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e 2D Computer Vision (Continued)
3D Vision: Representations and Neural Rendering



Computer Vision Tasks

Semantic Object Instance
Segmentation Detection Segmentation

Classification

CAT GRASS, , DOG, DOG, CAT DOG, DOG, CAT

\ , \ TREE,SKY , _ )
Y Y A

No spatial extent No objects, just pixels Multiple Object Itsimage i+ CCORublic dorain


https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Semantic Segmentation ldea: Fully Convolutional

Downsampling: Design network as a bunch of convolutional layers, with Upsampling:
Pooling, strided downsampling and upsampling inside the network! 2?7
convolution Med-res: Med-res: —

D, x H/4 x W/4 D, x H/4 x wm%

Low-res:
LA D; x H/4 x W/4 LA

Input: High-res: High-res: CXxHxW Predictions:
3XxHxW D, x H/2 x W/2 D, x H/2 x W/2 HxW

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015
Noh et al, “Leaming Deconvolution Network for Semantic Segmentation”, ICCV 2015



Learnable Upsampling: Transposed Convolution

3 x 3 transpose convolution, stride 2 pad 1

Input: 2 x 2

v

Input gives
weight for
filter

Output: 4 x 4

Sum where
output overlaps

Filter moves 2 pixels in
the output for every one
pixel in the input

Stride gives ratio between
movement in output and
input



Semantic Segmentation: U-Net

128 64 64 2
ir:'lna?ng > > > > OUIpLK .
tle Ao o of cegmentation |Idea: Concatenate feature
SEE maps from the downsampling
2k stage with the features in the

256 128

upsampling stage.

2002

L
I
1987 !

1962 :

Very commonly used today!

copy and crop

512 256 '
5]‘:':' =»conv 3x3, ReLU

“.p- ¥ max pool 2x2
o 4 up-conv 2x2
=» conv 1x1

Ronneberger O, Fischer P, Brox T, 2015



Semantic Segmentation

Label each pixel in the
image with a category
label

Don’t differentiate
iInstances, only care about
pixels



https://pixabay.com/p-1246693/?no_redirect
https://pixabay.com/en/cows-two-cows-dairy-agriculture-1264546/

Object Detection

Object Instance
Detection Segmentation

——

DOG, DOG, CAT DOG, DOG, CAT

- Y,

Y
Multiple Object




Object Detection: Multiple Objects . ooe heede

different number of outputs!

= 1“-;;- CAT: (X, ¥, W, h) 4 humbers
= ‘—“”* {. 4
A= gl
\WJ\ u\— - DOG: (x,y,w, h)
— eV DOG: (x,y, w, h) 12 numbers
I ‘\ 2 | CAT: (x, ¥, w, h)

== 4_\\ w 1 sl.,_x. DUCK: (x, y, w, h) Many
== U’l DUCK: (x, ¥, W, h) humbers!

L-‘h’"




Region Proposals: Selective Search

e Find “blobby” image regions that are likely to contain objects
e Relatively fast to run; e.g. Selective Search gives 2000 region
proposals in a few seconds on CPU

A 4

Alexe et al, “Measuring the objectness of image windows”, TPAMI 2012

Uijlings et al, “Selective Search for Object Recognition”, IJCV 2013

Cheng etal, “‘BING: Binarized normed gradients for objectness estimation at 300fps”, CVPR 2014
Zitnick and Dollar, “‘Edge boxes: Locating object proposals from edges”, ECCV 2014



“Slow” R-CNN

Predict “corrections” to the Rol: 4 numbers: (dx, dy, dw, dh)

Bbox reg || SVMs Classify regions with Problem: Very slow!

