CS 4644-DL / 7643-A: LECTURE 20 DANFEI XU

Deep Learning Application to Computer Vision

- Semantic Segmentation
- Object Detection
- Instance Segmentation

Image Classification: A core task in Computer Vision

This image by Nikita is licensed under CC-BY 2.0

(assume given a set of possible labels) {dog, cat, truck, plane, ...}

----- cat

Computer Vision Tasks

Classification

CAT

No spatial extent

Semantic Segmentation

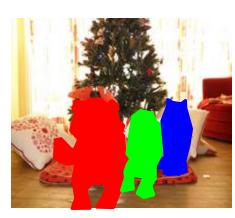
TREE, SKY

No objects, just pixels

Object Detection

DOG, DOG, CAT

Instance Segmentation



DOG, DOG, CAT

Multiple Object

This image is CC0 public domain

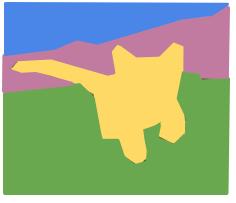
Semantic Segmentation

Classification

CAT

No spatial extent

Semantic Segmentation



GRASS, CAT, TREE, SKY

No objects, just pixels

Object Detection



DOG, DOG, CAT

Instance Segmentation

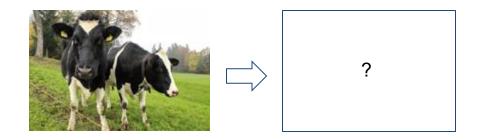
DOG, DOG, CAT

Multiple Object

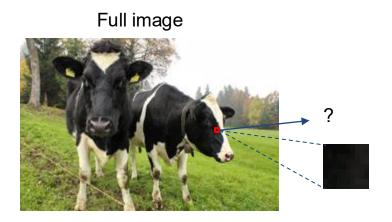
Semantic Segmentation: The Problem

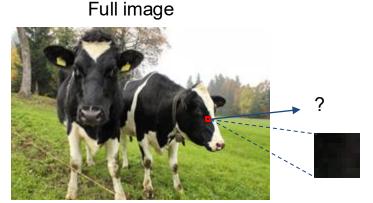
GRASS, CAT, TREE, SKY, ...

Paired training data: for each training image, each pixel is labeled with a semantic category.



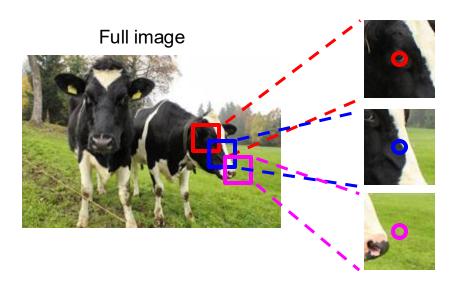
At test time, classify each pixel of a new image.



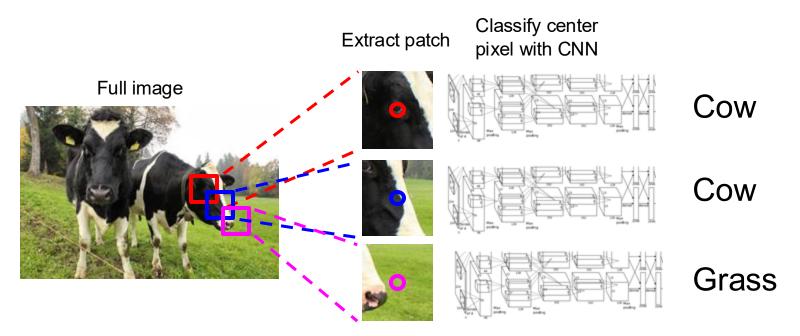


Impossible to classify without context

Q: how do we include context?



