/

Policy Gradient: Just backprop from reward (sort of)!

Increase the likelihood of 
selecting action dim = 0!



Image Source: http://karpathy.github.io/2016/05/31/rl/

Policy Gradient

Policy Gradient: Just backprop from reward (sort of)!

Increase the likelihood of 
selecting action dim = 0!

Decrease the likelihood of 
selecting action dim = 1!



Deriving The Policy Gradient

Brief derivation of policy gradient (REINFORCE)

Let              denote a trajectory
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Deriving The Policy Gradient

Brief derivation of policy gradient (REINFORCE)

Let              denote a trajectory

⬣ Optimization objective:

⬣ Distribution of trajectories given a policy parameterized by 𝜃 is:

⬣ What we need (policy gradient):



Deriving The Policy Gradient

Brief derivation of policy gradient (REINFORCE)

Expectation as integral

Exchange integral and gradient

Log derivative rule: 
𝑑log𝑓 𝑥

𝑑𝑥
=

𝑓′(𝑥)

𝑥



Deriving The Policy Gradient

Doesn’t depend on 
Transition probabilities!

Can use continuous action space!

Brief derivation of policy gradient (REINFORCE)



⬣ Sample trajectories                                            by acting according to 

⬣ Compute policy gradient as

⬣ Update policy parameters: 

Run the policy and 
sample trajectories

Compute policy 
gradient

Update policy

Slide credit: Sergey Levine

Policy gradient: algorithm sketch



Drawbacks of Policy Gradients

Image Source: http://karpathy.github.io/2016/05/31/rl/

Policy gradient intuition

log 𝜋𝜃(𝑎|𝑠)



Issues with Policy Gradients

• Credit assignment is hard! 

– Which specific action led to increase in reward

– Suffers from high variance → leading to unstable training

Can we do better?

What if instead of just reward per episode, we know the expected future 
return of taking an action? (This should remind you of something …)

 Q value function 𝑄(𝑠, 𝑎)!



Actor-Critic

• Learn both policy and Q function

– Use the “actor” to sample trajectories

– Use the Q function to “evaluate” or “critic” the policy



Actor-Critic

• Learn both policy and Q function

– Use the “actor” to sample trajectories

– Use the Q function to “evaluate” or “critic” the policy

• REINFORCE: 

• Actor-critic:



Actor-Critic

• Initialize 𝜃  (policy network) and 𝛽 (Q network)
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Actor-Critic

• Initialize 𝜃  (policy network) and 𝛽 (Q network)

• For each step:

– sample action 𝑎 ∼ 𝜋𝜃 ⋅ 𝑠 , take action to get s’ and r

– evaluate “actor” using “critic”𝑄𝛽(𝑠, 𝑎) and update policy:

𝜃 ← 𝜃 + 𝛼∇𝜃(log 𝜋𝜃 𝑎 𝑠 𝑄𝛽 𝑠, 𝑎 )



Actor-Critic

• Initialize 𝜃  (policy network) and 𝛽 (Q network)

• For each step:

– sample action 𝑎 ∼ 𝜋𝜃 ⋅ 𝑠 , take action to get s’ and r

– evaluate “actor” using “critic”𝑄𝛽(𝑠, 𝑎) and update policy:

𝜃 ← 𝜃 + 𝛼∇𝜃(log 𝜋𝜃 𝑎 𝑠 𝑄𝛽 𝑠, 𝑎 )

– Update “critic”:

• Q-learning using argmin𝛽[𝑄𝛽 𝑠, 𝑎 − 𝑟 + 𝑄 𝑠′, 𝑎 ∼ 𝜋𝜃(𝑠′ ]



Actor-Critic

• Initialize 𝜃  (policy network) and 𝛽 (Q network)

• For each step:

– sample action 𝑎 ∼ 𝜋𝜃 ⋅ 𝑠 , take action to get s’ and r

– evaluate “actor” using “critic”𝑄𝛽(𝑠, 𝑎) and update policy:

𝜃 ← 𝜃 + 𝛼∇𝜃(log 𝜋𝜃 𝑎 𝑠 𝑄𝛽 𝑠, 𝑎 )

– Update “critic”:

• Q-learning using argmin𝛽[𝑄𝛽 𝑠, 𝑎 − 𝑟 + 𝑄 𝑠′, 𝑎 ∼ 𝜋𝜃(𝑠′ ]

Note the difference to DQN: 



Actor-Critic
Actor-critic Policy Gradient: ∇𝜃𝐽 𝜋𝜃 = Ε𝑎∼𝜋𝜃

[∇𝜃log 𝜋𝜃 𝑎 𝑠 𝑄𝛽 𝑠, 𝑎 ]
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Actor-Critic
Actor-critic Policy Gradient: ∇𝜃𝐽 𝜋𝜃 = Ε𝑎∼𝜋𝜃

[∇𝜃log 𝜋𝜃 𝑎 𝑠 𝑄𝛽 𝑠, 𝑎 ]

Consider a situation where 𝑄𝛽 𝑠, 𝑎1 = 10.1 and 𝑄𝛽 𝑠, 𝑎2 = 10.5

– Good news: 𝑠 is a great state to be in!

