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Deep Learning Application to Computer Vision
* Semantic Segmentation

* Object Detection

* |nstance Segmentation



Image Classification: A core task in Computer Vision

(assume given a set of possible labels)
{dog, cat, truck, plane, ...}

v

cat

This image by Nikita is
licensed under CC-BY 2.0


https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by/2.0/

Computer Vision Tasks

Semantic Object Instance
Segmentation Detection Segmentation

Classification

CAT GRASS, , DOG, DOG, CAT DOG, DOG, CAT

\ , \ TREE,SKY , _ )
Y Y A

No spatial extent No objects, just pixels Multiple Object Itsimage i+ CCORublic dorain


https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Semantic Segmentation

Semantic
Segmentation

GRASS, :
 TREE, SKY

Y

No objects, just pixels



Semantic Segmentation: The Problem

d At test time, classify each pixel of a new image.

TREE, SKY, ...

Paired training data: for each training image,
each pixel is labeled with a semantic category.



Semantic Segmentation ldea: Sliding Window

Full image
- < .‘ »,:‘\_




Semantic Segmentation ldea: Sliding Window

Full image

A v

Impossible to classify without context

Q: how do we include context?



Semantic Segmentation ldea: Sliding Window

Full image

A v

Q: how do we model this?



Semantic Segmentation ldea: Sliding Window

Classify center
Extractpatch  hixel with CNN

Full image = (= yiyl
R L Cow
... Cow
o Grass

The “sliding window” approach

Farabet et al, “Leaming Hierarchical Features for Scene Labeling,” TPAMI 2013
Pinheiro and Collobert, “Recurrent Convolutional Neural Networks for Scene Labeling”, ICML 2014



Semantic Segmentation ldea: Sliding Window

Classify center
Extractpatch  hixel with CNN

Full image = (= yiyl
R L Cow
... Cow
o Grass

Problem: Very inefficient! Not o S

reusing shared features between "ote g , ”
overlapping patches The “sliding window” approach

Farabet et al, “Leaming Hierarchical Features for Scene Labeling,” TPAMI 2013
Pinheiro and Collobert, “Recurrent Convolutional Neural Networks for Scene Labeling”, ICML 2014



Semantic Segmentation ldea: Sliding Window

Classify center
Extractpatch  hixel with CNN

Full image
' on Cow
: 'K X g
- / Cow
EE=I= Grass
Problem: Very inefficient! Not ‘]:.—_'. =

reusing shared features between

overlapping patches The “sliding window” approach

Farabet et al, “Leaming Hierarchical Features for Scene Labeling,” TPAMI 2013
Pinheiro and Collobert, “Recurrent Convolutional Neural Networks for Scene Labeling”, ICML 2014

Observation: lots of duplicate
computation in nearby pixels



Semantic Segmentation ldea: Convolution

Full image

¥, s

1
i

Al

LS L]

An intuitive idea: encode the entire image with conv net, and do semantic segmentation
on top.

Problem: classification architectures often reduce feature spatial sizes to go deeper, but
semantic segmentation requires the output size to be the same as input size.



Semantic Segmentation ldea: Fully Convolutional

Design a network with only convolutional layers
without downsampling operators to make predictions

for pixels all at once!

Conv

Conv

A

N

Convolutions:
DxHxW

Conv

argmax
—_—

Scores: Predictions:

CxHxW HxW

Loss: Pixel-wise cross entropy!



Semantic Segmentation ldea: Fully Convolutional

Design a network with only convolutional layers
without downsampling operators to make predictions
for pixels all at once!

A A iy

Conv Conv Conv argmax
—_  — — —_—

Y / Scores: Predictions:

CxHxW HxW

. Convolutions:
Problem: convolutions at DxHxW

original image resolution will
be very expensive ...



Semantic Segmentation ldea: Fully Convolutional

Design network as a bunch of convolutional layers, with
downsampling and upsampling inside the network!

Med-res: Med-res: —
D, x H/4 x W/4 D, x H/4 x W/4%
Low-res:
LA D, x H/4 x W/4 e
Input: High-res: High-res: CXxHxW Predictions:
3XxHxW D, x H/2 x W/2 D, x H/2 x W/2 HxW

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015
Noh et al, “Leaming Deconvolution Network for Semantic Segmentation”, ICCV 2015



Semantic Segmentation ldea: Fully Convolutional

Downsampling: Design network as a bunch of convolutional layers, with Upsampling:
Pooling, strided downsampling and upsampling inside the network! 2?7
convolution Med-res: Med-res: —

D, x H/4 x W/4 D, x H/4 x wm%

Low-res:
LA D; x H/4 x W/4 LA

Input: High-res: High-res: CXxHxW Predictions:
3XxHxW D, x H/2 x W/2 D, x H/2 x W/2 HxW

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015
Noh et al, “Leaming Deconvolution Network for Semantic Segmentation”, ICCV 2015



In-Network upsampling: “Unpooling”

Nearest Neighbor 05T, “Bed of Nails™ 1102

1|2 1l1]2]2 ]2 _|ojojo

3 | 4 (51544 34 31014
33|44 010040

Input; 2 x 2 Output: 4 x 4 Input: 2 x 2 Output: 4 x 4



In-Network upsampling: “Max Unpooling”

Max Pooling

) Max Unpoolin
Remember which element was max! P 9

Use positions from

11 21|6/|3 pooling layer olol 210
315|211 5 | 6 1] 2 ol1]o0/|o0
> » s m m —Pp 3 >
4 olo|lo0]|oO
! 2 2 ! 7|8 Rest of the network
Input: 4 x 4 Output: 2 x 2 Input: 2 x 2 Output: 4 x 4