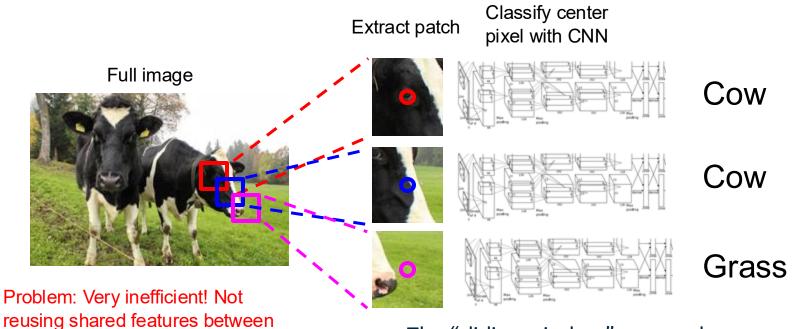
Q: how do we model this?



The "sliding window" approach

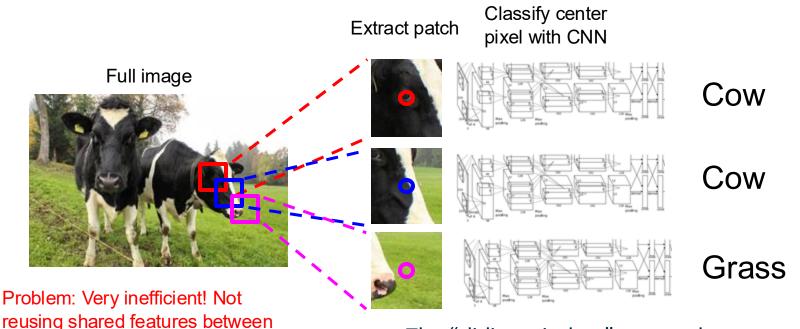
Farabet et al, "Learning Hierarchical Features for Scene Labeling," TPAMI 2013 Pinheiro and Collobert, "Recurrent Convolutional Neural Networks for Scene Labeling", ICML 2014

overlapping patches



The "sliding window" approach

Farabet et al, "Learning Hierarchical Features for Scene Labeling," TPAMI 2013
Pinheiro and Collobert, "Recurrent Convolutional Neural Networks for Scene Labeling", ICML 2014



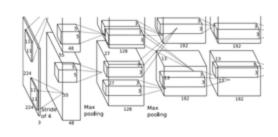
Observation: lots of duplicate computation in nearby pixels

overlapping patches

The "sliding window" approach

Farabet et al, "Learning Hierarchical Features for Scene Labeling," TPAMI 2013
Pinheiro and Collobert, "Recurrent Convolutional Neural Networks for Scene Labeling", ICML 2014

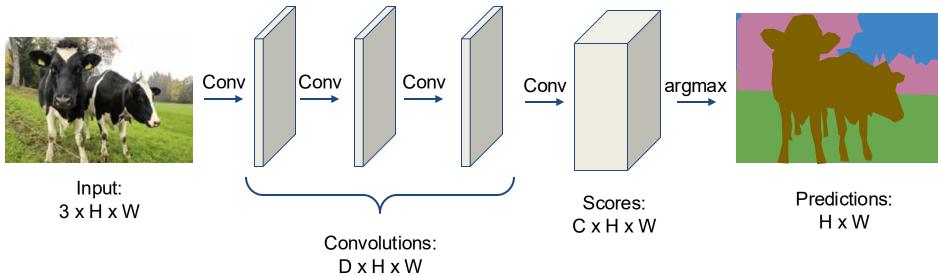
Full image



An intuitive idea: encode the entire image with conv net, and do semantic segmentation on top.

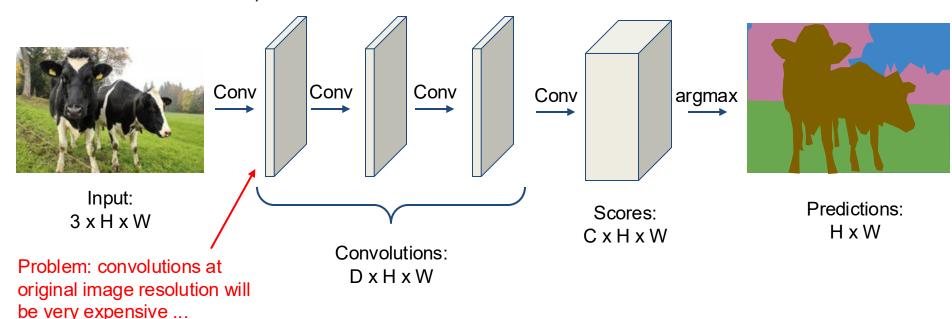
Problem: classification architectures often reduce feature spatial sizes to go deeper, but semantic segmentation requires the output size to be the same as input size.

