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CS 4803-DL / 7643-A: LECTURE 23
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Topics:

• Reinforcement Learning Part 1

• Markov Decision Processes

• Value Iteration

• (Deep) Q Learning



Administrative

What is Reinforcement Learning?

• HW4  is due EOD 11/12. Grace period ends 11/14
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Reinforcement 

Learning

⬣ Evaluative 

feedback in the 
form of reward

⬣ No supervision on 

the right action

Types of Machine Learning

Unsupervised 

Learning

⬣ Input: 𝑋

⬣ Learning 
output: 𝑃 𝑥

⬣ Example: Clustering, 

density estimation, 

generative modeling

Supervised 

Learning

⬣ Train Input: 𝑋, 𝑌

⬣ Learning output:    
𝑓 ∶ 𝑋 → 𝑌, 𝑃(𝑦|𝑥)

⬣ e.g. classification

Sheep
Dog
Cat
Lion
Giraffe



Decision Making

• Interactive Environment: Unlike other ML paradigms, decision 

making is to act optimally in a dynamic, interactive environment.

• Feedback Loop: The agent's actions directly influence the future 

distribution of inputs, creating a continuous feedback loop.

• Optimality: The goal is to learn actions that maximize sum of future 

rewards, focusing on long-term outcomes.

• Learn to predict: The model must be able to predict, either 

implicitly or explicitly, how the environment changes in response to 

the agent's actions.



RL: Sequential decision making in an environment with evaluative feedback.

What is Reinforcement Learning?

⬣ Environment may be unknown, non-linear, stochastic and complex.

⬣ Agent learns a policy to map states of the environments to actions.

⬣ Seeking to maximize cumulative reward in the long run.

Agent

Action, 
Response, 
Control

State, 
Stimulus, 
Situation

Reward, 
Gain, Payoff, 
Cost

Environment
(world)

Figure Credit: Rich Sutton



Examples of RL tasks

Example: Robot Locomotion

⬣ Objective: Make the robot move 

forward without falling

⬣ State: Angle and position of the joints

⬣ Action: Torques applied on joints

⬣ Reward: +1 at each time step upright 

and moving forward

Figures copyright John Schulman et al., 2016. Reproduced with permission. 

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Agent

Action for each joint 
(torque, position, etc.)

Joint pos,
3D pos

Upright?
Forward?

Environment
(world)



Examples of RL tasks

Example: Robot Manipulation
⬣ Objective: Pick up object and place 

to sorting bin

⬣ State: Pose of the object and the bin, 

joint state and velocity of robots

⬣ Action: End effector motion

⬣ Reward: inverse distance between 

the object and the bin

Agent

End effector 
motion

Robot state
Object state Inv. dist. between

object and goal

Environment
(world)



Examples of RL tasks

Example: Atari Games

⬣ Objective: Complete the game with the highest score

⬣ State: Raw pixel inputs of the game state

⬣ Action: Game controls e.g. Left, Right, Up, Down

⬣ Reward: Score increase/decrease at each time step

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Figures copyright Volodymyr Mnih et al., 2013. Reproduced with permission. 



Examples of RL tasks

Example: Go

⬣ Objective: Defeat opponent

⬣ State: Board pieces

⬣ Action: Where to put next piece 

down

⬣ Reward: +1 if win at the end of game, 

0 otherwise

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Deep Learning for Decision Making

Deep 

Neural Nets

state 

input

action 

output

Deep Learning for Decision Making
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Deep Learning for Decision Making

Deep 

Neural Nets

state 

input

action 

output

Deep Learning for Decision Making

Problem: we don’t know the correct action label to supervise the output!

reward 𝑟𝑡

?

All we know is the step-wise task reward

How do we pose the learning problem?
(Deep) Reinforcement Learning!