Corresponding pairs of
downsampling and
upsampling layers




Learnable Upsampling

Recall: Normal 3 x 3 convolution, stride 1 pad 1

Input: 4 x 4 Output: 4 x 4



Learnable Upsampling

Recall: Normal 3 x 3 convolution, stride 1 pad 1

Dot product
between filter
and input

Input: 4 x 4 Output: 4 x 4



Learnable Upsampling

Recall: Normal 3 x 3 convolution, stride 1 pad 1

Dot product
between filter
and input

Input: 4 x 4 Output: 4 x 4



Learnable Upsampling

Recall: Normal 3 x 3 convolution, stride 2 pad 1

v

Input: 4 x 4

Dot product
between filter
and input

Output: 2 x 2

Filter moves 2 pixels in
the input for every one
pixel in the output

Stride gives ratio between
movement in input and
output



Learnable Upsampling: Transposed Convolution

3 x 3 transpose convolution, stride 2 pad 1

Input: 2 x 2 Output: 4 x 4



Learnable Upsampling: Transposed Convolution

3 x 3 transpose convolution, stride 2 pad 1

Input gives
weight for
filter

Input: 2 x 2 Output: 4 x4



Learnable Upsampling: Transposed Convolution

3 x 3 transpose convolution, stride 2 pad 1

Input: 2 x 2

v

Input gives
weight for
filter

Output: 4 x 4

Filter moves 2 pixels in
the output for every one
pixel in the input

Stride gives ratio between
movement in output and
input



Learnable Upsampling: Transposed Convolution

3 x 3 transpose convolution, stride 2 pad 1

Input: 2 x 2

v

Input gives
weight for
filter

Output: 4 x 4

Sum where
output overlaps

Filter moves 2 pixels in
the output for every one
pixel in the input

Stride gives ratio between
movement in output and
input



Learnable Upsampling: Transposed Convolution

3 x 3 transpose convolution, stride 2 pad 1

Input: 2 x 2

v

Input gives
weight for
filter

Output: 4 x 4

Sum where
output overlaps

Filter moves 2 pixels in
the output for every one
pixel in the input

Stride gives ratio between
movement in output and
input



Learnable Upsampling: 1D Example
Output

Input Filter

|

X
d
y
b
Z
Q: Why is it called

transpose
convolution?

- —
\
/
\

daX

ay

aZz

by

bz

Output contains
copies of the filter
weighted by the
input, summing at
where at overlaps in
the output



Semantic Segmentation ldea: Fully Convolutional

Downsampling: Design network as a bunch of convolutional layers, with Sszg(r;llilr:;r;?:strided
) . : ing insi |
Pooling, .strlded downsampling and upsampling inside the network! transpose convolution
convolution _ _
Med-res: Med-res:
D, x H/4 x W/4 D, x H/4 x W/4%

Low-res:

LA D; x H/4 x W/4 .-
Input: High-res: High-res: Predictions:

3xHXW D, x H2 x W/2 D, x H/2 x W/2 H % W

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015
Noh et al, “Leaming Deconvolution Network for Semantic Segmentation”, ICCV 2015



Semantic Segmentation: Summary




Semantic Segmentation: U-Net

128 64 64 2
ir:'lna?ng > > > > OUIpLK .
tle Ao o of cegmentation |Idea: Concatenate feature
SEE maps from the downsampling
2k stage with the features in the

256 128

upsampling stage.

2002

L
I
1987 !

1962 :

Very commonly used today!

copy and crop

512 256 '
5]‘:':' =»conv 3x3, ReLU

“.p- ¥ max pool 2x2
o 4 up-conv 2x2
=» conv 1x1

Ronneberger O, Fischer P, Brox T, 2015



Semantic Segmentation

Label each pixel in the
image with a category
label

Don’t differentiate
iInstances, only care about
pixels



https://pixabay.com/p-1246693/?no_redirect
https://pixabay.com/en/cows-two-cows-dairy-agriculture-1264546/

Object Detection

Instance
Segmentation

ol
e

DOG, DOG, CAT
J

(
> Object



Object Detection

Object Instance
Detection Segmentation

——

DOG, DOG, CAT DOG, DOG, CAT

- Y,

Y
Multiple Object




Object Detection: Single Object
(Classification + Localization)

Class Scores
Fully Cat: 0.9

Connected: Dog: 0.05
4096 to 1000 Car: 0.01

A Ebat
|

Faraa| [deean [

Fully

Connected:
4096 4006104  Box

Coordinates

Vector:

This image is CCO public domain

(X, y, w, h)


https://pixabay.com/p-1246693/?no_redirect
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Object Detection: Single Object

(Classification + Localization)

This image is CCO public domain

Fully
Connected:
4096 to 1000

Fully
Connected:
4096 4096 to 4

Vector:

Treat localization as a
regression problem!

Correct label:

Cat
Class Scores l
Cat:09 ___, Softmax
Dog: 0.05 Loss
Car: 0.01

Box
Coordinates — L2 Loss
(x,y,w, h) T

Correct box:
(X’, y!, W,, h’)


https://pixabay.com/p-1246693/?no_redirect
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Object Detection: Single Object Correct label:
(Classification + Localization)

Cat
Class Scores l
Fully Cat: 0.9 , Softmax

Connected: Dog: 0.05 Loss
4096 to 1000

Car: 0.01
=== 0| Multitask Loss 4 —Loss
3%y “ ) IO , ,: : P ! —r S . Fu"y
This image is CCO public domain VeCtor' Connected [

4096 4p96104  Box

Coordinates — L2 Loss
_ . (x,y,w, h) T
Treat localization as a

regression problem! Correct box:
(X’, y!, W,, h’)


https://pixabay.com/p-1246693/?no_redirect
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Object Detection: Multiple Objects

_—

\ A—‘\.\

Ay
m\wj\ il pl DOG: (x,y, w, h)

EL U CAT(x.y, w,h)
-

k
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T Mas

CAT: (x,y, w, h)

1 ' DUCK: (X, y, w, h)

4—\ \

L -
L-‘h’"

IE, ]

U{ DUCK: (x, y, w, h)



Object Detection: Multiple Objects . ooe heede

different number of outputs!