Design a network with only convolutional layers without downsampling operators to make predictions for pixels all at once!

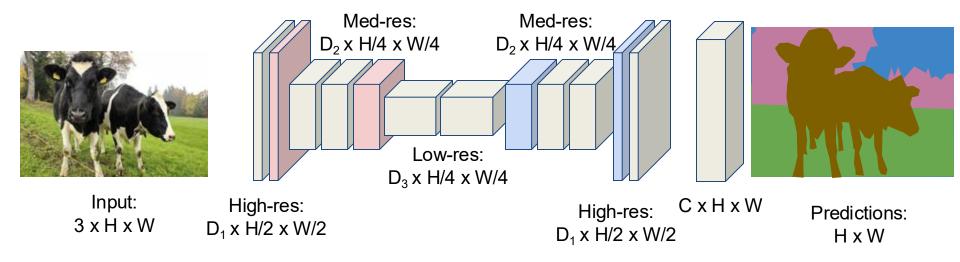


Loss: Pixel-wise cross entropy!

Design a network with only convolutional layers without downsampling operators to make predictions for pixels all at once!



Design network as a bunch of convolutional layers, with downsampling and upsampling inside the network!

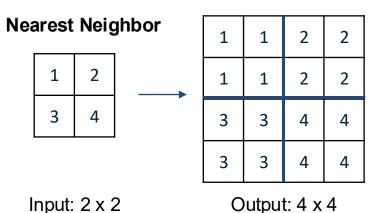


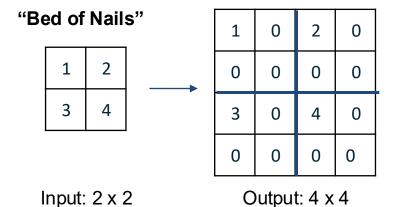
Long, Shelhamer, and Darrell, "Fully Convolutional Networks for Semantic Segmentation", CVPR 2015 Noh et al, "Learning Deconvolution Network for Semantic Segmentation", ICCV 2015

Design network as a bunch of convolutional layers, with **Downsampling: Upsampling:** downsampling and upsampling inside the network! Pooling, strided ??? convolution Med-res: Med-res: $D_2 \times H/4 \times W/4$ $D_2 \times H/4 \times W/4$ Low-res: $D_3 \times H/4 \times W/4$ Input: High-res: CxHxWHigh-res: Predictions: 3xHxWD₁ x H/2 x W/2 $D_1 \times H/2 \times W/2$ HxW

Long, Shelhamer, and Darrell, "Fully Convolutional Networks for Semantic Segmentation", CVPR 2015 Noh et al, "Learning Deconvolution Network for Semantic Segmentation", ICCV 2015

In-Network upsampling: "Unpooling"

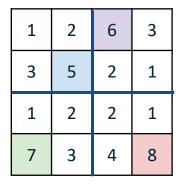


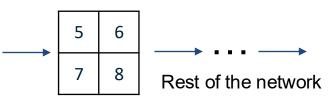


In-Network upsampling: "Max Unpooling"

Max Pooling

Remember which element was max!