Markov 

Decision 

Processes



Markov Decision Processes (MDPs)

⬣ MDPs: Theoretical framework underlying RL

⬣ An MDP is defined as a tuple 

   : Set of possible states

   : Set of possible actions

        : Distribution of reward

        : Transition probability distribution, also written as p(s’|s,a)

   : Discount factor

⬣ Interaction trajectory:  

⬣ Markov property: Current state completely characterizes state of the 

environment

⬣ Assumption: Most recent observation is a sufficient statistic of history
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Markov Decision Processes (MDPs)

⬣ MDPs: Theoretical framework underlying RL

⬣ An MDP is defined as a tuple 

   : Set of possible states

   : Set of possible actions

        : Distribution of reward

        : Transition probability distribution, also written as 𝑝(𝑠’|𝑠, 𝑎)

   : Discount factor

⬣ Experience:  

⬣ Markov property: Current state completely characterizes state of the 

environment

⬣ Assumption: Most recent observation is a sufficient statistic of history



MDP Variations

Fully observed MDP Partially observed MDP

⬣ Agent receives the true state 

st at time t

⬣ Example: Chess, Go

⬣ Agent perceives its own 

partial observation ot of the 

state st at time t, using past 

states e.g. with an RNN

⬣ Example: Poker, First-

person games (e.g. Doom) 

Source: https://github.com/mwydmuch/ViZDoom



MDP Variations

Fully observed MDP Partially observed MDP

⬣ Agent receives the true state 

st at time t

⬣ Example: Chess, Go

⬣ Agent perceives its own 

partial observation ot of the 

state st at time t, using past 

states e.g. with an RNN

⬣ Example: Poker, First-

person games (e.g. Doom) 

Source: https://github.com/mwydmuch/ViZDoom

We will assume fully observed MDPs for this lecture
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⬣ In Reinforcement Learning, we assume an underlying MDP with unknown:

⬣ Transition probability distribution

⬣ Reward distribution 

MDPs in the context of RL

MDP

Put simply: without learning, the agent doesn’t know how their actions will 
change the environment and what reward they will receive.

Reinforcement Learning is to learn to act optimally given experience data 
(transition, reward) from interacting with the environments.

The outcome is a control policy 𝜋(𝑎|𝑠) that maps a state 𝑠 to a (good) action 𝑎



A Grid World MDP

⬣ Agent lives in a 2D grid environment

⬣ State: Agent’s 2D coordinates

⬣ Actions: N, E, S, W

⬣ Rewards: +1/-1 at absorbing states

⬣ Walls block agent’s path

⬣ Actions to not always go as planned

⬣ 20% chance that agent drifts one cell 

left or right of direction of motion 

(except when blocked by wall).

Figure credits: Pieter Abbeel
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A Grid World MDP

⬣ Agent lives in a 2D grid environment

⬣ State: Agent’s 2D coordinates

⬣ Actions: N, E, S, W

⬣ Rewards: +1/-1 at absorbing states

⬣ Walls block agent’s path

⬣ Actions to not always go as planned 𝑇(𝑠, 𝑎, 𝑠′)

⬣ 20% chance that agent drifts one cell left 

or right of direction of motion (except 

when blocked by wall).

Figure credits: Pieter Abbeel



Solving MDPs: Optimal policy

⬣ Solving MDPs by finding the best/optimal policy

⬣ Formally, a policy is a mapping from states to actions

⬣ Deterministic

⬣ Stochastic

⬣ What is a good policy?

⬣ Maximize current reward? Sum of all future rewards?

⬣ Discounted sum of future rewards!
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Solving MDPs: Optimal policy

⬣ Solving MDPs by finding the best/optimal policy

⬣ Formally, a policy is a mapping from states to actions

⬣ Deterministic

⬣ Stochastic

⬣ What is a good policy?

⬣ Maximize current reward? Sum of all future rewards?

⬣ Discounted sum of future rewards!

⬣ Future is inherently uncertain!

⬣ How much to value future rewards

⬣ Discount factor: 

⬣ Typically 0.9 - 0.99

Large 𝛾 → far-sighted

Small 𝛾 → near-sighted



Solving MDPs: Optimal policy

⬣ Formally, the optimal policy is defined as:
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Solving MDPs: Optimal policy

⬣ Formally, the optimal policy is defined as:

discounted sum of future rewards

Expectation over initial state, actions from policy, 
next states from transition distribution

We need a function to quantify the optimality of a policy! 



⬣ A value function predicts the sum of discounted future reward for a given policy

Value Function
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⬣ A value function predicts the sum of discounted future reward for a given policy

⬣ State value function / V-function /

⬣ How good is this state under a policy?

⬣ Am I likely to win/lose the game from this state (reward-to-go)?

