CS 4644/7643: Lecture 19
Danfei Xu

Topics:

e Self-supervised Learning
* Pretext task from image transformation
e Contrastive learning

* 3D Vision



GANSs: Learning generate samples directly

VAN
Denoising x| = X o 7| = |5
. . X1 | = x| - Xo| —
Diffusion 0 1 2 T 2 1 v
4 I
Generative AN
Adversarial
Networks 7| —— —| ¥
(GANSs)
N\ J




lan Goodfellow et al., “Generative

Tralnlng GANS TWO'player game Adversarial Nets”, NIPS 2014

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images

Real or Fake\ Discriminator learning signal

Generator learning signal T (binary classification)
(gradient from discriminato r) Discriminator Network

Fake Images Real Images
(from generator) ' (from training set)

Generator Network

A

Random noise V4

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.



Adversarial Nets”, NIPS 2014

Tra|n |n g GANS TW()-player gam e lan Goodfellow et al., “Generative

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images

Train jointly in minimax game

Discriminator outputs likelihood in (0,1) of real image
Minimax objective function:

néin max [Emwpdm log Do, (z) + E.np(z) IOE(} — Do, (Go, (3)))}
9 — l

d

I Discriminator output
for real data x

1

Classify all real images Classify all generated
as real images as fake

Discriminator output for
generated fake data G(z)



Tra|n |n g GANS TW()-player gam e lan Goodfellow et al., “Generative

Adversarial Nets”, NIPS 2014

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images

Train jointly in minimax game

Discriminator outputs likelihood in (0,1) of real image
Minimax objective function:

min max [Emwpdm log Do, () + E,np(z) log(1l — Dy, (Gy,(2)))

0, 04 —

I Generator: learn to fool
discriminator. Minimize

log(l ~ Poy (xgen))



lan Goodfellow et al., “Generative

Tralnlng GANS TWO'pIayer game Adversarial Nets”, NIPS 2014

Minimax objective function:
min X |Egrpy,, 108 Doy (7) + Eanp(s) 10g(1 — Do, (Go, (2)))]

9, 64

Alternate between:
1. Gradient ascent on discriminator

max [Emmm log Dy, () + E.rp(z) log(1 — Do, (G, (z)))}

2. Gradient descent on generator
r%in ]E'z-"up{z) lﬂg(l - Dﬁd (Gﬁg (Z)))



GAN Learning Process

O Real Data
X Generated Data



GAN Learning Process

.DQ O Real Data
X Generated Data



GAN Learning Process
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GAN Learning Process

O Real Data
X Generated Data



lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Generative Adversarial Nets
Generated samples (CIFAR-10)

Nearest neighbor from training set

Figures copyright lan Goodfellow et al., 2014. Reproduced with permission.



Generative Adversarial Nets: Convolutional Architectures

Generator is an upsampling network with fractionally-strided convolutions
Discriminator is a convolutional network

Architecture guidelines for stable Deep Convolutional GANs

Replace any pooling layers with strided convolutions (discriminator) and fractional-strided
convolutions (generator).

Use batchnorm in both the generator and the discriminator.
Remove fully connected hidden layers for deeper architectures.
Use ReLLU activation in generator for all layers except for the output, which uses Tanh.

Use LeakyReL.U activation in the discriminator for all layers.

Radford et al, “

Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016




2019: BigGAN

Brock et al., 2019



GANSs were popular ...
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Source: https://paperswithcode.com



Supervised
Learning

Train Input: {X, Y}

Learning output:
f:X =Y, P(ylx)

e.g. classification

Unsupervised
Learning
Input: {X}

Learning
output: P(x)

Example: Clustering,
density estimation,
generative modeling
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Self-Supervised Learning:
Create your own supervision

Reinforcement
Learning

Evaluative
feedback in the
form of reward

No supervision on
the right action
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Self-supervised Learning

In short: still supervised learning, with two important distinctions:

1. Learn from labels generated autonomously instead of human annotations.

2. The goalis to learn good representations for other target tasks.

dataset (no labels)

pre-training
model

pretext
task
knowledge
transfer
[ - target
task

target model

Source: Noroozi et al., 2018



Self-supervised pretext tasks

Example: learn to predict image transformations / complete corrupted images

. &

image completion rotation prediction “jigsaw puzzle” colorization

1. Solving the pretext tasks allow the model to learn good features.
2. We can automatically generate labels for the pretext tasks.



Generative vs. Self-supervised Learning

g -
ONE @ DOLLAR
L& :e h:ﬁ Q

Left: Drawing of a dollar bill from memory. Right: Drawing subsequently made with a
dollar bill present. Image source: Epstein, 2016

Learning to generate pixel-level details is often unnecessary; learn high-level
semantic features with pretext tasks instead

Source: Anand, 2020



https://aeon.co/essays/your-brain-does-not-process-information-and-it-is-not-a-computer
https://ankeshanand.com/blog/2020/01/26/contrative-self-supervised-learning.html
https://ankeshanand.com/blog/2020/01/26/contrative-self-supervised-learning.html

How to evaluate a self-supervised learning method?

feature

@ I:> self-supervised I:> extractor
learning (e.g., a

convnet)

lots of

unlabeled
data ;\ 90°
—

conv fc

1. Learn good feature extractors from
self-supervised pretext tasks, e.g.,
predicting image rotations



How to evaluate a self-supervised learning method?