Max Unpooling

Use positions from pooling layer

1	2	
3	4	

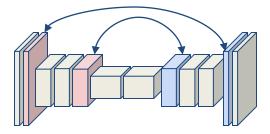
Input: 2 x 2

0	0	2	0
0	1	0	0
0	0	0	0
3	0	0	4

Input: 4 x 4

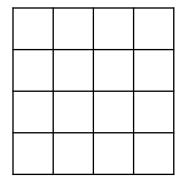
Output: 2 x 2

Corresponding pairs of downsampling and upsampling layers

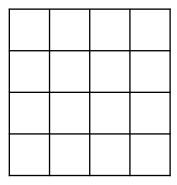


Output: 4 x 4

Recall: Normal 3 x 3 convolution, stride 1 pad 1

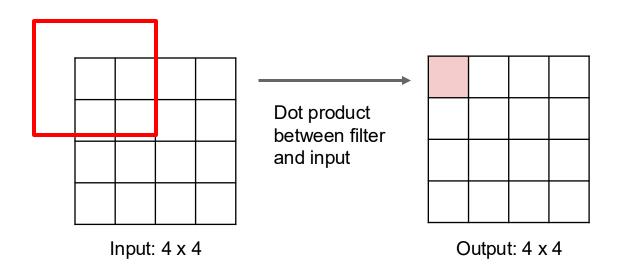


Input: 4 x 4

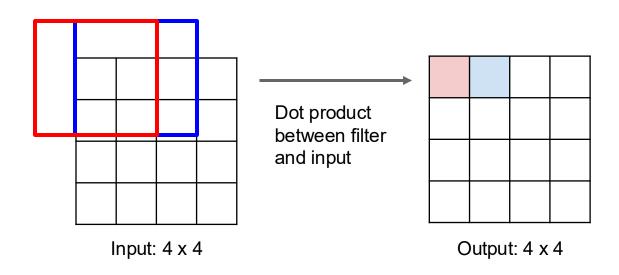


Output: 4 x 4

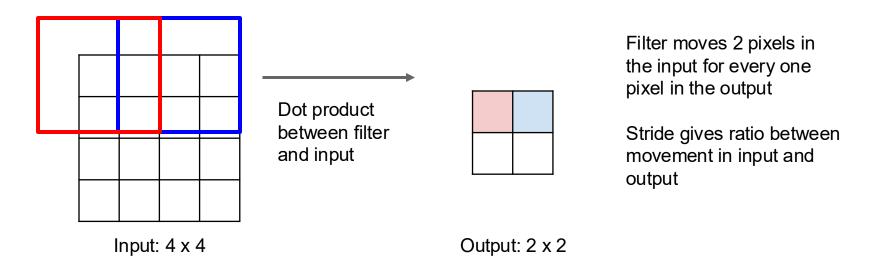
Recall: Normal 3 x 3 convolution, stride 1 pad 1



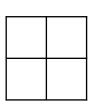
Recall: Normal 3 x 3 convolution, stride 1 pad 1



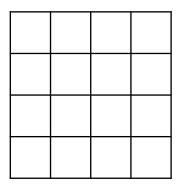
Recall: Normal 3 x 3 convolution, stride 2 pad 1