⬣ State-Action value function / Q-function /

⬣ How good is this state-action pair under a policy?

⬣ In this state, what is the impact of this action on my future?

Value Function

Value functions are measuring both the quality of a state (state-action pair) 
and the quality of a policy!



Value Function

⬣ For a policy that produces a trajectory sample

⬣ The V-function of the policy at state s, is the expected cumulative reward 

from state s:
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⬣ For a policy that produces a trajectory sample

⬣ The V-function of the policy at state s, is the expected cumulative reward 

from state s:

Value Function



Action-Value Function

⬣ For a policy that produces a trajectory sample

⬣ The Q-function of the policy at state s and action a, is the expected 

cumulative reward upon taking action a in state s (and following policy 

thereafter):

How do we learn a good policy?



⬣ The V and Q functions corresponding to the optimal policy  

Optimal V & Q functions

Optimal policy from Q value function:



⬣ The V and Q functions corresponding to the optimal policy  

Optimal V & Q functions

Optimal policy from Q value function:

How do we learn the value 
functions?



Bellman Optimality Equations

Bellman equation:



Bellman Optimality Equations

Value of a 
given state

Expectation over 
all possible next 
states if taking 
action 𝑎

Discounted 
future value

Reward if taking 
action 𝑎 at 
current state

If we act 
optimally

Bellman equation:
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Value of a 
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action 𝑎

Discounted 
future value

Reward if taking 
action 𝑎 at 
current state

If we act 
optimally

Bellman equation:

Bellman equation: the optimal value of a state equals to the immediate 
reward plus discounted future rewards, when acting optimally



Bellman Optimality Equations

Value of a 
given state

Expectation over 
all possible next 
states if taking 
action 𝑎

Discounted 
future value

Reward if taking 
action 𝑎 at 
current state

If we act 
optimally

Bellman equation:

Bellman equation: the optimal value of a state equals to the immediate 
reward plus discounted future rewards, when acting optimally

Can we use this equation to construct a learning algorithm of V*?



Bellman Optimality Equations

Goal: Learn a value function 𝑉 that correctly maps states to optimal values.

Bellman equation:
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Bellman Optimality Equations

Goal: Learn a value function 𝑉 that correctly maps states to optimal values.

Facts: 
• If a value function 𝑉 is correct, then this equation should hold exactly.
• If the value function is incorrect, we can use this equation to update the 

value estimate. 

Bellman equation:

Value Iteration



Value Iteration

https://developer.nvidia.com/blog/deep-learning-nutshell-reinforcement-learning/

Initialize Value Function table
For each iteration 𝑖:
- For each state 𝑠:

- For each action 𝑎:
- Get reward 𝑟(𝑠, 𝑎)
- For each possible future states 𝑠’:

- Get current 𝑉(𝑠’) from table
- Compute the expectation term

- Select the highest future value
- Update new 𝑉(𝑠)

This algorithm looks familiar ...
It’s dynamic programming!



Algorithm: Value Iteration

Initialize values of all states to arbitrary values, e.g., all 0’s.

While not converged:

For each state:

Repeat until convergence (no change in values)

Value Iteration

Time complexity per iteration

Q: What’s the time complexity per iteration?



Value Iteration Update:

Q-Iteration Update:

Value Iteration

Given a learned Q function, we can derive the optimal policy: 

𝜋 𝑠 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄(𝑠, 𝑎)



Value iteration is almost never used in practice!

Value Iteration

Time complexity per iteration

|𝑆|  =  11, |𝐴|  =  4 𝑆 ≅ 3361, 𝐴 ≅ 361 𝑆 ≅ ? , 𝐴 = ?

Can’t iterate over all (𝑠, 𝑎) pairs -> need approximation!

We also don’t know the transition function (model) -> need a model-free method! 



Q-Learning
• We’d like to do Q-value updates to each Q-state:

𝑄′ 𝑠𝑡 , 𝑎𝑡 ≅ ෍

𝑠′

𝑇(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡)[𝑟𝑡 + 𝛾 max
𝑎

𝑄 𝑠𝑡+1, 𝑎 ]

– But can’t compute this update without knowing the transition function and enumerate all 
possible next states 𝑠’!