= 1“-;;- CAT: (X, ¥, W, h) 4 humbers
= ‘—“”* {. 4
A= gl
\WJ\ u\— - DOG: (x,y,w, h)
— eV DOG: (x,y, w, h) 12 numbers
I ‘\ 2 | CAT: (x, ¥, w, h)

== 4_\\ w 1 sl.,_x. DUCK: (x, y, w, h) Many
== U’l DUCK: (x, ¥, W, h) humbers!

L-‘h’"




Object Detection: Multiple Objects

Apply a CNN to many different crops of the
image, CNN classifies each crop as object
or background

Dog? NO
Cat? NO
Background? YES

i ><1
e
>]

il >
¥
- I— - E—

T man L
- fai




Object Detection: Multiple Objects

Apply a CNN to many different crops of the
image, CNN classifies each crop as object
or background

g i |
=Y ﬁw Cat? NO
T emL W W Background? NO




Object Detection: Multiple Objects

Apply a CNN to many different crops of the
image, CNN classifies each crop as object
or background

g i |
=Y ﬁw Cat? NO
T emL W W Background? NO




Object Detection: Multiple Objects

Apply a CNN to many different crops of the
image, CNN classifies each crop as object
or background

|
: f’ ! Dog? NO
I ala } Cat? YES
@z, w . Background? NO

Q: What'’s the problem with this approach?



Object Detection: Multiple Objects

4
it
0?,.;_.""

Apply a CNN to many different crops of the
image, CNN classifies each crop as object
or background

h‘-' :'., N J“ I!,_E ._.:: - .: 1 ;: o : : — .'.

A =] d‘L—— A e ey Dog? NO

| B i == Cat? YES

ﬁ“ L0 N ._-Z__w—-_\ - ': . b T - f".;__u L L) Backg round? NO

Problem: Need to apply CNN to huge
number of locations, scales, and aspect
ratios, very computationally expensive!

Need to find promising regions



Region Proposals: Selective Search

e Find “blobby” image regions that are likely to contain objects
e Relatively fast to run; e.g. Selective Search gives 2000 region
proposals in a few seconds on CPU

A 4

Alexe et al, “Measuring the objectness of image windows”, TPAMI 2012

Uijlings et al, “Selective Search for Object Recognition”, IJCV 2013

Cheng etal, “‘BING: Binarized normed gradients for objectness estimation at 300fps”, CVPR 2014
Zitnick and Dollar, “‘Edge boxes: Locating object proposals from edges”, ECCV 2014



R-CNN

Girshick et al, “Rich feature hierarchies for accurate object detection and
semantic segmentation”, CVPR 2014.

InpUt Image Figure copyright Ross Girshick, 2015; source. Reproduced with permmission.


https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

R-CNN

Regions of Interest
(Rol) from a proposal
method (~2k)

Girshick et al, “Rich feature hierarchies for accurate object detection and
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permmission.



https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

R-CNN

L/ Warped image regions
LS (224x224 pixels)
Regions of Interest

(Rol) from a proposal
method (~2k)

Girshick et al, “Rich feature hierarchies for accurate object detection and
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permmission.


https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

R-CNN

Conv
Net

Conv
Net

Forward each region
through ConvNet
(ImageNet-pretranied)

ﬁ Warped image regions

(224x224 pixels)

Regions of Interest
(Rol) from a proposal
method (~2k)

Girshick et al, “Rich feature hierarchies for accurate object detection and
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permmission.


https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

R-CNN

SVMs

SVMs

SVMs Classify regions with

Conv
Net

Conv
Net

SVMs

Forward each region
through ConvNet
(ImageNet-pretranied)

ﬁ Warped image regions

(224x224 pixels)

Regions of Interest
(Rol) from a proposal
method (~2k)

Girshick et al, “Rich feature hierarchies for accurate object detection and
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permmission.


https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

R-CNN

Predict “corrections” to the Rol: 4 numbers: (dx, dy, dw, dh)

Bbox reg || SVMs

Bbox reg || SVMs
Bbox reg SVMs
Conv
Net
Conv
Net f!

Conv
Net

Input image

Classify regions with
SVMs

Forward each region
through ConvNet
(ImageNet-pretranied)

ﬁ Warped image regions

(224x224 pixels)

Regions of Interest
(Rol) from a proposal
method (~2k)

Girshick et al, “Rich feature hierarchies for accurate object detection and
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with pemission.


https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

R-CNN

Predict “corrections” to the Rol: 4 numbers: (dx, dy, dw, dh)

Bbox reg

SVMs

Bbox reg

SVMs

Conv
Net

Bbox reg || SVMs g;\sﬂsify regions with Problem: Very slow!
> Need to do ~2k
independent forward
Conv Forward each . |
: passes for each image!
Net region through
ConvNet

E Warped image regions

(224x224 pixels)

Regions of Interest
(Rol) from a proposal
method (~2k)

Girshick et al, “Rich feature hierarchies for accurate object detection and
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with pemission.


https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

“Slow” R-CNN

Predict “corrections” to the Rol: 4 numbers: (dx, dy, dw, dh)

Bbox reg || SVMs Classify regions with Problem: Very slow!