3 x 3 **transpose** convolution, stride 2 pad 1

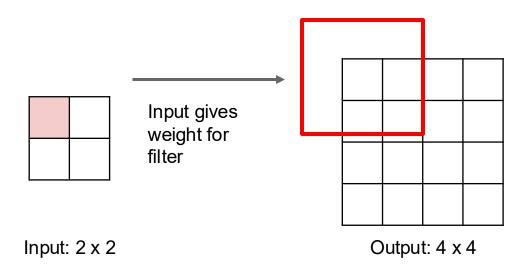


Input: 2 x 2

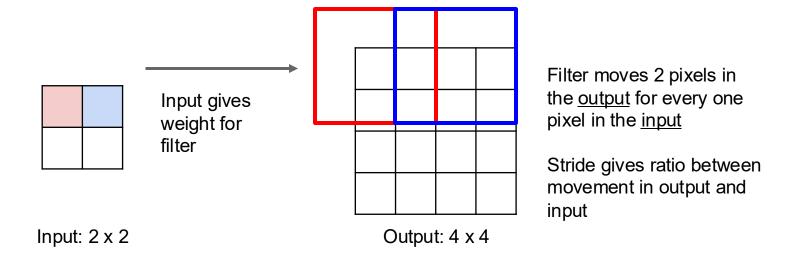


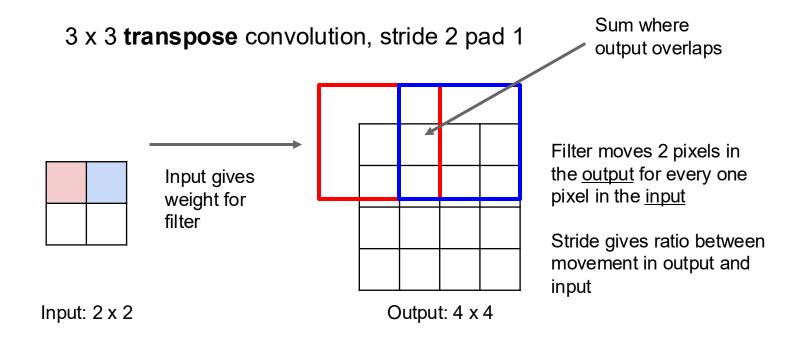
Output: 4 x 4

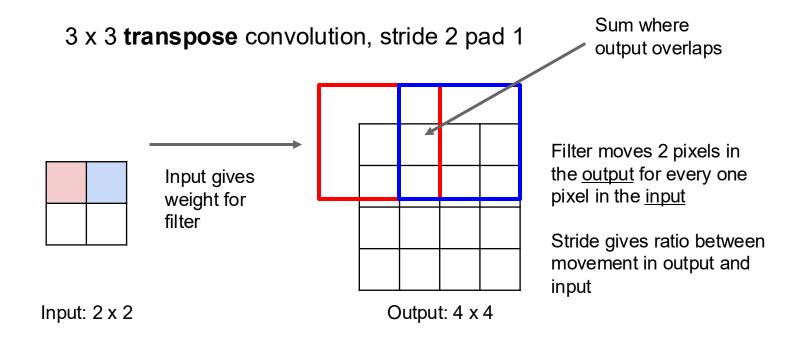
3 x 3 **transpose** convolution, stride 2 pad 1



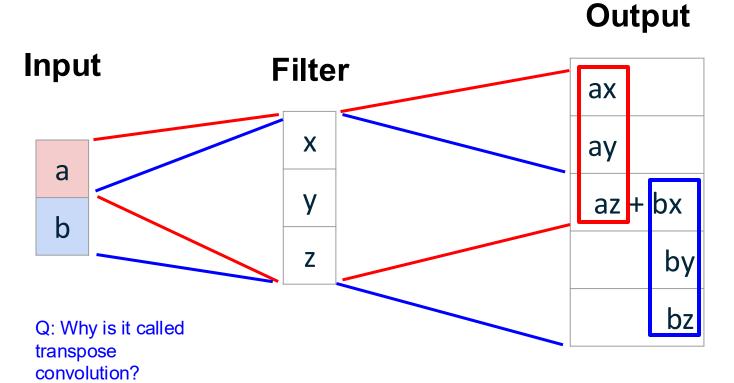
3 x 3 **transpose** convolution, stride 2 pad 1







Learnable Upsampling: 1D Example

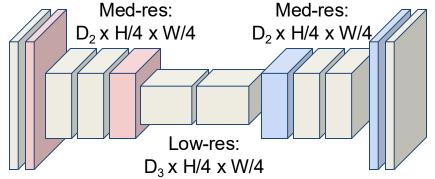


Output contains copies of the filter weighted by the input, summing at where at overlaps in the output

Downsampling: Pooling, strided convolution

Design network as a bunch of convolutional layers, with **downsampling** and **upsampling** inside the network!