Bbox reg || SVMs
Bbox reg SVMs ‘
Conv
Net
Conv

Conv
Net

. Need to do ~2k

independent forward

Forward each :
passes for each image!

region through
ConvNet Idea: Pass the

ﬁ _ _ image through
Warped image regions

_ convnet before
(224x224 pixels) cropping! Crop the

Regions of Interest .y feature instead!
(Rol) from a proposal

method (~2k)

Girshick et al, “Rich feature hierarchies for accurate object detection and
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with pemission.


https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

Fast R-CNN

“Slow” R-CNN
SVMs
SVMs
SVMs
/ / “conv5” features Conv
t Conv Net
“ ” Run whole image Conv el
Backbone | through ConvNet
network: .
AlexNet, VGG, 4  ConvNet
ResNet, etc Input image

Input image

Girshick, “Fast R-CNN”, ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission.


https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

Fast R-CNN

Object Linear +

Linear | Box offset

category softmax
Regions of CNN Per-Region Network “Slow” R-CNN
SVMs
Interest (Rols) —

L7 t Crop + Resize features
from a proposal LT L7 P SVMs

. Conv
— iﬁ “conv5” features
method Conv Net

Run whole image Conv
through ConvNet

“Backbone”
network:
AlexNet, VGG,

ResNet, etc  £1 - Input image

Input image

Girshick, “Fast R-CNN”, ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission.


https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

Cropping Features: Rol Pool

N grid cells

“Snap” to

Project proposa
onto features

Divide into 2x2
grid of (roughly)
equal subregions

Max-pool within
each subregion

Input Image
(e.g. 3 x640 x 480)

Girshick, “Fast R-CNN”, ICCV 2015.

Image features: C x H x W
(e.g. 512 x 20 x 15)

Problem: Region features slightly misaligned

v

Region features
(here 512 x 2 x 2;
In practice e.g512x 7 x 7)

Region features always the
same size even if input
regions have different sizes!



Cropping Features: Rol Align

11 - ”'
Project proposaNNO shapping
onto features

Input Image
(e.g. 3 x640 x 480)

Image features: C x Hx W
(e.g. 512 x 20 x 15)

He et al, “Mask R-CNN”, ICCV 2017



Sample at regular points

Cropping Features: Rol Align in each subregion using

« ing”l Dbilinear interpolation
ﬁct proposaNNO e

onto features

0ee

XIIX:
o|j0o0

Input Image
(e.g. 3 x640 x 480)

Image features: C x Hx W
(e.g. 512 x 20 x 15)

He et al, “Mask R-CNN”, ICCV 2017



Sample at regular points

Cropping Features: Rol Align in each subregion using

« ing”l Dbilinear interpolation
ﬁct proposaNNO Snapping - §
~

onto features i ' fLERS12 | f,eR5™
= (X1,Y¥1) (x2,Y1)
T -1 |- ® (x.y)
[ 9 |__|< d f12€R512 f22€R512
| | N \~
I I ~ 4 (X1,Y2) (X2,Y2)
—— >
I I
| i | i Feature f,, for point (x, y)
is a linear combination of
Input Image Image features: C x Hx W features at its four
(e.9. 3 x640 x 480) (e.g. 512 x 20 x 15) neighboring grid cells:

He et al, “Mask R-CNN”, ICCV 2017

Jay = Zz‘z,j=1 fi,jmax(0,1 — |z — z;|) max(0, 1 — |y — y;)



Cropping Features: Rol Align

onto features

Sample at regular points
in each subregion using

« ing”l Dbilinear interpolation
Act proposaNNO e

0

0

Max-pool within
each subregion

v

o
o

o
o

Input Image
(e.g. 3 x640 x 480)

He et al, “Mask R-CNN”, ICCV 2017

Image features: C x Hx W
(e.g. 512 x 20 x 15)

Region features
(here 512 x 2 x 2;
In practice e.g512x 7 x 7)



R-CNN vs Fast R-CNN

Test time (seconds)

Training timE (HOU rS) B ncluding Region propos... [l Excluding Region Propo...
R-CNN R-CNN
SPP-Net 4.3
PP-
SPP-Net r2.3
Fast R-CNN l

2.3

Fast R-CNN
0 25 50 75 100 0.32

Girshick et al, “Rich feature hierarchies for accurate object detection and semantic segmentation”, CVPR 2014.
He et al, “Spatial pyramid pooling in deep convolutional networks for visual recognition”, ECCV 2014
Girshick, “Fast R-CNN”, ICCV 2015



R-CNN vs Fast R-CNN

Training time (Hours)

R-CNN R-CNN

SPP-Net
SPP-Net

Fast R-CNM

Fast R-CNM
0 25 50 75 100

Girshick et al, “Rich feature hierarchies for accurate object detection and semantic segmentation”, CVPR 2014.
He et al, “Spatial pyramid pooling in deep convolutional networks for visual recognition”, ECCV 2014
Girshick, “Fast R-CNN”, ICCV 2015

Test time (seconds)

B ncluding Region propos... [l Excluding Region Propo...