Bbox reg || SVMs
Bbox reg SVMs ‘
Conv
Net
Conv

Conv
Net

. Need to do ~2k

independent forward

Forward each :
passes for each image!

region through
ConvNet Idea: Pass the

ﬁ _ _ image through
Warped image regions

_ convnet before
(224x224 pixels) cropping! Crop the

Regions of Interest .y feature instead!
(Rol) from a proposal

method (~2k)

Girshick et al, “Rich feature hierarchies for accurate object detection and
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with pemission.


https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

Fast R-CNN

“Slow” R-CNN

SVMs

SVMs

SVMs

Girshick, “Fast R-CNN”, ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

Input image


https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

Fast R-CNN

“Slow” R-CNN
SVMs
SVMs
SVMs
/ / “conv5” features Conv
t Conv Net
“ ” Run whole image Conv el
Backbone | through ConvNet
network: .
AlexNet, VGG, 4  ConvNet
ResNet, etc Input image

Input image

Girshick, “Fast R-CNN”, ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission.


https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

Fast R-CNN

Regions of Slow” R-CNN -

Interest (Rols)

from a proposal
method ﬁ@:i/ ‘conv5” features

Run whole image
through ConvNet

“Backbone”
network:
AlexNet, VGG,
ResNet, etc

D N

Girshick, “Fast R-CNN”, ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

Input image

—


https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

Fast R-CNN

, “Slow” R-CNN
Regions of SVMs
Interest (Rols) . . f SVMs

4 / rop + Resize features
from a proposal / P SVMs
Conv
& ‘conv5” features
method Conv Net
Run whole image Conv Net
o ”
Backbone through ConvNet
network:

AlexNet, VGG,
ResNet, etc

Input image

Girshick, “Fast R-CNN”, ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission.


https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

Fast R-CNN

Object Linear + '
category softmax Linear | Box offset
Regions of CNN Per-Region Network “Slow” R-CNN
SVMs
Interest (Rols) o _

L7 7 /7 Crop+Resize features
SVMs

from a proposal /
Conv

&4 9 “conv5” features
methOd Conv Net

“ ” t Run whole image Conv el
Backbone | through ConvNet

network: -

AlexNet, VGG, 4  ConvNet

ResNet, etc : Input image

Input image

Girshick, “Fast R-CNN”, ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission.


https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

Fast R-CNN

Object Linear +

Linear | Box offset

category softmax
Regions of CNN Per-Region Network “Slow” R-CNN
SVMs
Interest (Rols) —

L7 t Crop + Resize features
from a proposal LT L7 P SVMs

. Conv
— iﬁ “conv5” features
method Conv Net

Run whole image Conv
through ConvNet

“Backbone”
network:
AlexNet, VGG,

ResNet, etc  £1 - Input image

Input image

Girshick, “Fast R-CNN”, ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission.


https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

Cropping Features: Rol Pool

Input Image
(e.g. 3 x640 x 480)

Image features: C x Hx W
(e.g. 512 x 20 x 15)

Girshick, “Fast R-CNN”, ICCV 2015.
Girshick, “Fast R-CNN”, ICCV 2015.



Cropping Features: Rol Pool

Project proposax
onto features

Input Image
(e.g. 3 x640 x 480)

Image features: C x Hx W
(e.g. 512 x 20 x 15)

Girshick, “Fast R-CNN”, ICCV 2015.
Girshick, “Fast R-CNN”, ICCV 2015.



Cropping Features: Rol Pool .,

grid cells
Project proposax
onto features

Input Image
(e.g. 3 x640 x 480)

Image features: C x Hx W
(e.g. 512 x 20 x 15)

Girshick, “Fast R-CNN”, ICCV 2015.



Cropping Features: Rol Pool .,

grid cells
Project proposax
onto features

Q: how do we resize the 512
x 20 x 15 region to, e.g., a
512 x 2 x 2 tensor?.

Input Image
(e.g. 3 x640 x 480)

Image features: C x Hx W
(e.g. 512 x 20 x 15)

Girshick, “Fast R-CNN”, ICCV 2015.



' ) . . Divide into 2x2
Cropping Features: Rol Pool Snapto Diideino2x2

Act proposax grid cells equal subregions

onto features

Q: how do we resize the 512
x 20 x 15 region to, e.g., a
512 x 2 x 2 tensor?.

Input Image
(e.g. 3 x640 x 480)

Image features: C x Hx W
(e.g. 512 x 20 x 15)

Girshick, “Fast R-CNN”, ICCV 2015.



Cropping Features: Rol Pool

N grid cells

“Snap” to

Project proposa
onto features

Divide into 2x2
grid of (roughly)
equal subregions

Max-pool within
each subregion

Input Image
(e.g. 3 x640 x 480)

Girshick, “Fast R-CNN”, ICCV 2015.

Image features: C x H x W
(e.g. 512 x 20 x 15)

v

Region features
(here 512 x 2 x 2;
In practice e.g512x 7 x 7)

Region features always the
same size even if input
regions have different sizes!



Cropping Features: Rol Pool

N grid cells

“Snap” to

Project proposa
onto features

Divide into 2x2
grid of (roughly)
equal subregions

Max-pool within
each subregion

Input Image
(e.g. 3 x640 x 480)

Girshick, “Fast R-CNN”, ICCV 2015.

Image features: C x H x W
(e.g. 512 x 20 x 15)

Problem: Region features slightly misaligned

v

Region features
(here 512 x 2 x 2;
In practice e.g512x 7 x 7)

Region features always the
same size even if input
regions have different sizes!