feature

I:> self-supervised I:> extractor = supervised :[ evaluate on the }

(e.g., a
convnet)

learning learning target task

e.g. classification, detection
lots of

unlabeled
data * 90° 4 bird
smaIIamount of

labeled data on the

conv fc target task Imear
cIaSS|f|er
1. Learn good feature extractors from 2. Attach a shallow network on the
self-supervised pretext tasks, e.g., feature extractor; train the shallow
predicting image rotations network on the target task with small

amount of labeled data



Broader picture

Today’s lecture

computer vision

Doersch et al., 2015

robot / reinforcement learning

Dense Object Net (Florence
and Manuelli et al., 2018)

language modeling
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2016)



Today’s Agenda

Pretext tasks from image transformations

- Rotation, inpainting, rearrangement, coloring
Contrastive representation learning

- Intuition and formulation

- Instance contrastive learning: SImCLR and MOCO



Today’s Agenda

Pretext tasks from image transformations
- Rotation, inpainting, rearrangement, coloring



Pretext task: predict rotations

|

90° rotation 270° rotation 180° rotation 0° rotation 270° rotation

Hypothesis: a model could recognize the correct rotation of an object only if it
has the “visual commonsense” of what the object should look like
unperturbed.

(Image source: Gidaris et al. 2018)



https://arxiv.org/abs/1803.07728

Pretext task: predict rotations

> g(Xx.y=0) oi
Rotate 0 degrees
Rotated image: X*
— g(X,y=1) - B
Rotate 90 degrees
Rotated image: X'
Rotate 180 degrees

Rotated image: X°

> glX,y=3)

Rotate 270 degrees L
Rotated image: X

ConvNet
model F(.)

ConvNet
model F(.)

ConvNet
model F(.)

ConvNet
model F(.)

Objectives:
Maximize prob.
F(X°) \
Predict 0 degrees rotation (y=0) S e I f_s u p e rVi se d
learning by rotating the
Maximize prob. H H H
gt  entire input images.

Predict 90 degrees rotation (y=1)

The model learns to

»iE - predict which rotation
Predict 180 degrees rotation (y=2) is applled (4_Way
classification)
Maximize prob.
F(x?)

Predict 270 degrees rotation (y=3)

(Image source: Gidaris et al. 2018)



https://arxiv.org/abs/1803.07728

Evaluation on semi-supervised learning

1100

a0

" Self-supervised learning on
CIFAR10 (entire training set).
. 70
% . Freeze convl + conv2
j Learn conv3 + linear layers with
30 subset of labeled CIFAR10 data
0 (classification).
30| Ours - Semi-supervised
—— Supervised
}:éﬂ 1060 4000 1000 S0

# Training examples

(Image source: Gidaris et al. 2018)



https://arxiv.org/abs/1803.07728

Pretext task: predict relative patch locations

Example:

(Image source: Doersch et al., 2015)



https://arxiv.org/abs/1505.05192

Pretext task: image coloring

:‘ 3
Grayscale image: L channel Color information: ab channels
X ¢ RHxWx1 ?ERHxsz

T

Source: Richard Zhang / Phillip
Isola



Pretext task: image coloring

At

Grayscale image: L channel

X e IR/HX"‘/XI

L

Concatenate (L,ab) channels

(X,Y)

ab

Source: Richard Zhang / Phillip
Isola



Transfer learned features to supervised learning

- Flaces-labels @-@ Pathak et al.
50 BB ImageNet-labels @@ Zhang et al.
8@ Krachenbuehl et al, 0-0 Owens et al,
>0 bosrs 6 Spit-Brain At Self-supervised learning on
@-@ Doersch et al, -4 Split-Brain Autolcl,cl) -
45 @@ Wang & Gupta — —4

+=
L=

, ImageNet (entire training set).
supervised

£ 35| - Use concatenated features
<l ——— ¢y~ this paper from F;and F,
E T——1

25 Labeled data is from the

Places (Zhou 2016).

—
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Source: Zhang et al., 2017



https://arxiv.org/abs/1611.09842

Pretext task: image coloring

Source: Richard Zhang / Phillip
Isola



Pretext task: video coloring

Idea: model the temporal coherence of colors in videos

reference frame how should | color these frames?

Source: Vondrick et al.,

2018


https://arxiv.org/abs/1806.09594
https://arxiv.org/abs/1806.09594

Pretext task: video coloring

Idea: model the temporal coherence of colors in videos

reference frame how should | color these frames?

Hypothesis: learning to copy colors from reference to future video frames

should allow model to learn to track regions or objects without labels!
Source: Vondrick et al.,

2018



https://arxiv.org/abs/1806.09594
https://arxiv.org/abs/1806.09594

Learning to color videos

Reference Frame Input Frame

Learning objective:

Establish mappings
between reference and
target frames in a learned
feature space.

0 P T YN
“!--- »

Use the mapping as
“pointers” to copy the
correct color (LAB).

a®

Reference Colors Target Colors

Source: Vondrick et al.,
2018



https://arxiv.org/abs/1806.09594
https://arxiv.org/abs/1806.09594

Learning to color videos

Grayscale Video Embeddings
Reference A Af: AS | peference
Frame O ® 1 [ Colors

.1I‘

Target

Predicted
Frame | © A

® ‘fj L ‘é’; Colors

attention map on the reference
frame

L en(fT)
Y Zkexp (fff;)