—

r 4.3
2.3
N 23 Problem:
032 ¥ Runtime dominated
; . y region,_proposals!



Faster R-CNN:

Make CNN do proposals!

Insert Region Proposal
Network (RPN) to predict
proposals from features

Otherwise same as Fast R-CNN:
Crop features for each proposal,
classify each one

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015 il

Figure copyright 2015, Ross Girshick; reproduced with permission

propc:sals,/
Region Proposal Network
feature map '

e



Faster R-CNN:

Make CNN do proposals!

Jointly train with 4 losses:

1. RPN classify object / not object

2. RPN regress box coordinate
residuals

3. Final classification score
(object classes)

4. Final box coordinates

propc:sals,/ /

Region Proposal Network

V-4

feature map

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015 il - e

Figure copyright 2015, Ross Girshick; reproduced with permission



Faster R-CNN:

Make CNN do proposals!

R-CNN Test-Time Speed
R-CNN
SPP-Net
Fast R-CNN 2.3

Faster R-CNN| 0.2

0 15 30

45



Which prediction to pick?

Problem: Detectors almost always generate
more box predictions than the number of
objects in the image!

E.g., 300 is an upper bound how many objects
we wish to detect.

We need to remove the redundant
predictions!




Non-Max Suppression (NMS)

Intuitively: locally pick the box that has the
highest “objectless” or class score and
suppress other boxes that have significant
overlap with the chosen box

Step 1: Pick highest-score prediction box
Step 2: Remove bounding boxes with
Intersection over Union (loU) scores higher
than certain threshold (e.g., 0.5)

Go backtostep 1



Single-Stage Object Detectors: YOLO / SSD / RetinaNet

Input image
3xHxXW

Redmon et al, “You Only Look Once:

Unified, Real-Time Object Detection”, CVPR 2016

Liu et al, “SSD: Single-Shot MultiBox Detector”, ECCV 2016
Lin et al, “Focal Loss for Dense Object Detection”, ICCV 2017

Divide image into grid
7x7
Image a set of base boxes

centered at each grid cell
Here B=3

Within each grid cell:

- Regress from each of the B
base boxes to a final box
with 5 numbers:

(dx, dy, dh, dw, confidence)

- Predict scores for each of
C classes (including
background as a class)

- Looks a lot like RPN, but
category-specific!

Output:
Ix7x(5*B+C)



Object Detection: Lots of variables ...

Backbone “Meta-Architecture” Takeaways

VGG16 Single-stage: YOLO / SSD but more accurate

ResNet-101 Hybrid: R-FCN |
Inception V2 SSD is much faster but

Inception V3 Image Size not as accurate
Inception # Region Proposals

ResNet Bigger / Deeper
MobileNet backbones work better

Huang et al, “Speed/accuracy trade-offs for modern convolutional object detectors”, CVPR 2017
Zou et al, “Object Detection in 20 Years: A Survey”, arXiv 2019

R-FCN: Dai et al, “R-FCN: Object Detection via Region-based Fully Convolutional Networks”, NIPS 2016

Inception-V2: loffe and Szegedy, “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift’, ICML 2015
Inception V3: Szegedy et al, “Rethinking the Inception Architecture for Computer Vision”, arXiv 2016

Inception ResNet: Szegedy et al, “Inception-V4, Inception-ResNet and the Impact of Residual Connections on Learning”, arXiv 2016
MobileNet: Howard et al, “Efficient Convolutional Neural Networks for Mobile Vision Applications”, arXiv 2017



Instance Segmentation

Instance
Segmentation

-~
)

DOG, DOG, CAT

Y
Multiple Object



Object Detection:
Faster R-CNN

Object
Detection

DOG, DOG, CAT

propcsals/ /
Region Proposal Network N
feature map '
CNN
y ,

———rr 7




Instance Segmentation:

Mask R-CNN S =
| - | ”paoling
Instance F”DHDSV /

Add a small mask
Segmentation Region Proposal Ne

network that operates
twark predicts a 28x28
eatlure map

on each Rol and

DOG, DOG, CAT —— oy

He et al, “Mask R-CNN”, ICCV 2017



Mask R-CNN

r—

He et al, “Mask R-CNN”, arXiv 2017

y/

7]
/] /

A 1
AN

1
- //

1
A | _—
/:/ L %
W/ Rolign | [}/ GO
%

256 x 14 x 14 256 x 14 x 14

Conv

Classification Scores: C
Box coordinates (per class): 4 * C

Predict a mask for
each of C classes

Cx28x 28




Mask R-CNN: Example Mask Training Targets




Mask R-CNN: Example Mask Training Targets




Mask R-CNN: Example Mask Training Targets




Mask R-CNN: Example Mask Training Targets




Mask R-CNN: Very Good Results!

He et al, “Mask R-CNN”, ICCV 2017



Mask R-CNN
Also does pose

He et al, “Mask R-CNN”, ICCV 2017



RCNN Series

 R-CNN: Per-region detection, hand-

crafted region proposal :

e Fast R-CNN: Shared feature extraction, ' '
Rol Pooling, Anchors w// /

* Faster R-CNN: Region Proposal Region Proposal Networ

 Mask R-CNN: Instance Segmentation

Networks, Rol Align '
4

A

Detectors are becoming more complex! L R
Many hyperparameters to tune for each

components ...

Can we simplify it?

pooling



End-to-End Object Detection with Transformers

Nicolas Carion*, Francisco Massa*, Gabriel Synnaeve, Nicolas Usunier,
Alexander Kirillov, and Sergey Zagoruyko

)

Facebook Al

Key ideas:
* Detection as a set-to-set prediction problem
* Use Transformer to model the detection problem



DETR (DEtection TRansformer)

backbone h encoder

class,
box

FFN (>

FFN | M°
transformer | object

decoder

TIIR

transformer
encoder

class,

FFN — box

|
ODooooo--—-0

- - - - - - - - e = - -




DETR (DEtection TRansformer)

encoder

class,
box

FFN (>

FFN > "°

transformer object

decoder

transformer
encoder

FEN > class,
box

4 V4 hxw




DETR (DEtection TRansformer)

"""""""" I T T T T T T T T T T T T T T T O T T T T T T T T T T T S T T T T T T O T T T T T T T T T T T T T T T I
I
|
|
[
|

backbone || encoder prediction heads | p—

object queries

! 1

| §

i i I

! i | T/\ — 1 [
| |: :, box
[ ! [

I " :| FFN » 1o
—___ : transformer \ transformer | object
€T |I

i encoder ! decoder EEN > cLaosxs
i Fr s re 1 ! ‘ I%I IEI ‘ —~
: oooood-0 | =
| I

- - - - - - - - e = - -

A fixed set of learnable embeddings,
e.g., 300 size-N vectors
Q: Why?



DETR (DEtection TRansformer)

backbone || encoder prediction heads | p—

"""""""" I T T T T T T T T T T T T T T T O T T T T T T T T T T T S T T T T T T O T T T T T T T T T T T T T T T I
I
I
I
[
|

|

|

l I

: :: ; FEN > class,
: |: box

| ! '
' i FFN || "°

: transformer transformer | Object

decoder

doda

object queries

encoder

FEN > class,
box

no

FFN = object

3 O L S
ODooooo--—-0

- - - - - - - - e = - -

A fixed set of learnable embeddings,

I = .
T | e.g., 300 size-N vectors
= _'_? BE ] ___, Anchoris an object?
Chj L 3 Conv X 2015 Q: Why?
Feae 5==-4n— A: Break the symmetry of predictions, so
LR R R A . e . .
‘ | - At each point, predict that each prediction is different.
Fags Tebtures whe:]her thetc_orrespor;qm? .
(eg.512) ey et Analogous to anchors in *R-CNN, but no

spatial location



DETR (DEtection TRansformer)

backbone i: encoder

decoder /| prediction heads |

|
(ﬁ\ FEN > CIbaos;’
|

\\\~ FFN | M°
transformer |\ object

decoder

|

: FEN > class,
n\ box
]