Cropping Features: Rol Align

11 - ”'
Project proposaNNO shapping
onto features

Input Image
(e.g. 3 x640 x 480)

Image features: C x Hx W
(e.g. 512 x 20 x 15)

He et al, “Mask R-CNN”, ICCV 2017



Sample at regular points

Cropping Features: Rol Align in each subregion using

« ing”l Dbilinear interpolation
ﬁct proposaNNO e

onto features

0ee

XIIX:
o|j0o0

Input Image
(e.g. 3 x640 x 480)

Image features: C x Hx W
(e.g. 512 x 20 x 15)

He et al, “Mask R-CNN”, ICCV 2017



Cropping Features: Rol Align

NNO “snapping”!
7~

Project proposa
onto features

P

A
~

”

~

+0-

>
|
[
|
|
|
|

A

Input Image
(e.g. 3 x640 x 480)

He et al, “Mask R-CNN”, ICCV 2017

Image features: C x H x W
(e.g. 512 x 20 x 15)

Sample at regular points
in each subregion using
bilinear interpolation

-
~

Feature f,, for point (x, y)
is a linear combination of
features at its four
neighboring grid cells:



Sample at regular points

Cropping Features: Rol Align in each subregion using

« ing”l Dbilinear interpolation
ﬁct proposaNNO Snapping - §
~

onto features i ' fLERS12 | f,eR5™
= (X1,Y¥1) (x2,Y1)
T -1 |- ® (x.y)
[ 9 |__|< d f12€R512 f22€R512
| | N \~
I I ~ 4 (X1,Y2) (X2,Y2)
—— >
I I
| i | i Feature f,, for point (x, y)
is a linear combination of
Input Image Image features: C x Hx W features at its four
(e.9. 3 x640 x 480) (e.g. 512 x 20 x 15) neighboring grid cells:

He et al, “Mask R-CNN”, ICCV 2017

Jay = Zz‘z,j=1 fi,jmax(0,1 — |z — z;|) max(0, 1 — |y — y;)



Cropping Features: Rol Align

onto features

Sample at regular points
in each subregion using

« ing”l Dbilinear interpolation
Act proposaNNO e

0

0

Max-pool within
each subregion

v

o
o

o
o

Input Image
(e.g. 3 x640 x 480)

He et al, “Mask R-CNN”, ICCV 2017

Image features: C x Hx W
(e.g. 512 x 20 x 15)

Region features
(here 512 x 2 x 2;
In practice e.g512x 7 x 7)



R-CNN vs Fast R-CNN

Test time (seconds)

Training timE (HOU rS) B ncluding Region propos... [l Excluding Region Propo...
R-CNN R-CNN
SPP-Net 4.3
PP-
SPP-Net r2.3
Fast R-CNN l

2.3

Fast R-CNN
0 25 50 75 100 0.32

Girshick et al, “Rich feature hierarchies for accurate object detection and semantic segmentation”, CVPR 2014.
He et al, “Spatial pyramid pooling in deep convolutional networks for visual recognition”, ECCV 2014
Girshick, “Fast R-CNN”, ICCV 2015



R-CNN vs Fast R-CNN

Training time (Hours)

R-CNN R-CNN

SPP-Net
SPP-Net

Fast R-CNM

Fast R-CNM
0 25 50 75 100

Girshick et al, “Rich feature hierarchies for accurate object detection and semantic segmentation”, CVPR 2014.
He et al, “Spatial pyramid pooling in deep convolutional networks for visual recognition”, ECCV 2014
Girshick, “Fast R-CNN”, ICCV 2015

Test time (seconds)

B ncluding Region propos... [l Excluding Region Propo...

—

r 4.3
2.3
N 23 Problem:
032 ¥ Runtime dominated
; . y region,_proposals!



Faster R-CNN:

Make CNN do proposals!

Insert Region Proposal
Network (RPN) to predict
proposals from features

Otherwise same as Fast R-CNN:
Crop features for each proposal,
classify each one

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015 il

Figure copyright 2015, Ross Girshick; reproduced with permission

propc:sals,/
Region Proposal Network
feature map '

e



Region Proposal Network

Input Image
(e.g. 3 x640 x 480) Image features
(e.9.512x20 x 15)



Region Proposal Network Imagine an anchor box

of fixed size at each
point in the feature map

Input Image
(e.g. 3 x640 x 480) Image features
(e.g. 512)




RegiOn PrOposaI Network Example: 20 x 15 anchor

box uniformly sampled on
the feature map

Anchor is an object?
1x20x15

n{! \\& \Jl;-—m_‘l“
L\ N t\'\\&\;

At each point, predict
whether the corresponding

Input Image

e.g. 3 x640 x 480 Image features ) :
9 ) (3_9_ 512) anchor contains an object

(binary classification)




Region Proposal Network Example: 20 x 15

anchor box uniformly
sampled on the feature

map
\
Anchor is an object?
1x20x15
Conv

Box corrections
- 4x20x15

e A -a \m
4 1~ :‘ ‘ zvt\ ! \s \~,

For positive boxes, also predict
Input Image

(e.g. 3 x 640 x 480) Image features a corrections from the anchor
(e.g. 512) to the ground-truth box (regress

4 numbers per pixel)



Region Proposal Network

Input Image
(e.g. 3 x640 x 480)

In practice use K different
anchor boxes of different

size / scale at each point

g AT
wki 4_ L c ,‘n T
A N v Byl .
T N A4 I(‘ 4 : by, A28
£

Conv

Image features
(e.g. 512)

Anchor is an object?
Kx20x 15

Box transforms
4K x 20 x 15



Region Proposal Network

Input Image
(e.g. 3 x640 x 480)

Image features
(e.g. 512)

V

In practice use K different
anchor boxes of different
size / scale at each point

m e
Anchor is an object?
Kx20x 15
Conv
. Box transforms
e — 4K x 20 x 15

Sort the K*20*15 boxes by
their “objectness” score,
take top ~300 as our
proposals



Faster R-CNN:

Make CNN do proposals!

Jointly train with 4 losses:

1. RPN classify object / not object

2. RPN regress box coordinate
residuals

3. Final classification score
(object classes)

4. Final box coordinates

propc:sals,/ /

Region Proposal Network

V-4

feature map

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015 il - e

Figure copyright 2015, Ross Girshick; reproduced with permission



Faster R-CNN:

Make CNN do proposals!

R-CNN Test-Time Speed
R-CNN
SPP-Net
Fast R-CNN 2.3

Faster R-CNN| 0.2

0 15 30

45



Which prediction to pick?