– Bad news: hard to tell the policy to prefer 𝑎2 over 𝑎1

Idea: use advantage function 𝐴 𝑠, 𝑎 = 𝑄 𝑠, 𝑎 − 𝑉(𝑠)

- 𝐴 𝑠, 𝑎 : How much better is taking action 𝑎 over the average value at state 𝑠

- Say 𝑉 𝑠 = 10.0, we have 𝐴 𝑠, 𝑎1 = 0.1 and 𝐴 𝑠, 𝑎2 = 0.5 



Advantage Actor-Critic (A2C)
Advantage Actor-critic Gradient: ∇𝜃𝐽 𝜋𝜃 = Ε𝑎∼𝜋𝜃
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[∇𝜃log 𝜋𝜃 𝑎 𝑠 𝐴 𝑠, 𝑎 ]

Problem: need to learn both 𝑄 and 𝑉 to calculate 𝐴



Advantage Actor-Critic (A2C)
Advantage Actor-critic Gradient: ∇𝜃𝐽 𝜋𝜃 = Ε𝑎∼𝜋𝜃

[∇𝜃log 𝜋𝜃 𝑎 𝑠 𝐴 𝑠, 𝑎 ]

Problem: need to learn both 𝑄 and 𝑉 to calculate 𝐴

Idea: use state value of experience sample to approximate 𝑄: 

Given experience (𝑠, 𝑎, 𝑟, 𝑠’)
𝐴 𝑠, 𝑎 = 𝑄 𝑠, 𝑎 − 𝑉 𝑠 ≅ 𝑟 + 𝑉 𝑠′ − 𝑉(𝑠)



Policy Gradient Methods

• REINFORCE: ∇𝜃𝐽 𝜋𝜃 = Ε𝑎∼𝜋𝜃
[∇𝜃log 𝜋𝜃 𝑎 𝑠 𝑅 𝑠, 𝑎 ]

• Actor-critic (AC): ∇𝜃𝐽 𝜋𝜃 = Ε𝑎∼𝜋𝜃
[∇𝜃log 𝜋𝜃 𝑎 𝑠 𝑄 𝑠, 𝑎 ]

• Advantage Actor-critic (A2C): ∇𝜃𝐽 𝜋𝜃 = Ε𝑎∼𝜋𝜃
[∇𝜃log 𝜋𝜃 𝑎 𝑠 𝐴 𝑠, 𝑎 ]



Welcome to continuous control!

∇𝜃𝐽 𝜋𝜃 = Ε𝑎∼𝜋𝜃
[∇𝜃log 𝜋𝜃 𝑎 𝑠 𝐴 𝑠, 𝑎 ]

State

Q-Network

DQN: limited to discrete action space

Policy net can output anything!



Policy Gradient Methods

• REINFORCE: ∇𝜃𝐽 𝜋𝜃 = Ε𝑎∼𝜋𝜃
[∇𝜃log 𝜋𝜃 𝑎 𝑠 𝑅 𝑠, 𝑎 ]

• Actor-critic (AC): ∇𝜃𝐽 𝜋𝜃 = Ε𝑎∼𝜋𝜃
[∇𝜃log 𝜋𝜃 𝑎 𝑠 𝑄 𝑠, 𝑎 ]

• Advantage Actor-critic (A2C): ∇𝜃𝐽 𝜋𝜃 = Ε𝑎∼𝜋𝜃
[∇𝜃log 𝜋𝜃 𝑎 𝑠 𝐴 𝑠, 𝑎 ]

Common Policy Gradient methods are on-policy.



On-policy vs. off policy algorithms
• REINFORCE: ∇𝜃𝐽 𝜋𝜃 = Ε𝑎∼𝜋𝜃

[∇𝜃log 𝜋𝜃 𝑎 𝑠 𝑅 𝑠, 𝑎 ]

Cannot use replay buffer, since the experience data is an outdated policy.
• Less data-efficient: cannot reuse old data
• Less stable to train: explore may lead to bad on-policy data -> 

immediate performance degradation. 
• Correlated samples in training data.

We are taking expectation wrt the policy being learned

Example of an off-policy learning algorithm: DQN

Bellman equation is true for all transitions!

𝑄′ 𝑠𝑡 , 𝑎𝑡 = 𝑄 𝑠𝑡 , 𝑎𝑡 + 𝛼(𝑟𝑡 + 𝛾 max
𝑎

𝑄 𝑠𝑡+1, 𝑎 − 𝑄(𝑠𝑡 , 𝑎𝑡))



Deep Deterministic Policy Gradient (DDPG)
A direct adaptation of DQN for continuous action space

Learning the critic (value function): bellman consistency

min𝛽[𝑄𝛽 𝑠, 𝑎 − 𝑟 + max
𝑎

𝑄 𝑠′, 𝑎 ]

Q: What’s the problem with this objective?

Difficult to compute for continuous action space! 