}

ﬁ 15 ﬁl ﬁ ! FFN > 0

I

|

transformer
encoder

| S N L S

ooooog---0j
Problem: We don’t know which query corresponds to which ground truth during
training! We can’t predetermine a fixed order like in sequence decoding.

object

object queries




DETR (DEtection TRansformer)

decoder /| prediction heads |

|
(ﬁ\ FEN > CIbaos;’
|

|
|
|
|
|
|
|
\ |
|
no -
FFN > . 1 z
transformer object | |i Y
| | ”@
| S X
|
|
I
|
|
|
|
|

backbone i: encoder

transformer
encoder

decoder

|

: FEN s class,
n\ box
|

|

R

|

|

object

| S N L S
ooooog---0j
object queries
Problem: We don’t know which query corresponds to which ground truth during
training! We can’t predetermine a fixed order like in sequence decoding.
Solution: Set matching loss --- train your model to generate a set of predictions that
matches ground truth regardless of its order.




Hangarian Loss (Set Matching Loss)

bbox=...
cls=...

bbox=...
— cls=...

Prediction Ground Truth

Goal: minimize bipartite distance

Problem: each query should be trained to match one ground truth. We
don’t know the matching!



Hangarian Loss (Set Matching Loss)

bbox=...
cls=...

bbox=...

 — cls=...

3

Prediction Ground Truth

Goal: minimize bipartite distance

1. Hungarian matching: find the minimum-loss bipartite matching between
prediction and ground truth given the current prediction.

2. Minimize matched loss: Given the matched prediction and ground truth,
minimize the detection loss (bounding box distance and classification CE loss)



DETR vs. FasterRCNN

Model GFLOPS/FPS #params AP AP50 AP75 APS APM APL

Faster RCNN-DC5h 320/16 166M 39.0 60.5 42.3 21.4 43.5 52.5
Faster RCNN-FPN 180/26 42M  40.2 61.0 43.8 24.2 43.5 52.0
Faster RCNN-R101-FPN 246/20 60M  42.0 62.5 459 25.2 45.6 54.6
Faster RCNN-DC5+ 320/16 166M 41.1 61.4 44.3 22.9 45.9 55.0
Faster RCNN-FPN+ 180/26 42M  42.0 62.1 45.5 26.6 45.4 53.4
Faster RCNN-R101-FPN+ 246/20 60M  44.0 63.9 47.8 27.2 48.1 56.0
DETR 86/28 41M  42.0 62.4 44.2 20.5 458 61.1
DETR-DC5 187/12 41M 433 63.1 45.9 22.5 47.3 61.1
DETR-R101 152/20 60M 43.5 63.8 46.4 21.9 48.0 61.8
DETR-DC5-R101 253/10 60M  44.9 64.7 47.7 23.7 49.5 62.3

Similar size, simpler, and (mostly) better!

We are still detecting a fixed number of object with finite vocabulary ...



Segment Anything

Alexander Kirillov}>*  Eric Mintun?  Nikhila Ravi’?> Hanzi Mao? Chloe Rolland®  Laura Gustafson®
Tete Xiao®  Spencer Whitehead  Alexander C. Berg  Wan-YenLo  Piotr Dollir*  Ross Girshick?
! project lead Zjoint first author 3equal contribution 4directional lead

Meta Al Research, FAIR

Key ideas:
* Query-based prediction instead of fixed set-to-set prediction
e Large-scale training data with auto-labeling



Foundation Image Segmentation Models

SegmentAnything (Meta Al, 2023)

Try it yourself! https://segment-anything.com/demo#



Foundation Image Segmentation Models

SegmentAnything (Meta Al, 2023)

Try it yourself! https://segment-anything.com/demo#



Foundation Image Segmentation Models

, score

—€9—> mask decoder —

image A A A
| | |
encoder

/ conv\ prompt encoder

! 1 !

mask  points  box text

, score

, score

imag
embedding

valid masks

No more learned embeddings. Query
anything you want!