Problem: Detectors almost always generate
more box predictions than the number of
objects in the image!

E.g., 300 is an upper bound how many objects
we wish to detect.

We need to remove the redundant
predictions!




Non-Max Suppression (NMS)

Intuitively: locally pick the box that has the
highest “objectless” or class score and
suppress other boxes that have significant
overlap with the chosen box




Non-Max Suppression (NMS)

Intuitively: locally pick the box that has the
highest “objectless” or class score and
suppress other boxes that have significant
overlap with the chosen box

Step 1: Pick highest-score prediction box



Non-Max Suppression (NMS)

Intuitively: locally pick the box that has the
highest “objectless” or class score and
suppress other boxes that have significant
overlap with the chosen box

Step 1: Pick highest-score prediction box
Step 2: Remove bounding boxes with
Intersection over Union (loU) scores higher
than certain threshold (e.g., 0.5)

il

The purple area is Intersection The orange area is Union




Non-Max Suppression (NMS)

Intuitively: locally pick the box that has the
highest “objectless” or class score and
suppress other boxes that have significant
overlap with the chosen box

Step 1: Pick highest-score prediction box
Step 2: Remove bounding boxes with
Intersection over Union (loU) scores higher
than certain threshold (e.g., 0.5)

Go backtostep 1



Faster R-CNN:

Make CNN do proposals!

Glossing over many details:

- How are anchors determined?

-  How do we sample positive /
negative samples for training the
RPN?

- How to parameterize bounding
box regression?

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”,

Figure copyright 2015, Ross Girshick; reproduced with permission

propc:sals,/
Region Proposal Network
feature map '

NIPS 2015 S ; =



Faster R-CNN: s By | A rearesionlos

Make CNN do proposals!

Classification Bounding-pox
Faster R-CNN is a loss regression oss
Two-stage object detector N «:/ .
proposals :
First stage: Run once per image / N /
-  Backbone network Region Proposal Netwcrk"

- Region proposal network
feature map 4

Second stage: Run once per region
- Crop features: Rol pool / align

- Predict object class o )
- Prediction bbox offset 2 -




Faster R-CNN:  Dowereallyneed | ' | 5 D0
Make CNN do proposals! the second stage? -
Classification Bounding-pox
Faster R-CNN is a loss regression Joss ” pooling
Two-stage object detector . — v

First stage: Run once per image
- Backbone network
- Region proposal network

Second stage: Run once per region
- Crop features: Rol pool / align
- Predict object class
- Prediction bbox offset

L 4
Dropﬁsey /

Region Proposal Netwcrk=

feature map 4

CNN )
A .




Single-Stage Object Detectors: YOLO / SSD / RetinaNet

Input image
3xHxXW

Redmon et al, “You Only Look Once:

Unified, Real-Time Object Detection”, CVPR 2016

Liu et al, “SSD: Single-Shot MultiBox Detector”, ECCV 2016
Lin et al, “Focal Loss for Dense Object Detection”, ICCV 2017

Divide image into grid
7x7
Image a set of base boxes

centered at each grid cell
Here B=3

Within each grid cell:

- Regress from each of the B
base boxes to a final box
with 5 numbers:

(dx, dy, dh, dw, confidence)

- Predict scores for each of
C classes (including
background as a class)

- Looks a lot like RPN, but
category-specific!

Output:
Ix7x(5*B+C)



Object Detection: Lots of variables ...

Backbone “Meta-Architecture” Takeaways

VGG16 Single-stage: YOLO / SSD but more accurate

ResNet-101 Hybrid: R-FCN |
Inception V2 SSD is much faster but

Inception V3 Image Size not as accurate
Inception # Region Proposals

ResNet Bigger / Deeper
MobileNet backbones work better

Huang et al, “Speed/accuracy trade-offs for modern convolutional object detectors”, CVPR 2017
Zou et al, “Object Detection in 20 Years: A Survey”, arXiv 2019

R-FCN: Dai et al, “R-FCN: Object Detection via Region-based Fully Convolutional Networks”, NIPS 2016

Inception-V2: loffe and Szegedy, “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift’, ICML 2015
Inception V3: Szegedy et al, “Rethinking the Inception Architecture for Computer Vision”, arXiv 2016

Inception ResNet: Szegedy et al, “Inception-V4, Inception-ResNet and the Impact of Residual Connections on Learning”, arXiv 2016
MobileNet: Howard et al, “Efficient Convolutional Neural Networks for Mobile Vision Applications”, arXiv 2017



Instance Segmentation

Instance
Segmentation

-~
)

DOG, DOG, CAT

Y
Multiple Object



Object Detection:
Faster R-CNN

Object
Detection

DOG, DOG, CAT

propcsals/ /
Region Proposal Network N
feature map '
CNN
y ,

———rr 7




Instance Segmentation:

Mask R-CNN S =
| - | ”paoling
Instance F”DHDSV /

Add a small mask
Segmentation Region Proposal Ne

network that operates
twark predicts a 28x28
eatlure map

on each Rol and

DOG, DOG, CAT —— oy

He et al, “Mask R-CNN”, ICCV 2017



Mask R-CNN

r—

He et al, “Mask R-CNN”, arXiv 2017

y/

7]
/] /

A 1
AN

1
- //

1
A | _—
/:/ L %
W/ Rolign | [}/ GO
%

256 x 14 x 14 256 x 14 x 14

Conv

Classification Scores: C
Box coordinates (per class): 4 * C

Predict a mask for
each of C classes

Cx28x 28




Mask R-CNN: Example Mask Training Targets




Mask R-CNN: Example Mask Training Targets




Mask R-CNN: Example Mask Training Targets




Mask R-CNN: Example Mask Training Targets




Mask R-CNN: Very Good Results!