• Instead, approximate the expectation (sum over next states) with (lots of) experience samples

– Take an action in the environment following policy argmaxa𝑄 𝑠, 𝑎

– receive a sample transition 𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1

– This sample suggests: 𝑄 𝑠𝑡 , 𝑎𝑡 ≅ 𝑟𝑡 + 𝛾 max
𝑎

𝑄(𝑠𝑡+1, 𝑎)

– Keep a running average to approximate the expectation:
𝑄′ 𝑠𝑡 , 𝑎𝑡 = (1 − 𝛼)𝑄 𝑠𝑡 , 𝑎𝑡 + 𝛼[𝑟𝑡 + 𝛾 max

𝑎
𝑄 𝑠𝑡+1, 𝑎 ]

Old estimates New estimates



Q-Learning
Approximate the expectation (sum over next states) with (lots of) experience samples

– Take an action in the environment following policy argmaxa𝑄 𝑠, 𝑎

– receive a sample transition 𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1

– This sample suggests: 𝑄 𝑠𝑡 , 𝑎𝑡 ≅ 𝑟𝑡 + 𝛾 max
𝑎

𝑄(𝑠𝑡+1, 𝑎)

– Keep a running average to approximate the expectation:
𝑄′ 𝑠𝑡 , 𝑎𝑡 = (1 − 𝛼)𝑄 𝑠𝑡 , 𝑎𝑡 + 𝛼[𝑟𝑡 + 𝛾 max

𝑎
𝑄 𝑠𝑡+1, 𝑎 ]

• We can now learn Q values without having access to a transition model

• Getting experience data through interaction instead of assuming access to 
all states: more practical in real-world situation (e.g., robots learning through 

trial-and-error)

• Still need to represent all (𝑠, 𝑎) pairs in a Q value table!



Q-Learning
Idea: represent the Q value table as a parametric function 𝑄𝜃(𝑠, 𝑎)!  

How do we learn the function? We need a loss metric!

𝑄′ 𝑠𝑡 , 𝑎𝑡 = (1 − 𝛼)𝑄 𝑠𝑡 , 𝑎𝑡 + 𝛼[𝑟𝑡 + 𝛾 max
𝑎

𝑄 𝑠𝑡+1, 𝑎 ]

= 𝑄 𝑠𝑡 , 𝑎𝑡 + 𝛼(𝑟𝑡 + 𝛾 max
𝑎

𝑄 𝑠𝑡+1, 𝑎 − 𝑄(𝑠𝑡 , 𝑎𝑡))

Now, at optimum, 𝑄 𝑠𝑡 , 𝑎𝑡 = 𝑄′(𝑠𝑡 , 𝑎𝑡) = 𝑄∗(𝑠𝑡 , 𝑎𝑡); This gives us:

0 = 0 + 𝛼(𝑟𝑡 + 𝛾 max
𝑎

𝑄 𝑠𝑡+1, 𝑎 − 𝑄(𝑠𝑡 , 𝑎𝑡))

Learning problem:
argmin𝜃||𝑟𝑡 + 𝛾 max

𝑎
𝑄𝜃 𝑠𝑡+1, 𝑎 − 𝑄𝜃(𝑠𝑡 , 𝑎𝑡)) ||

Target Q value How to model Q?



Deep 

Q-Learning



⬣ Q-Learning with linear function approximators

⬣ Has some theoretical guarantees

⬣ Deep Q-Learning: Fit a deep Q-Network

⬣ Works well in practice

⬣ Q-Network can take arbitrary input (e.g. RGB images)

⬣ Assume discrete action space (e.g., left, right)

Deep Q-Learning

Value per action dim



⬣ Assume we have collected a dataset:

⬣ We want a Q-function that satisfies bellman optimality (Q-value)

⬣ Loss for a single data point:

Deep Q-Learning

Target Q-ValuePredicted Q-Value



⬣ Minibatch of 

⬣ Forward pass:

⬣ Compute loss:

⬣ Backward pass:

Deep Q-Learning

State Q-Network Q-Values per action

State

Q-Network



⬣ We don’t want the policy to change its behavior too frequently

⬣ Freeze              and update                parameters   

⬣ Set                    at regular intervals or update as running average

⬣ 𝜃𝑜𝑙𝑑 = 𝛽𝜃𝑜𝑙𝑑 + 1 − 𝛽 𝜃𝑛𝑒𝑤

Deep Q-Learning



Deep Q-Learning

How to gather experience?