SegmentAnything (Meta Al, 2023)



Foundation Image Segmentation Models

3M
2M
™

SA-1B

I—) annotate
@ masks in dataset 1

model ta

L e a—

Segment Anything 1B (SA-1B):

* 1+ billion masks

400X

* 11 million images

. — L o * privacy respecting h g;

Openlmages V5 LVIS coco ADE20k * licensed images

SegmentAnything (Meta Al, 2023)



Summary: Segmentation and Detection

e Object segmentation and detection are most common application of
computer vision research.

e They have driven decades of advancement in Autonomous Vehicles,
Robotics, traffic analytics, and basically any devices that have camera and
adequate computing power (e.g., Smart Phone)

e Segmentation and Detection with DNNs evolved through similar paths
(sliding window, feature sharing, input-output, alignment etc.)

e We have a new wave of foundation detection and segmentation models
driven by Transformer + ConvNet + large dataset



Beyond 2D Object Detection...



Object Detection + Captioning
= Dense Captioning

people are in the background man wearing a black shirt
light on the wall sign on the wa - N i red shirt on a man jelephant is standing
J “ man weanng a white shirt large green I elephant is brown
: ; trees g Al
. - = & AT 5
man with YU O :'3~ N roof of a
black hair i Bigdrt sy o -ﬁ&w building
man Sining trunk of an S z - 4 ~ 4 LY
on a table white laptop elephant qr?'cn trees
on a table nihe
) K background
rocks on
man wearing ol svtézlng the ground ‘s
blue jeans on a table : - ,
woman ball is ,
_ wearing a e
blue jeans on black shirt
the ground dis leg of an
chair is brown - g . elephant

shadow on
elephant is standing the ground

\an sitting on a bench man wearing black shirt

N b ground is brown
floor is brown

Johnson, Karpathy, and Fei-Fei, “DenseCap: Fully Convolutional Localization Networks for Dense Captioning”, CVPR 2016
Figure copyright IEEE, 2016. Reproduced for educational purposes.



Objects + Relationships = Scene Graphs

108,077 Images
5.4 Million Region Descriptions

1.7 Million Visual Question Answers
3.8 Million Object Instances
2.8 Million Attributes

2.3 Million Relationships
Everything Mapped to Wordnet Synsets

©VISUALGENOME

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz,
Stephanie Chen et al. "Visual genome: Connecting language and vision using
crowdsourced dense image annotations." Intemational Journal of Computer Vision 123,
no. 1 (2017): 32-73.



Scene Graph Prediction

Object
Proposals

Graph
Inference

Xu, Zhu, Choy, and Fei-Fei, “Scene Graph Generation by Iterative Message Passing”, CVPR 2017

Figure copyright IEEE, 2018. Reproduced for educational purposes.




3D Object Detection

2D Object Detection:
2D bounding box
(X, ¥y, w, h)

3D Object Detection:
3D oriented bounding box

(x,¥,z,w,h,|,r,p,y)
Simplified bbox: no roll & pitch

Much harder problem than 2D
object detection!

This image is CCO public domain


https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

3D Object Detection: Simple Camera Model

A point on the image plane
corresponds to a ray in the 3D

space
: A 2D bounding box on an image
=t‘~ ! Y‘b isa in the 3D space
S

/A N\

“v

2 ‘- Localize an object in 3D:
> *PuN . .

<X < bRt The object can be anywhere in

) E the camera viewing frustrum!

-
4:“7 QV

Image source: https:/www.pcmag.com/encyclopedia_images/_FRUSTUM.GIF



3D Object Detection: Monocular Camera

Candidate sampling in 3D space

Scoring

& -
Faster R-CNN N_W.m
il =

Proposals

- -

2D candid.ﬁe boxes
- Same idea as Faster RCNN, but proposals are in 3D
- 3D bounding box proposal, regress 3D box parameters + class score

Chen, Xiaozhi, Kaustav Kundu, Ziyu Zhang, Huimin Ma, Sanja Fidler, and Raquel
Urtasun. "Monocular 3d object detection for autonomous driving." CVPR 2016.