Source: Vondrick et al.,
2018



https://arxiv.org/abs/1806.09594
https://arxiv.org/abs/1806.09594

Learning to color videos

Grayscale Video Embeddings
Reference ‘ ‘ f t
Frame ® I
1
Target 4
Frame © A L AW \ 'fj

attention map on the reference  predicted color = weighted
frame sum of the reference color

exp (£ ;) _
A = = Aijci
S (7T5) ; g

Aci Reference
® Colors

o : Predicted
‘yj Colors

Source: Vondrick et al.,
2018



https://arxiv.org/abs/1806.09594
https://arxiv.org/abs/1806.09594

Learning to color videos

Grayscale Video Embeddings

Reference ‘ ‘ f £
Frame ® I
1
Target 4
Frame  © A ® A fj

predicted color = weighted
sum of the reference color

Yi = Z Aije
0

attention map on the reference
frame

L en(fT)
Y Zkexl} (fff;)

Aci Reference

® Colors
o ? gr?dmted
yj olors

loss between predicted color
and ground truth color

m&nZﬁ(yj,cj)
J

Source: Vondrick et al.,
2018



https://arxiv.org/abs/1806.09594
https://arxiv.org/abs/1806.09594

Colorizing videos (qualitative)

reference frame target frames (gray) predicted color

Source: Google Al blog
post



https://ai.googleblog.com/2018/06/self-supervised-tracking-via-video.html
https://ai.googleblog.com/2018/06/self-supervised-tracking-via-video.html

Tracking emerges from colorization

Propagate segmentation masks using learned attention

Source: Google Al blog
post



https://ai.googleblog.com/2018/06/self-supervised-tracking-via-video.html
https://ai.googleblog.com/2018/06/self-supervised-tracking-via-video.html

Tracking emerges from colorization

Propagate pose keypoints using learned attention

T —
p—
— —
—
—
— —
——
—_—
*_
—_—
——
———
——
==
o
.

Source: Google Al blog
post



https://ai.googleblog.com/2018/06/self-supervised-tracking-via-video.html
https://ai.googleblog.com/2018/06/self-supervised-tracking-via-video.html

Summary: pretext tasks from image transformations

® Pretext tasks focus on “visual common sense”, e.g., predict rotations,
inpainting, rearrangement, and colorization.

e The models are forced learn good features about natural images, e.g.,
semantic representation of an object category, in order to solve the pretext
tasks.

e \We don’t care about the performance of these pretext tasks, but rather how
useful the learned features are for downstream tasks (classification, detection,

segmentation).



Summary: pretext tasks from image transformations

® Pretext tasks focus on “visual common sense”, e.g., predict rotations,
inpainting, rearrangement, and colorization.

e The models are forced learn good features about natural images, e.g.,
semantic representation of an object category, in order to solve the pretext
tasks.

e \We don’t care about the performance of these pretext tasks, but rather how
useful the learned features are for downstream tasks (classification, detection,
segmentation).

® Problems: 1) coming up with individual pretext tasks is tedious, and 2) the
learned representations may not be general.



Pretext tasks from image transformations

m € o

image rotation “jigsaw puzzle” colorization
completion prediction

Learned representations may be tied to a specific pretext task!
Can we come up with a more general pretext task?



A more general pretext task?

same object




A more general pretext task?

e
\

same object




Contrastive Representation Learning

e
\

attract




Today’s Agenda

Contrastive representation learning
- Intuition and formulation
- Instance contrastive learning: SImCLR and MOCO



Contrastive Representation Learning

e
\

attract




Contrastive Representation Learning
_|_
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L reference
+

L positive

T negative




Contrastive Representation Learning

213+

~. /

L reference
xt positive
I  negative

_|_

L
2
“This image”

“Any other image”



A formulation of contrastive learning

What we want:

score( f(x), f(xT)) >> score(f(z), f(z7))

x: reference sample; x* positive sample; x” negative sample

Given a chosen score function, we aim to learn an encoder

function f that yields high score for positive pairs (x, x*) and low
scores for negative pairs (x, x).



A formulation of contrastive learning

Loss function given 1 positive sample and N - 1 negative samples:

L=-Ex

exp(s(f(z), f(z™))

log N—1 —
exp(s(f(z), f(zT)) + 25—, exp(s(f(z), f(z;))




A formulation of contrastive learning

Loss function given 1 positive sample and N - 1 negative samples:

L=—-Ex |log exP(S(f(m;;fl(m+))
exp(s(f(z), f(=*)) + 2=, exp(s(f(2), f(z5))




A formulation of contrastive learning

Loss function given 1 positive sample and N - 1 negative samples:

L=-Ex

log

exp(s(f(z), f(z™))

N-—-1 —
exp(s(f(x), f(z*)) + 20" exp(s(f (@), f(]))
score for the positive score for the N-1 negative
pair pairs

This seems familiar ...




A formulation of contrastive learning

Loss function given 1 positive sample and N - 1 negative samples:

L=-Ex

log

exp(s(f(z), f(z™))

N-—-1 —
exp(s(f(x), f(z+)) + L0, exp(s(f (@), £ (z7))
score for the positive score for the N-1 negative
pair pairs

This seems familiar ...
Cross entropy loss for a N-way softmax classifier!
l.e., learn to find the positive sample from the N samples




A formulation of contrastive learning
Loss functic_)n given 1 positive sample and N - 1 negative samples:
+
L= _Ey |log exp(s(f (-’Ei; _fl(-’r ) _
exp(s(f(z), f(zT1)) + Zj:l exp(s(f(z), f(-’ﬂj )

Commonly known as the InfoNCE loss (van den Oord et al., 2018)
A lower bound on the mutual information between f(x) and f(x*)

MI[f(z), f(z*)] — log(N) > —L

The larger the negative sample size (N), the tighter the bound

Detailed derivation: Poole et al., 2019



https://arxiv.org/abs/1807.03748
https://arxiv.org/pdf/1905.06922.pdf

SImCLR: A Simple Framework for Contrastive Learning

Cosine similarity as the score function:

- HT'U
s(u,v) = i

Use a projection network h(:) to project
features to a space where contrastive learning

is applied.