Deep Deterministic Policy Gradient (DDPG)
A direct adaptation of DQN for continuous action space

Learning the critic (value function): bellman consistency

min𝛽[𝑄𝛽 𝑠, 𝑎 − 𝑟 + max
𝑎

𝑄 𝑠′, 𝑎 ]

Idea: approximate with a deterministic policy max
𝑎

𝑄 𝑠′, 𝑎 ≈ 𝑄(𝑠′, 𝜋 𝑠 )



Deep Deterministic Policy Gradient (DDPG)
A direct adaptation of DQN for continuous action space

Learning the critic (value function): bellman consistency

min𝛽[𝑄𝛽 𝑠, 𝑎 − 𝑟 + 𝑄𝑜𝑙𝑑 𝑠′, 𝜋(𝑠′ ]

Learning the actor (policy model):

max𝜃Ε𝑠∼𝜌∗[𝑄𝛽(𝑠, 𝜋𝜃 𝑠 )]

We are taking expectation wrt a behavior policy (replay buffer)

Deterministic policy gradient theorem (off-policy)

∇𝜃𝐽 𝜋𝜃 ≈ Ε𝑠∼𝜌∗[∇𝜃log 𝜋𝜃(𝑠)∇𝑎𝑄 𝑠, 𝑎 ]

Gradient of Q wrt to action

Just back prop to policy from the value function!



A2C vs. DDPG

• Two related families of algorithms. 

• A2C is on-policy. Learn advantage-based critic. Train policy 
through the policy gradient theorem (REINFORCE).

• DDPG is off-policy (train on replay buffer). Learn value-based 
critic. Train policy through direct backpropagation from critic 
to actor based on the deterministic policy gradient theorem.

• Drawback: DDPG is deterministic and often struggles with 
exploration. 



Advanced policy gradient methods

Soft Actor Critic (Haarnoja, 2018)

Entropy-regularized RL: achieve high reward while being as random as 
possible

Bellman equation with entropy-regularized RL:

Entropy of the policy



Advanced policy gradient methods

Soft Actor Critic (Haarnoja, 2018)

Learning the policy model:

Requires integrating a distribution!

Reparameterization trick (truncated Gaussian):

Backprop through the value function (same as DDPG):



Advanced policy gradient methods

Trust Region Policy Gradient (TRPO, Schulman 2017)
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• Issue with vanilla actor critic: policy may receive huge update!

– Big parameter update -> drastic change in behavior -> may stuck in low-reward region!
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Advanced policy gradient methods

Trust Region Policy Gradient (TRPO, Schulman 2017)

• Issue with vanilla actor critic: policy may receive huge update!

– Big parameter update -> drastic change in behavior -> may stuck in low-reward region!

• Idea: constrain the update to a trust region using off-policy policy gradient

Subject to:

Optimizing this objective requires calculating Hessian 
(second-order optimization)!



Advanced policy gradient methods

Proximal Policy Optimization (PPO, Schulman 2017)

Issue with TRPO: objective too complicated! Requires second-order optimization 
(calculating Hessian).



Advanced policy gradient methods

Proximal Policy Optimization (PPO, Schulman 2017)

Issue with TRPO: objective too complicated! Requires second-order optimization 
(calculating Hessian).

Idea: Approximate trust-region constraint with a penalty term



Advanced policy gradient methods

Schulman 2017



But Deep RL is still pretty expensive to train …

Idea: transfer policy trained in simulation (cheap) directly 
to the real world (expensive)!



Simulation to Real World Transfer (Sim2Real)
Issue: simulators is a very crude approximation of the real world! 



Simulation to Real World Transfer (Sim2Real)
Issue: simulators is a very crude approximation of the real world! 

Potential gaps (not an exhaustive list):
• Position, shape, and color of objects,
• Material texture,
• Lighting condition,
• Other measurement noise,
• Position, orientation, and field of view of the camera in the simulator.
• Mass and dimensions of objects,
• Mass and dimensions of robot bodies,
• Damping, kp, friction of the joints,
• Gains for the PID controller (P term),
• Joint limit,
• Action delay,



Simulation to Real World Transfer (Sim2Real)

Idea: domain randomization

Issue: simulators is a very crude approximation of the real world! 

https://lilianweng.github.io/posts/2019-05-05-domain-randomization/
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Deep RL for Robotics

Source: OpenAI Source: ETH Zurich



Deep RL beyond robotics / games …

Neural Architecture Search
Zoph and Le, 2016

Chip Design
Roy, 2022



Deep RL beyond robotics / games …

Plasma Control (nuclear fusion)
Degrave, 2022

Data Center Cooling
Lazic, 2018



Summary

• It turns out we can directly backprop from reward (sort of)!

• Naïve policy gradient (REINFORCE) has high variance due to the use of 
episodic reward. Credit assignment is hard.

• Use Action Value Function (Q) instead!

– Actor-Critic: learn Q value function jointly with policy

– Advantage Actor-Critic: estimate advantage A using V value function

– Deep Deterministic Policy Gradient for off-policy learning

– SAC for off-policy learning with stochastic policy model

• Other advanced policy gradient methods: TRPO, PPO

• Still pretty expensive to train! Mostly used for application that can be 
simulated.
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