How to Represent 3D Data?

m
™%
e w




3D Representations

Occupancy Grid Point Cloud Surface Mesh Implicit Functions
[h, w, I] [num_pts, 3] (edge list, face (x,y, z-> d)
list, vertex list)

Figure credit: Autonomous Vision Group



3D Occupancy Grid

Represent the “occupancy” of objects in 3D space with a 3D voxel grid
.« Ve{o,1}EWL]

e Just like segmentation in Masked-RCNN, but in 3D!

e Conceptually simple

* Not trivial to scale to high-resolution shapes



Predicting 3D Voxel Grid with 3

D ConvNet

'F@(

1 3D Conv D T-Conv

L= e

‘u@g}q

3D Convolutional LSTM

single view

T views

Cho et al. 2016, 3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction



Detection + Reconstruction: Mesh R-CNN

Input Image 2D Recognition

- "ﬁ? :

~= T

3D Meshes 3D Voxels

Gkioxari et al., Mesh RCNN, ICCV 2019



Detection + Reconstruction: Mesh R-CNN

Cubified Mesh

Box/Mask Branch > box, class, 2D mask

\ 4

w,
"\

.

N

Voxel Branch

A4

A4
5 )
1y
"
'l
0
v' ¥
N4
\
]
24 A

RolAlign

Vert Align Graph conv Refine
Final Mesh

Vert Align Graph conv Refine
N

Mesh Refinement Branch

Gkioxari et al., Mesh RCNN, ICCV 2019



3D Representations

Occupancy Grid Point Cloud Surface Mesh Implicit Functions
[h, w, I] [num_pts, 3] (edge list, face (x,y, z-> d)
list, vertex list)

Figure credit: Justin Johnson



What is an implicit representation for 3D data?

Example: representing a 3D occupancy grid

Explicit: A tensor of 3D voxel grid V € {0, 1} HW.L]

Implicit: A function that maps locations to occupancies
Fg:x,y,z - {0,1}




What is an implicit representation for 3D data?

Example: representing a 3D occupancy grid

Explicit: A tensor of 3D voxel grid V € {0, 1} HW.L]

Implicit: A function that maps locations to occupancies
Fg:x,y,z - {0,1}

Implicit representation describes 3D shapes
using mathematical functions rather than
explicit voxels, points, or mesh.
Example: Signed Distance Function

Fg: R3 > R



What is an implicit representation for 3D data?

Example: representing a 3D occupancy grid

Explicit: A tensor of 3D voxel grid V € {0, 1} HW.L]

Implicit: A function that maps locations to occupancies
Fg:x,y,z = {0,1}

d=0.8 d=-0.4
Implicit representation describes 3D shapes How far is a point
using mathematical functions rather than from the nearest
explicit voxels, points, or mesh. surface, and is the
Example: Signed Distance Function point inside or
Fo: RN - R outside of the shape?

SDF distance map



What is an implicit representation for 3D data?

o » o * Decision
__ boundary
e of implicit
. surface
o L
e o L .
* SDF >0
L4 .
L] L

. -
(@ SDF <0

()

DeepSDF representation applied to the Stanford Bunny: (a) depiction of the underlying implicit surface
SDF = 0 trained on sampled points inside SDF < 0 and outside SDF > 0 the surface, (b) 2D cross-section of
the signed distance field, (c) rendered 3D surface recovered from SDF = 0.

Can we train NNs to represent more than just geometry of a 3D shape?

Park et al., DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation



Implicit 3D Representation: Beyond Geometry

fo(viewpoint) = Image

Goal: Learn an implicit 3D
representation function that

maps any camera viewpoint to
full RGB images

Can we implicitly represent a full 3D scene, including its fine-grained
geometry (e.g., surface occupancy) and appearance?



Problem: Novel View Synthesis

4 N ) a R Target view

Source % m Target
views @ pose _
oo Synthesize
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Basics: Volume Rendering

https://coronarenderer.freshdesk.com/support/solutions/arti
cles/12000045276-how-to-use-the-corona-volume-grid-

https://en.wikipedia.org/wiki/Volume rendering
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Volume Rendering: Scene Representation




Volume Rendering: Scene Representation

(R,G, B)




Volume Rendering: Scene Representation

Each location (x, y, z) emits certain color r, g, b when viewed with direction d.
We represent point occupancy continuously as density d.

x,9 2z, d—->1r,9,b,0

(R,G, B)




Volume Rendering: Scene Representation

Each location (x, y, z) emits certain color r, g, b when viewed with direction d.
We represent point occupancy continuously as density d.