He et al, “Mask R-CNN”, ICCV 2017



Mask R-CNN
Also does pose

He et al, “Mask R-CNN”, ICCV 2017



RCNN Series

 R-CNN: Per-region detection, hand-

crafted region proposal :

e Fast R-CNN: Shared feature extraction, ' '
Rol Pooling, Anchors w// /

* Faster R-CNN: Region Proposal Region Proposal Networ

 Mask R-CNN: Instance Segmentation

Networks, Rol Align '
4

A

Detectors are becoming more complex! L R
Many hyperparameters to tune for each

components ...

Can we simplify it?

pooling



End-to-End Object Detection with Transformers

Nicolas Carion*, Francisco Massa*, Gabriel Synnaeve, Nicolas Usunier,
Alexander Kirillov, and Sergey Zagoruyko

)

Facebook Al

Key ideas:
* Detection as a set-to-set prediction problem
* Use Transformer to model the detection problem



DETR (DEtection TRansformer)

backbone h encoder

class,
box

FFN (>

FFN | M°
transformer | object

decoder

TIIR

transformer
encoder

class,

FFN — box

|
ODooooo--—-0

- - - - - - - - e = - -




DETR (DEtection TRansformer)

encoder

class,
box

FFN (>

FFN > "°

transformer object

decoder

transformer
encoder

FEN > class,
box

4 V4 hxw




DETR (DEtection TRansformer)

backbone || encoder prediction heads | p—

““““““““ I T T T T T T T T T T T T T T T O T T T T T T T T T T T S T T T T T T O T T T T T T T T T T T T T T T I
|
I
I
[
[

|

|

|

| 3

: L : FEN > class,
| |

' i FFN || "°
: ! transformer transformer . object

decoder

doda

object queries

encoder EEN || Class,
box

no

FFN = object

|
ODooooo--—-0

- - - - - - - - e = - -

A fixed set of learnable embeddings,
e.g., 300 size-N vectors
Q: Why?



DETR (DEtection TRansformer)

backbone || encoder prediction heads | p—

"""""""" I T T T T T T T T T T T T T T T O T T T T T T T T T T T S T T T T T T O T T T T T T T T T T T T T T T I
I
I
I
[
|

|

|

l I

: :: ; FEN > class,
: |: box

| ! '
' i FFN || "°

: transformer transformer | Object

decoder

doda

object queries

encoder

FEN > class,
box

no

FFN = object

3 O L S
ODooooo--—-0

- - - - - - - - e = - -

A fixed set of learnable embeddings,

I = .
T | e.g., 300 size-N vectors
= _'_? BE ] ___, Anchoris an object?
Chj L 3 Conv X 2015 Q: Why?
Feae 5==-4n— A: Break the symmetry of predictions, so
LR R R A . e . .
‘ | - At each point, predict that each prediction is different.
Fags Tebtures whe:]her thetc_orrespor;qm? .
(eg.512) ey et Analogous to anchors in *R-CNN, but no

spatial location



DETR (DEtection TRansformer)

backbone i: encoder

decoder /| prediction heads |

|
(ﬁ\ FEN > CIbaos;’
|

\\\~ FFN | M°
transformer |\ object

decoder

|

: FEN > class,
n\ box
]

}

ﬁ 15 ﬁl ﬁ ! FFN > 0

I

|

transformer
encoder

| S N L S

ooooog---0j
Problem: We don’t know which query corresponds to which ground truth during
training! We can’t predetermine a fixed order like in sequence decoding.

object

object queries




DETR (DEtection TRansformer)

decoder /| prediction heads |

|
(ﬁ\ FEN > CIbaos;’
|

|
|
|
|
|
|
|
\ |
|
no -
FFN > . 1 z
transformer object | |i Y
| | ”@
| S X
|
|
I
|
|
|
|
|

backbone i: encoder

transformer
encoder

decoder

|

: FEN s class,
n\ box
|

|

R

|

|

object

| S N L S
ooooog---0j
object queries
Problem: We don’t know which query corresponds to which ground truth during
training! We can’t predetermine a fixed order like in sequence decoding.
Solution: Set matching loss --- train your model to generate a set of predictions that
matches ground truth regardless of its order.




Hangarian Loss (Set Matching Loss)

bbox=...
cls=...

bbox=...
— cls=...

Prediction Ground Truth

Goal: minimize bipartite distance

Problem: each query should be trained to match one ground truth. We
don’t know the matching!



Hangarian Loss (Set Matching Loss)

bbox=...
cls=...

bbox=...

 — cls=...

3

Prediction Ground Truth

Goal: minimize bipartite distance

1. Hungarian matching: find the minimum-loss bipartite matching between
prediction and ground truth given the current prediction.

2. Minimize matched loss: Given the matched prediction and ground truth,
minimize the detection loss (bounding box distance and classification CE loss)



Comparison with FasterRCNN

Model GFLOPS/FPS #params AP AP50 AP75 APS APM APL

Faster RCNN-DC5h 320/16 166M 39.0 60.5 42.3 21.4 43.5 52.5
Faster RCNN-FPN 180/26 42M  40.2 61.0 43.8 24.2 43.5 52.0
Faster RCNN-R101-FPN 246/20 60M  42.0 62.5 459 25.2 45.6 54.6
Faster RCNN-DC5+ 320/16 166M 41.1 61.4 44.3 22.9 45.9 55.0
Faster RCNN-FPN+ 180/26 42M  42.0 62.1 45.5 26.6 45.4 53.4
Faster RCNN-R101-FPN+ 246/20 60M  44.0 63.9 47.8 27.2 48.1 56.0
DETR 86/28 41M  42.0 62.4 44.2 20.5 458 61.1
DETR-DC5 187/12 41M 433 63.1 45.9 22.5 47.3 61.1
DETR-R101 152/20 60M 43.5 63.8 46.4 21.9 48.0 61.8
DETR-DC5-R101 253/10 60M  44.9 64.7 47.7 23.7 49.5 62.3

Similar size, simpler, and (mostly) better!