Generate positive samples through data

augmentation:
® random cropping, random color
distortion, and random blur.

Maximize agreement

Zi - zj
90| o()
h; +— Representation — h;
Q) f()

’
> A

Source: Chen et al.,
2020



https://arxiv.org/pdf/2002.05709.pdf
https://arxiv.org/pdf/2002.05709.pdf

SImCLR: generating positive samples from data
augmentation

(b) Crop and resize  (c) Crop, resize (and flip) (d) Color distort. (drop) (e) Color distort. (jitter)

(f) Rotate {90°, 180°,270°} (g) Cutout (h) Gaussian noise (1) Gaussian blur (j) Sobel filtering

Source: Chen et al.,

2020


https://arxiv.org/pdf/2002.05709.pdf
https://arxiv.org/pdf/2002.05709.pdf

SImCLR

Generate a positive pair
by sampling data
augmentation functions

Algorithm 1 SimCLR’s main learning algorithm.

input: batch size N, constant 7, structure of f, g, T.
for sampled minibatch {z; };_, do
forallke{1.....Nldo

draw two augmentation functions t~T, t' ~T
/# the hirst augmentation
Top—1 = t{zk)

— hak—1 = J(@2k-1) # representation
2op—1 = glhog—1) # projection
# the second augmentation
Tox = t'(xk)
hap = fl@a) # representation
Zo = glhoy) # projection
end for
foralli € {1,...,2N}and j € {1,...,2N} do
si; = z; zi/(||zllz;]) # pairwise similarity
end for

define £(i, j) as £(i, j)=—log o exp(si;/7)

=1 Lprzi] exp(sik/T)
L= Sa [6(2k—1,2k) + £(2k, 2k—1)]
update networks f and g to minimize £

end for

return encoder network f(-), and throw away g(-)

Source: Chen et al.,
2020



https://arxiv.org/pdf/2002.05709.pdf
https://arxiv.org/pdf/2002.05709.pdf

Algorithm 1 SimCLR’s main learning algorithm.
Sl m C |_ R input: batch size N, constant 7, structure of f, g, T.

for sampled minibatch {z; };_, do
forallke{1.....Nldo

draw two augmentation functions t~T, t' ~T
/# the hirst augmentation

Top—1 = t(my)

Generate a positive pair — hak—1 = J(@2k-1) # representation
by sampling data 2op_1 = glhax_1) # projection
augmentation functions # the second augmentation
T | g =t ()
hap = fl@a) # representation
Zo = glhoy) # projection
end for
foralli € {1,...,2N}and j € {1,...,2N} do
si; =z z;/(|zllllz;ll)  # pairwise similarity InfoNCE loss:
endfor — e Use all non-positive
define £(i, j) as (4, j)=—log s 7 "G/ [ samples in the batch
L= S [6(2k—T1,2K) + £(2k, 2k—1)] as x-
update networks f and g to minimize £
end for

return encoder network f(-), and throw away g(-)
Source: Chen et al.,

2020



https://arxiv.org/pdf/2002.05709.pdf
https://arxiv.org/pdf/2002.05709.pdf

Algorithm 1 SimCLR’s main learning algorithm.
Sl m C |_ R input: batch size N, constant 7, structure of f, g, T.

for sampled minibatch {z; };_, do
forallke{1.....Nldo

draw two augmentation functions t ~T, t' ~T
/# the hirst augmentation
Top—1 = t(my)

Generate a positive pair _—" Pk =T @) # representation
by sampling data 2op_1 = glhax_1) # projection
augmentation functions # the second augmentation
T | g =t ()
hap = fl@a) # representation
zok = glhag) # projection
end for
foralli € {1,...,2N}and j € {1,...,2N} do
si; = z; zi/(||zllz;]) # pairwise similarity InfoNCE loss:
Iterate through and use 322:21;{1- i) as (i, /)= — log exp(si,;/7) «— Use all ngn-p05|t|ve
’ : AT ) L) exP(8:,/7) samples in the batch
each of the 2N sample as L N
— L= 55 > 1 [€(2k—1,2k) + £(2k, 2k—1)] as x-
reference, compute update networks f and g to minimize £
average loss end for

return encoder network f(-), and throw away g(-)
Source: Chen et al.,

2020



https://arxiv.org/pdf/2002.05709.pdf
https://arxiv.org/pdf/2002.05709.pdf

Training linear classifier on SImCLR features

% Supervised #SimCLR (4x)
— 5 - .
S *SimCLR (2x) Train feature encoder on ImageNet
%‘ -0 oCPCv2-L (entire training set) using SimCLR.
5 *SimCLR oCMC JMGGD,MXJ
0 ePIRL-c2x . .
< ; o oMoCo (2x) AMDIM Freeze feature encoder, train a linear
a ° qCPCv2 PIRL-ens. classifier on top with labeled data.
L PIRL SHiaRi
— BigBiGAN
3 60} *MGCG
5 LA
o
E 55} eRotation
25 e|nstDisc
T 25 50 100 200 400 626

Number of Parameters (Millions)

Source: Chen et al.,
2020



https://arxiv.org/pdf/2002.05709.pdf
https://arxiv.org/pdf/2002.05709.pdf

Semi-supervised learning on SImMCLR features

Label fraction
Method Architecture 1% 10%
Top 5

Supervised baseline ResNet-30 484  B04
Methods using other label-propagation:

Pseudo-label ResNet-50 516 824
VAT+Entropy Min. ResNet-50 470 834
UDA (w. RandAug) ResNet-50 - 88.5
FixMatch (w. RandAug) ResNet-50 - 89.1
S4L (Rot+VAT+En. M.) ResNet-50 (4x) - 01.2
Methods using representation learning only:

InstDisc ResNMet-50 392 77.4
BigBiGAN RevNet-50 (4x) 552 788
PIRL ResNet-50 57.2 838
CPC v2 ResNet-161(*) 779 912
SimCLR (ours) ResNet-50 75.5 87.8
SimCLR (ours) ResNet-30(2x) 83.0 91.2
SimCLR (ours) ResNet-50 (4x) 85.8 92.6

Table 7. ImageNet accuracy of models trained with few labels.

Train feature encoder on ImageNet
(entire training set) using SimCLR.

Finetune the encoder with 1% / 10%
of labeled data on ImageNet.

Source: Chen et al.,
2020



https://arxiv.org/pdf/2002.05709.pdf
https://arxiv.org/pdf/2002.05709.pdf

SimCLR design choices: projection head

60 I II II Linear / non-linear projection heads improve
250 | Projection representation learning.
= = Linear
40 | mmm Non-linear . .
— Nﬂnel A possible explanation:
30 - . . . . ]
Dt 'i:]h%

” ® contrastive learning objective may discard
useful information for downstream tasks
® representation space z is trained to be

F'rojecl:m n uutput dlrn & nslunahty

Ty T—— invariant to data transformation.
;I ‘J . . .
[ o0 et ] ® by leveraging the projection head g(:), more
hi  — Representation—  h, information can be preserved in the h
I{-]‘ /Jff-} representation space
T P
I\%:.# e ,.--""-fif’l
P 5(, ~— #:{
\__f’

Source: Chen et al.,

2020


https://arxiv.org/pdf/2002.05709.pdf
https://arxiv.org/pdf/2002.05709.pdf

SimCLR design choices: large batch size

Large training batch size is crucial for

SimCLR!
| Large batch size causes large memory

Batm L footprint during backpropagation:

:ig requires distributed training on TPUs

1024 (ImageNet experiments)
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Figure 9. Linear evaluation models (ResNet-50) trained with differ-
ent batch size and epochs. Each bar is a single run from scratch.'”
Source: Chen et al.,

2020
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Momentum Contrastive Learning (MoCo)

Key differences to SimCLR:

-::cuntras.t..|\.re loss no_grad
similarity < / e Keep arunning queue of keys (negative
samples).
q kﬁ kl k? e Compute gradients and update the
: queue encoder only through the queries.
e Decouple min-batch size with the number
encoder m::";gt:rm of keys: can support a large number of
negative samples.
ke ke ke
pauery Ty Xy° Ty ..

Source: He et al., 2020
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Momentum Contrastive Learning (MoCo)

-::-:untrashue loss no_g rad

similarity /

q ko k1 ko ...

queue
encoder momentum
encoder
ke ke ke
pauery Ty Xy° Ty ..

Key differences to SimCLR:

Keep a running queue of keys (negative
samples).

Compute gradients and update the
encoder only through the queries.

Decouple min-batch size with the number
of keys: can support a large number of
negative samples.

The key encoder is slowly progressing through
the momentum update rules:

9].; “— mgk + (1 — m)Gq

Source: He et al., 2020
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MoCo

Generate a positive pair
by sampling data
augmentation functions

Algorithm 1 Pseudocode of MoCo in a PyTorch-like style.

= " LS : e By
= di | : K ke [Cx
f_k.params = £f_g.params & initialize
for x in loader: # load a minibat imp le:
¥_g = aug{x) # a randomly
¥_k = augi{x) § a her r
g = f_g.forward({x_qg) # g_h
k= f k.forwardix k) & ke NxC
E = k. ﬂ&tacht] ¥ no gradlent o kEey:

. / 1_pos - br-:ﬂwqq a.u-;n;l[;wlui i, k.view(N,C, 1)) Use the running queue
No gradient through } negative logits: NaK «——— of keys as the negative

the positive sample

Update the FIFO negative
—

sample queue

1_neg = Hrriq view(N,C), gquele.view (T, K} )

— samples

!oq .:.s = ca;zltir::.us, 1_neg]l, dim=1)

. Ean. (1) -

132315 Er;‘f;gﬁ:?ép;L;:‘;ﬁ[le::uglLst, lglt:.-c.lslb:. «<— |InfoNCE loss

¥ SGD update: query network
loss . backward ()
update (f_g.params)

Update f_k through
4—

f_k.params -.m-E_k.paQam$4[l—mbﬁf_q.params
momentum

engqueua (gquéuea, K] F engueue Che Current minibatch
dequeue {gueve) # degqueue the earliest minibateh

bmm: batch matrix multiplication; mm: matrix multiplication; cat: concalenation. SO urce: H e et a | 2 020



https://arxiv.org/abs/1911.05722

“MoCo V2~

Improved Baselines with Momentum Contrastive Learning

Xinlei Chen Haogi Fan Ross Girshick Kaiming He
Facebook Al Research (FAIR)

A hybrid of ideas from SimCLR and MoCo:
e From SimCLR: non-linear projection head and strong data
augmentation.
e From MoCo: momentum-updated queues that allow training on a
large number of negative samples (no TPU required!).