This is why RL is hard



How to gather experience?

Environment Data

Update

Train

Challenge 1: Exploration vs Exploitation

Challenge 2: Non iid, highly correlated data



⬣ What should           be? 

⬣ Greedy? -> no exploration, always choose the most confident action

⬣ An exploration strategy:

⬣  

Exploration Problem



⬣ Samples are correlated => high variance gradients => inefficient learning 

⬣ Current Q-network parameters determines next training samples => can lead 

to bad feedback loops

⬣ e.g. if maximizing action is to move right, training samples will be 

dominated by samples going right, may fall into local minima

Correlated Data Problem



⬣ Correlated data: addressed by using experience replay

➢ A replay buffer stores transitions 

➢ Continually update replay buffer as game (experience) episodes are 

played, older samples discarded

➢ Train Q-network on random minibatches of transitions from the replay 

memory, instead of consecutive samples

⬣ Larger the buffer, lower the correlation

Experience Replay



Deep Q-Learning Algorithm

Epsilon-greedy

Q Update

Experience Replay



Case study: Playing Atari Games

Atari Games

⬣ Objective: Complete the game with the highest score

⬣ State: Raw pixel inputs of the game state

⬣ Action: Game controls e.g. Left, Right, Up, Down

⬣ Reward: Score increase/decrease at each time step

Figures copyright Volodymyr Mnih et al., 2013. Reproduced with permission. 



Case study: Playing Atari Games

Atari Games

https://www.youtube.com/watch?v=V1eYniJ0Rnk

https://www.youtube.com/watch?v=V1eYniJ0Rnk


⬣ Value-based RL

⬣ (Deep) Q-Learning, approximating          with a deep Q-network

⬣ Policy-based RL

⬣ Directly approximate optimal policy        with a parametrized policy 

⬣ Model-based RL

⬣ Approximate transition function       and reward function  

⬣ Plan by looking ahead in the (approx.) future!

Deep RL: Algorithm Categories

Different RL Paradigms



Next Time: RL continued --- Policy 

Gradient and Actor-Critic



What is an implicit representation for 3D data?

Explicit: A tensor of 3D voxel grid 𝑉 ∈ 0, 1 𝐻,𝑊,𝐿

Implicit: A function that maps locations to occupancies
𝐹𝜃: 𝑥, 𝑦, 𝑧 → {0, 1}

Example: representing a 3D occupancy grid



What is an implicit representation for 3D data?

Explicit: A tensor of 3D voxel grid 𝑉 ∈ 0, 1 𝐻,𝑊,𝐿

Implicit: A function that maps locations to occupancies
𝐹𝜃: 𝑥, 𝑦, 𝑧 → {0, 1}

Example: representing a 3D occupancy grid

Implicit representation describes 3D shapes 
using mathematical functions rather than 
explicit voxels, points, or mesh.
Example: Signed Distance Function

𝐹𝜃:  ℝ3 → ℝ



What is an implicit representation for 3D data?

Explicit: A tensor of 3D voxel grid 𝑉 ∈ 0, 1 𝐻,𝑊,𝐿

Implicit: A function that maps locations to occupancies
𝐹𝜃: 𝑥, 𝑦, 𝑧 → {0, 1}

Example: representing a 3D occupancy grid

Implicit representation describes 3D shapes 
using mathematical functions rather than 
explicit voxels, points, or mesh.
Example: Signed Distance Function

𝐹𝜃:  ℝ𝑁 → ℝ

How far is a point 
from the nearest 
surface, and is the 
point inside or 
outside of the shape?

SDF distance map

d=0.8 d=-0.4

Can we represent more than just geometry?



Implicit 3D Representation: Beyond Geometry

Can we implicitly represent a full 3D scene, including its fine-grained 
geometry (e.g., surface occupancy) and appearance?