We are still detecting a fixed number of object with finite vocabulary ...



Segment Anything

Alexander Kirillov}>*  Eric Mintun?  Nikhila Ravi’?> Hanzi Mao? Chloe Rolland®  Laura Gustafson®
Tete Xiao®  Spencer Whitehead  Alexander C. Berg  Wan-YenLo  Piotr Dollir*  Ross Girshick?
! project lead Zjoint first author 3equal contribution 4directional lead

Meta Al Research, FAIR

Key ideas:
* Query-based prediction instead of fixed set-to-set prediction
e Large-scale training data with auto-labeling



Foundation Image Segmentation Models

SegmentAnything (Meta Al, 2023)

Try it yourself! https://segment-anything.com/demo#



Foundation Image Segmentation Models

SegmentAnything (Meta Al, 2023)

Try it yourself! https://segment-anything.com/demo#



Foundation Image Segmentation Models

, score

—€9—> mask decoder —

image A A A
| | |
encoder

/ conv\ prompt encoder

! 1 !

mask  points  box text

, score

, score

imag
embedding

valid masks

No more learned embeddings. Query
anything you want!

SegmentAnything (Meta Al, 2023)



Foundation Image Segmentation Models

3M
2M
™

SA-1B

I—) annotate
@ masks in dataset 1

model ta

L e a—

Segment Anything 1B (SA-1B):

* 1+ billion masks

400X

* 11 million images

. — L o * privacy respecting h g;

Openlmages V5 LVIS coco ADE20k * licensed images

SegmentAnything (Meta Al, 2023)



Beyond 2D Object Detection...



Object Detection + Captioning
= Dense Captioning

people are in the background man wearing a black shirt
light on the wall sign on the wa - N i red shirt on a man jelephant is standing
J “ man weanng a white shirt large green I elephant is brown
: ; trees g Al
. - = & AT 5
man with YU O :'3~ N roof of a
black hair i Bigdrt sy o -ﬁ&w building
man Sining trunk of an S z - 4 ~ 4 LY
on a table white laptop elephant qr?'cn trees
on a table nihe
) K background
rocks on
man wearing ol svtézlng the ground ‘s
blue jeans on a table : - ,
woman ball is ,
_ wearing a e
blue jeans on black shirt
the ground dis leg of an
chair is brown - g . elephant

shadow on
elephant is standing the ground

\an sitting on a bench man wearing black shirt

N b ground is brown
floor is brown

Johnson, Karpathy, and Fei-Fei, “DenseCap: Fully Convolutional Localization Networks for Dense Captioning”, CVPR 2016
Figure copyright IEEE, 2016. Reproduced for educational purposes.





http://drive.google.com/file/d/0Byvt-AfX75o1VXJIdzYyRGhCZTg/view

T Frames

Dense Video Captioning

Ingut Video

3D

Widao faalure:

Proposal madule

Proposals
B 2
LA g
— I ?
— I 8
—
LETM

Cutput Caplions

A lady joins the man
and sings along o
the music.

I- ---i-.
o TP

L1

Ranjay Krishna et al., “Dense-Captioning Events in Videos”, ICCV 2017
Figure copyright IEEE, 2017. Reproduced with permission.

time

A woman walks to the piano and
briefly talks to the the elderly man.

The woman starts singing along
with the pianist.

Another man starts dancing to the
—= music, gathering attention from the

crowd.

Eventually the elderly man finishes
playing and hugs the woman, and
the crowd applaud.



Objects + Relationships = Scene Graphs

108,077 Images
5.4 Million Region Descriptions

1.7 Million Visual Question Answers
3.8 Million Object Instances
2.8 Million Attributes

2.3 Million Relationships
Everything Mapped to Wordnet Synsets

©VISUALGENOME

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz,
Stephanie Chen et al. "Visual genome: Connecting language and vision using
crowdsourced dense image annotations." Intemational Journal of Computer Vision 123,
no. 1 (2017): 32-73.



Scene Graph Prediction

Object
Proposals

Graph
Inference

Xu, Zhu, Choy, and Fei-Fei, “Scene Graph Generation by Iterative Message Passing”, CVPR 2017

Figure copyright IEEE, 2018. Reproduced for educational purposes.




3D Object Detection

2D Object Detection:
2D bounding box
(X, ¥y, w, h)

3D Object Detection:
3D oriented bounding box

(x,¥,z,w,h,|,r,p,y)
Simplified bbox: no roll & pitch

Much harder problem than 2D
object detection!

This image is CCO public domain


https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

3D Object Detection: Simple Camera Model

A point on the image plane
corresponds to a ray in the 3D

space
: A 2D bounding box on an image
=t‘~ ! Y‘b isa in the 3D space
S

/A N\

“v

2 ‘- Localize an object in 3D:
> *PuN . .

<X < bRt The object can be anywhere in

) E the camera viewing frustrum!

-
4:“7 QV

Image source: https:/www.pcmag.com/encyclopedia_images/_FRUSTUM.GIF



3D Object Detection: Monocular Camera

Candidate sampling in 3D space

Scoring

& -
Faster R-CNN N_W.m
il =

Proposals

- -

2D candid.ﬁe boxes
- Same idea as Faster RCNN, but proposals are in 3D
- 3D bounding box proposal, regress 3D box parameters + class score

Chen, Xiaozhi, Kaustav Kundu, Ziyu Zhang, Huimin Ma, Sanja Fidler, and Raquel
Urtasun. "Monocular 3d object detection for autonomous driving." CVPR 2016.



3D Shape Prediction: Mesh R-CNN

Input Image 2D Recogmtlon

3D Meshes 3D Voxels

Gkioxari et al., Mesh RCNN, ICCV 2019
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