Source: Chen et al.,
2020
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MoCo vs. SImCLR vs. MoCo V2

unsup. pre-train ImageMet VOC detection

case MLP aug+ cos epochs ace. APsy AP AP4s
supervised 76.5 81.3 53.5 58.8
MaoCo vl 200 60.6 BL.S 559 626
(a) v 200 66.2 820 564 62.6

ib) e 200 63.4 82.2 568 63.2

(c) v v 200 67.3 825 572 639

(d) v v o 200 67.5 824 570 63.6

(e) v . s 00 71.1 825 574 64.0

Table 1. Ablation of MoCo baselines, evaluated by ResNet-50 for
(i) ImageNet linear classification, and (ii) fine-tuning VOC object
detection (mean of 5 trials). “MLP": with an MLP head; “aug+":
with extra blur augmentation; “cos™: cosine learning rate schedule.

Key takeaways:

Non-linear projection head and strong
data augmentation are crucial for
contrastive learning.

Source: Chen et al.,
2020
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MoCo vs. SImCLR vs. MoCo V2

unsup. pre-train ImageNet

case MLF aug+ cos epochs batch ace.
MoCo vl [6] 200 256 60.6
SimCLR [2] v v v 200 256 61.9
SimCLR [2] v v v 200 8192 66.6
MoCo v2 v v v 200 2536 67.5
results of longer unsupervised training follow:

SimCLR [2] v v v 1000 4096 69.3
MoCo v2 v v v 800 256 71.1

Table 2. MoCo vs. SimCLR: ImageNet linear classifier accuracy
(ResNet-50, 1-crop 224 < 224), trained on features from unsuper-
vised pre-training. “aug+" in SimCLR includes blur and stronger
color distortion. SimCLR ablations are from Fig. 9 in [2] (we
thank the authors for providing the numerical results).

Key takeaways:

® Non-linear projection head and strong
data augmentation are crucial for
contrastive learning.

e Decoupling mini-batch size with negative
sample size allows MoCo-V2 to
outperform SimCLR with smaller batch
size (256 vs. 8192).

Source: Chen et al.,
2020
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MoCo vs. SImCLR vs. MoCo V2

mechanism  batch  memory / GPU  time / 200-ep.

MoCo 256 5.0G 53 hrs
end-to-end 256 7.4G 63 hrs
end-to-end 4096 93.0GT nfa

Table 3. Memory and time cost in 8 V100 16G GPUs, imple-
mented in PyTorch. ': based on our estimation.

Key takeaways:

Non-linear projection head and strong
data augmentation are crucial for
contrastive learning.

Decoupling mini-batch size with negative
sample size allows MoCo-V2 to
outperform SimCLR with smaller batch
size (256 vs. 8192).

... all with much smaller memory
footprint! (“end-to-end” means SimCLR
here)

Source: Chen et al.,
2020
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Summary: Contrastive Representation Learning

A general formulation for contrastive learning:

score(f(z), f(@™)) >> score(f(x), f(z™))

InfoNCE loss: N-way classification among positive and negative samples
exp(s(f(z), f(z™))
exp(s(f(z), f(@+)) + 355, exp(s(f(2), f(z}))

L=—-Ex |log

Commonly known as the INfoNCE loss (van den Oord et al., 2018)

A lower bound on the mutual information between f(x) and f(x*)

MIf(z), f(z7)] —log(N) > —L


https://arxiv.org/abs/1807.03748

Summary: Contrastive Representation Learning

SimCLR: a simple framework for contrastive
representation learning

Key ideas: non-linear projection head to allow
flexible representation learning

Simple to implement, effective in learning visual
representation

Requires large training batch size to be effective;
large memory footprint

Maximize agreement

Zi - - Z;
9() la0)
h; +— Representation —» h;
fC) £()
Y @
@T; | x|
£R A



Summary: Contrastive Representation Learning

MoCo (v1, v2): contrastive learning using momentum

sample encoder

e Decouples negative sample size from minibatch
size; allows large batch training without TPU

® MoCo-v2 combines the key ideas from SimCLR,
i.e., nonlinear projection head, strong data
augmentation, with momentum contrastive

learning

contrastive loss

similarity
q ko ki ks ..
queue
I momentum
encoder
X key key ke
:Equr,ry ‘TU h 5'31 h 3:2 Y .



Other examples

Contrastive learning between image and natural language sentences

1. Contrastive pre-training 2, Create dataset classifier from label text
plane
papper tha Taxt
aussle pup —_— Encoder & photo of Taxt
l l ] ] a {object). E nacoeier
b 1
T, T Ty Ty
o= Il II i'l Iy r, II J'J I'i| IH
— I, T, IpTy, IpTg I3 Ty 3. Use for zero-shot prediction
- - i
il I - T, T T, = Ty
| L
_3- | — e 1 g e e | Fe I-T,
#
I o
; ; ; ; ; = EI_":;gm . - I, LN LT LT - LTy,
—_— Iy Ty Ty Iyl IN'TJ Ty Ty l

a phats of
a dog.

CLIP (Contrastive Language—Image Pre-training) Radford et al., 2021



Other examples

Contrastive learning on pixel-wise feature descriptors

(c) Background Randomization (d) Cross Object Loss (f) Synthetic Multi Object

| ™
(2

Dense Object Net, Florence et al., 2018



Other examples

Dense Object Net, Florence et al., 2018



3D Vision with Deep Neural Networks:
A very very short lecture



3D Object Detection

2D Object Detection:
2D bounding box
(X, ¥y, w, h)

3D Object Detection:
3D oriented bounding box

(x,¥,z,w,h,|,r,p,y)
Simplified bbox: no roll & pitch

Much harder problem than 2D
object detection!