(R, G, B)




Volume Rendering: Ray Marching

Ray Marching: Integrate color and density of points along a ray (via discretization)
to render an RGB value. Render many points -> An image!

(R, G, B)

\ Ray /
Marihing

This is
Differentiable!




Volume Rendering: Ray Marching

Idea: Train a neural network to represent the ray marching volume rendering function:
Fo(x,y,z,d) - (r,g,b,d). Each NN encodes a 3D scene.

(R, G, B)

\ Ray /
Marihing

This is
Differentiable!




NeRF': Representing Scenes as
Neural Radiance Fields for View Synthesis

Ben Mildenhall'*  Pratul P. Srinivasan'* Matthew Tancik!*
Jonathan T. Barron? Ravi Ramamoorthi® Ren Ng!

'UC Berkeley 2Google Research  *UC San Diego



Train a Single Neural Network to Reproduce the Ground Truth
Images of a Scene

Volume rendering of ~ Ground truth
MLP colors/densities image

’ 2
1
\
N
o

Fo(x,y,z,d) = (r,g,b,0)

Adapted from material from Pratul Srinivasar



NeRF Overview

5D Input Output Volume Rendering
Position + Direction Color + Density Rendering Loss
(x.0.2,0,¢)—> I]I]['—» (RGBo)
- F Ray 2 SRR gl )
2 i / " W-st "

@ Ray 2

|| -t

2
2

Ray Distance

(c) (d)



NeRF: Optimization

The volume density o(x) can be interpreted as the differential probability of a
ray terminating at an infinitesimal particle at location x. The expected color
C(r) of camera ray r(t) = o + td with near and far bounds ¢, and ¢; is:

C(r) = /faj T(t)o(r(t))c(r(t),d)dt, where T'(t) ={3};p(—/; U(r(S))ds). (1)

Solution: Numerically estimate the integral (quadrature).
1. Discretize the ray into bins.
2. Sample pointin each bin.
3. Compute numerical integration.

— ZE(I —exp(—0o;d;))ei, where T; = exp| — Zgjc?j

i=1 j=1



Key Insight 1: Positional Encoding

Challenge: Having Fyoperate directly on (x, y, z, d) performs poorly.
Solution: Positional encoding

,sin(2%17p), cos(24mp) )

-\ “ -~

S S
UM A S
. NN

Ground Truth Complete Model No View Dependence No Positional Encodlng



Key Insight 2: Hierarchical Volume Rendering

Challenge: Waste of compute on empty space.

Solution: coarse-to-fine prediction.

N
Ce(r) = Zwiﬂi ,  w; = T;(1 —exp(—0id;)) . (5)
i=1
Normalizing these weights as @; = wi/32" w; produces a piecewise-constant

PDF along the ray. We sample a second set of Ny locations from this distribution
using inverse transform sampling, evaluate our “fine” network at the union of the
first and second set of samples, and compute the final rendered color of the ray
C 7(r) using Eqn. 3 but using all N.+ N; samples. This procedure allocates more






NeRF encodes convincing view-dependent effects using
directional dependence

Slide credit: Noah Snavely



NeRF encodes convincing view-dependent effects using
directional dependence

Slide credit: Noah Snavely



NeRF encodes detailed scene geometry with occlusion effects

Slide credit: Noah Snavely



NeRF encodes detailed scene geometry

Slide credit: Noah Snavely



3D Gaussian Splatting (Kerbl and Kopanas et al., 2023)

Key idea: 3D Gaussians as an explicit representation of a scene

* Train Gaussian blobs via inverse rendering (similar to NeRF)

e Store scene as Gaussian blobs instead of neural network weights (NeRF)
* Much faster during inference, but takes a lot of space to store

NeRF Gaussian Splatting

@ N (’cﬁ




Summary: 3D Representation and Neural Rendering

e Representation matters a lot for 3D computer vision tasks (detection,
reconstruction, etc.)

e 3D Voxels are intuitive representation of space but struggles with high-
resolution shape and large scenes

e Implicit function emerge as a new paradigm in representing scenes with
Neural Networks

e Neural volume rendering: represent scenes implicit as point-direction to
color-density neural networks. Photorealistic rendering, slow to train and
evaluate

e More recent works on trading off space and time



Next Time: Vision Language Models
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