𝑓𝜃 𝑣𝑖𝑒𝑤𝑝𝑜𝑖𝑛𝑡 = 𝐼𝑚𝑎𝑔𝑒

Goal: Learn an implicit 3D 
representation function that 
maps any camera viewpoint to 
full RGB images



https://en.wikipedia.org/wiki/Volume_rendering https://coronarenderer.freshdesk.com/support/solutions/arti
cles/12000045276-how-to-use-the-corona-volume-grid-

Basics: Volume Rendering

https://en.wikipedia.org/wiki/Volume_rendering
https://coronarenderer.freshdesk.com/support/solutions/articles/12000045276-how-to-use-the-corona-volume-grid-
https://coronarenderer.freshdesk.com/support/solutions/articles/12000045276-how-to-use-the-corona-volume-grid-


Volume Rendering: Scene Representation



Volume Rendering: Scene Representation

𝑥, 𝑦, 𝑧, 𝑑 → 𝑟, 𝑔, 𝑏, 𝜎

Each location (𝑥, 𝑦, 𝑧) emits certain color 𝑟, 𝑔, 𝑏 when viewed with direction 𝑑. 
We represent point occupancy continuously as density 𝜎.



𝑥, 𝑦, 𝑧, 𝑑 → 𝑟, 𝑔, 𝑏, 𝜎

Each location (𝑥, 𝑦, 𝑧) emits certain color 𝑟, 𝑔, 𝑏 when viewed with direction 𝑑. 
We represent point occupancy continuously as density 𝜎.

Volume Rendering: Scene Representation



...

Ray 
Marching

This is 
Differentiable!

𝑥, 𝑦, 𝑧, 𝑑 → 𝑟, 𝑔, 𝑏, 𝜎

Volume Rendering: Ray Marching

Ray Marching: Integrate color and density of points along a ray (via discretization) 
to render an RGB value. Render many points -> An image!



...

Ray 
Marching

This is 
Differentiable!

𝑥, 𝑦, 𝑧, 𝑑 → 𝑟, 𝑔, 𝑏, 𝜎

Volume Rendering: Ray Marching

Neural Radiance Field (NeRF): Train a neural network to represent the scene volume: 
𝐹𝜃 𝑥, 𝑦, 𝑧, 𝑑 = (𝑟, 𝑔, 𝑏, 𝜎).  Each NN encodes a 3D scene.





∇∥ − ∥2

Train a Single Neural Network to Reproduce the Ground Truth 
Images of a Scene

Volume rendering of 

MLP colors/densities

Ground truth

image

Adapted from material from Pratul Srinivasan



NeRF Overview



NeRF: Optimization

Solution: Numerically estimate the integral (quadrature).
1. Discretize the ray into bins.
2. Sample point in each bin.
3. Compute numerical integration.



NeRF: Optimization

Solution: Numerically estimate the integral (quadrature).
1. Discretize the ray into bins.
2. Sample point in each bin.
3. Compute numerical integration.



Key Insight 1: Positional Encoding

Challenge: Having 𝐹𝜃operate directly on 𝑥, 𝑦, 𝑧, 𝑑 performs poorly.  

Solution: Positional encoding



Key Insight 2: Hierarchical Volume Rendering

Challenge: Waste of compute on empty space.

Solution: coarse-to-fine prediction.





NeRF encodes convincing view-dependent effects using 
directional dependence

Slide credit: Noah Snavely



NeRF encodes convincing view-dependent effects using 
directional dependence

Slide credit: Noah Snavely



NeRF encodes detailed scene geometry with occlusion effects

Slide credit: Noah Snavely



NeRF encodes detailed scene geometry

Slide credit: Noah Snavely



Space vs. Time Tradeoff



3D Gaussian Splatting (Kerbl and Kopanas et al., 2023)

Key idea: 3D Gaussians as an explicit representation of a scene
• Train Gaussian blobs via inverse rendering (similar to NeRF) 
• Store scene as Gaussian blobs instead of neural network weights (NeRF)
• Much faster during inference, but takes a lot of space to store



Summary: 3D Representation and Neural Rendering

● Representation matters a lot for 3D computer vision tasks (detection, 
reconstruction, etc.)

● 3D Voxels are intuitive representation of space but struggles with high-
resolution shape and large scenes

● Implicit function emerge as a new paradigm in representing scenes with 
Neural Networks

● Neural volume rendering: represent scenes implicit as point-direction to 

color-density neural networks. Photorealistic rendering, slow to train and 

evaluate

● More recent works on trading off space and time
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