This image is CCO public domain


https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

3D Object Detection: Simple Camera Model

A point on the image plane
corresponds to a ray in the 3D

space
Yg A 2D bounding box on an image
isa in the 3D space
2D point
g3 £ o Localize an object in 3D:
P\ o . .
g g -, NS The object can be anywhere in
camera g T ‘w) o J owina £ !
viewing frustrum g I \\4 the camera viewing frustrum!

camera

Image source: https:/Mwww.pcmag.com/encyclopedia_images/ FRUSTUM.GIF



3D Object Detection: Monocular Camera

Candidate sampling in 3D space

Scoring

& - o
Faster R-CNN ﬂ,m
il =

Proposals

- -

2D candid.ﬁe boxes
- Same idea as Faster RCNN, but proposals are in 3D
- 3D bounding box proposal, regress 3D box parameters + class score

Chen, Xiaozhi, Kaustav Kundu, Ziyu Zhang, Huimin Ma, Sanja Fidler, and Raquel
Urtasun. "Monocular 3d object detection for autonomous driving." CVPR 2016.



How to Represent 3D Data?

m
™%
e w




3D Representations

r . T-ﬁr ,4 -, .
r'll-—ﬁ %«& SR
Occupancy Grid Point Cloud

[h, w, I] [num_pts, 3]

Figure credit: Autonomous Vision Group

Surface Mesh
(edge list, face
list, vertex list)

Implicit Functions
(XI Y, Z -> d)




3D Occupancy Grid

Represent the “occupancy” of objects in 3D space with a 3D voxel grid
.« Ve{o,1}EWL]

e Just like segmentation in Masked-RCNN, but in 3D!

e Conceptually simple

* Not trivial to scale to high-resolution shapes



Predicting 3D Voxe

Grid with 3

W=Hse

1 3D Conv

D ConvNet

3D T-Conv

L= w@@

‘u@g}q

3D Convolutional LSTM

single view

T views

Cho et al. 2016, 3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction



Detection + Reconstruction: Mesh R-CNN

Input Image 2D Recognition

- "ﬁ? :

~= T

3D Meshes 3D Voxels

Gkioxari et al., Mesh RCNN, ICCV 2019



Detection + Reconstruction: Mesh R-CNN

Cubified Mesh

Box/Mask Branch > box, class, 2D mask

\ 4

Voxel Branch

A4

A 4

Vert Align Graph conv Refine

RolAlign

Vert Align Graph conv Refine
Na

Final Mesh

Mesh Refinement Branch

Gkioxari et al., Mesh RCNN, ICCV 2019



3D Representations

< n«ﬂ'f; PLe

_ag
X

}fpi:}" T e
e > 9 ©

T~ B
3

o ) P I T 28 B
BNAZA S T

rn-—ﬁ FoRas :
g
Point Cloud

Occupancy Grid
[h, w, |] [num_pts, 3]

Figure credit: Justin Johnson

Surface Mesh
(edge list, face
list, vertex list)

Implicit Functions
(XI Y, Z -> d)




What is an implicit representation for 3D data?

Example: representing a 3D occupancy grid

& Explicit: A tensor of 3D voxel grid V € {0, 1}[#W.L]

Implicit: A function that maps locations to occupancies
Fg:x,y,z - {0,1}




What is an implicit representation for 3D data?

Example: representing a 3D occupancy grid

& Explicit: A tensor of 3D voxel grid V € {0, 1}\FW:L]

Implicit: A function that maps locations to occupancies
Fg:x,y,z - {0,1}

Implicit representation describes 3D shapes
using mathematical functions rather than
explicit voxels, points, or mesh.
Example: Signed Distance Function

Fg: R3 > R



What is an implicit representation for 3D data?

Example: representing a 3D occupancy grid

Explicit: A tensor of 3D voxel grid V € {0, 1} HW.L]

Implicit: A function that maps locations to occupancies
Fg:x,y,z - {0,1}

d=0.8 d=-0.4
Implicit representation describes 3D shapes How far is a point
using mathematical functions rather than from the nearest
explicit voxels, points, or mesh. surface, and is the
Example: Signed Distance Function point inside or
Fo: RN - R . outside of the shape?

Can we represent more than just geometry? SDF distance map



Implicit 3D Representation: Beyond Geometry

fo(viewpoint) = Image

Goal: Learn an implicit 3D
representation function that

Mmaps any camera viewpoint to
full RGB images

Can we implicitly represent a full 3D scene, including its fine-grained
geometry (e.g., surface occupancy) and appearance?



Basics: Volume Rendering

https://coronarenderer.freshdesk.com/support/solutions/arti
cles/12000045276-how-to-use-the-corona-volume-grid-

https://en.wikipedia.org/wiki/Volume rendering



https://en.wikipedia.org/wiki/Volume_rendering
https://coronarenderer.freshdesk.com/support/solutions/articles/12000045276-how-to-use-the-corona-volume-grid-
https://coronarenderer.freshdesk.com/support/solutions/articles/12000045276-how-to-use-the-corona-volume-grid-

Volume Rendering: Scene Representation




Volume Rendering: Scene Representation

(,9,b)




Volume Rendering: Scene Representation

Each location (x, y, z) emits certain color r, g, b when viewed with direction d.
We represent point occupancy continuously as density d.

(R,G, B)




Volume Rendering: Scene Representation

Each location (x, y, z) emits certain color r, g, b when viewed with direction d.
We represent point occupancy continuously as density d.

x,9 2z d—->1,9,b,0

(R, G, B)




Volume Rendering: Ray Marching

Ray Marching: Integrate color and density of points along a ray (via discretization)
to render an RGB value. Render many points -> An image!

x,y,z,d>r1,9,b,0

(R, G, B)

\ Ray /
Marihing

This is
Differentiable!




Volume Rendering: Ray Marching

Neural Radiance Field (NeRF): Train a neural network to represent the ray marching
volume rendering function: Fg(x,y,z,d) = (r, g, b, ). Each NN encodes a 3D scene.

x,y,z,d>r1,9,b,0

(R, G, B)

\ Ray /
Marihing

This is
Differentiable!




NeRF': Representing Scenes as
Neural Radiance Fields for View Synthesis

Ben Mildenhall'*  Pratul P. Srinivasan'* Matthew Tancik!*
Jonathan T. Barron? Ravi Ramamoorthi® Ren Ng!

'UC Berkeley 2Google Research  *UC San Diego



Train a Single Neural Network to Reproduce the
Ground Truth Images of a Scene

Volume rendering of ~ Ground truth
MLP colors/densities image

s 1

0N A
ol

a/ 'Y

Fo(x,y,2z,d) = (r,g,b,0)

Adapted from material from Pratul Srinivasar



NeRF Overview

5D Input Output Volume Rendering
Position + Direction Color + Density Rendering Loss
(x.0.2,0,¢)—> I]I]['—» (RGBo)
- F Ray 2 SRR gl )
2 i / " W-st "

@ Ray 2

|| -t

2
2

Ray Distance

(c) (d)



NeRF: Optimization

The volume density o(x) can be interpreted as the differential probability of a
ray terminating at an infinitesimal particle at location x. The expected color
C(r) of camera ray r(t) = o + td with near and far bounds ¢, and ¢; is:

t s ¢
C(r) = / T(t)o(r(t))c(r(t),d)dt, where T'(t) = {:}{p(— / J(r(s))ds). (1)
Jt, Jt,
Solution: Numerically estimate the integral (quadrature).

1. Discretize the ray into bins.

2. Sample pointin each bin.

3. Compute numerical integration.



NeRF: Optimization

The volume density o(x) can be interpreted as the differential probability of a
ray terminating at an infinitesimal particle at location x. The expected color
C(r) of camera ray r(t) = o + td with near and far bounds ¢, and ¢; is:

C(r) = /faj T(t)o(r(t))c(r(t),d)dt, where T'(t) = exp (— [ G‘(I‘(S))dﬁ) . (1)

T “ TR

Solution: Numerically estimate the integral (quadrature).
1. Discretize the ray into bins.
2. Sample pointin each bin.
3. Compute numerical integration.

N i—1
é’(r) — Z'E(l —exp(—0o;d;))ei, where T; = exp| — Zgjéj

i=1 j=1



Key Insight 1: Positional Encoding

Challenge: Having Fyoperate directly on (x, y, z, d) performs poorly.

Solution: Positional encoding

,sin(2%17p), cos(24mp) )

Glound Tlllth Complete Model No View Dependence No Positional Encodlng



Key Insight 2: Hierarchical Volume Rendering

Challenge: Waste of compute on empty space.

Solution: coarse-to-fine prediction.

N
Ce(r) = Zwiﬂi ,  w; = T;(1 —exp(—0id;)) . (5)
i=1
Normalizing these weights as @; = wi/32" w; produces a piecewise-constant

PDF along the ray. We sample a second set of Ny locations from this distribution
using inverse transform sampling, evaluate our “fine” network at the union of the
first and second set of samples, and compute the final rendered color of the ray
C 7(r) using Eqn. 3 but using all N.+ N; samples. This procedure allocates more






NeRF encodes convincing view-dependent effects using

directional dependence
L-\‘_*% —
L\ 4

Slide credit: Noah Snavely



NeRF encodes convincing view-dependent effects using
directional dependence

Slide credit: Noah Snavely



NeRF encodes detailed scene geometry with occlusion effects

Slide credit: Noah Snavely



NeRF encodes detailed scene geometry

Slide credit: Noah Snavely



Space vs. Time Tradeoff

The biggest practical tradeoffs between these methods are time versus space.
All compared single scene methods take at least 12 hours to train per scene. In
contrast, LLFF can process a small input dataset in under 10 minutes. However,
LLFF produces a large 3D voxel grid for every input image, resulting in enor-
mous storage requirements (over 15GB for one “Realistic Synthetic” scene). Our
method requires only 5 MB for the network weights (a relative compression of
3000x compared to LLFF), which is even less memory than the input images
alone for a single scene from any of our datasets.



3D Gaussian Splatting (kerbl and Kopanas et al., 2023)

Key idea: 3D Gaussians as an explicit representation of a scene

* Train Gaussian blobs via inverse rendering (similar to NeRF)

» Store scene as Gaussian blobs instead of neural network weights (NeRF)
* Much faster during inference, but takes a lot of space to store

NeRF Gaussian Splatting

@ N (’cﬁ




Summary: 3D Representation and Neural Rendering

e Representation matters a lot for 3D computer vision tasks (detection,
reconstruction, etc.)

e 3D Voxels are intuitive representation of space but struggles with high-
resolution shape and large scenes

e Implicit function emerge as a new paradigm in representing scenes with
Neural Networks

e Neural volume rendering: represent scenes implicit as point-direction to
color-density neural networks. Photorealistic rendering, slow to train and
evaluate

e More recent works on trading off space and time
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