Input: 3 x H x W



High-res: $D_1 \times H/2 \times W/2$

High-res: D₁ x H/2 x W/2

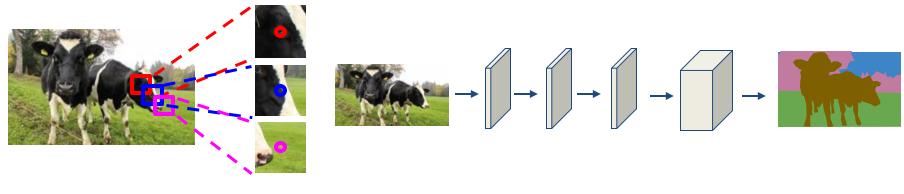
Upsampling:

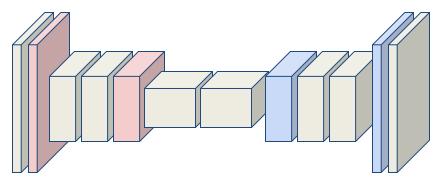
Unpooling or strided transpose convolution

Predictions: H x W

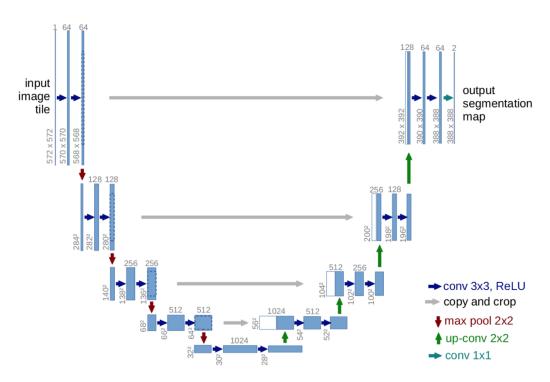
Long, Shelhamer, and Darrell, "Fully Convolutional Networks for Semantic Segmentation", CVPR 2015 Noh et al, "Learning Deconvolution Network for Semantic Segmentation", ICCV 2015

Semantic Segmentation: Summary





Semantic Segmentation: U-Net



Idea: Concatenate feature maps from the downsampling stage with the features in the upsampling stage.

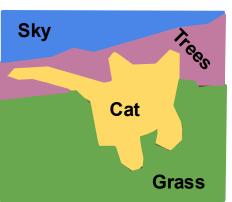
Very commonly used today!

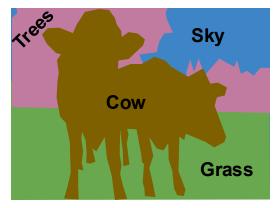
Ronneberger O, Fischer P, Brox T, 2015

Semantic Segmentation

Label each pixel in the image with a category label

Don't differentiate instances, only care about pixels





Object Detection

Classification

CAT

No spatial extent

Semantic Segmentation

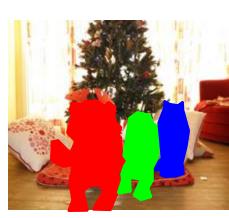
GRASS, CAT, TREE, SKY

No objects, just pixels

Object Detection

DOG, DOG, CAT

Instance Segmentation



DOG, DOG, CAT

Multiple Object

Object Detection

Classification

CAT

No spatial extent

Semantic Segmentation

GRASS, CAT, TREE, SKY

No objects, just pixels

Object Detection

DOG, DOG, CAT

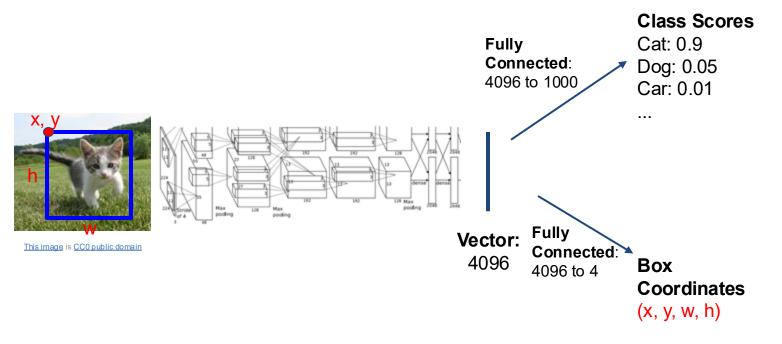
Instance Segmentation

DOG, DOG, CAT

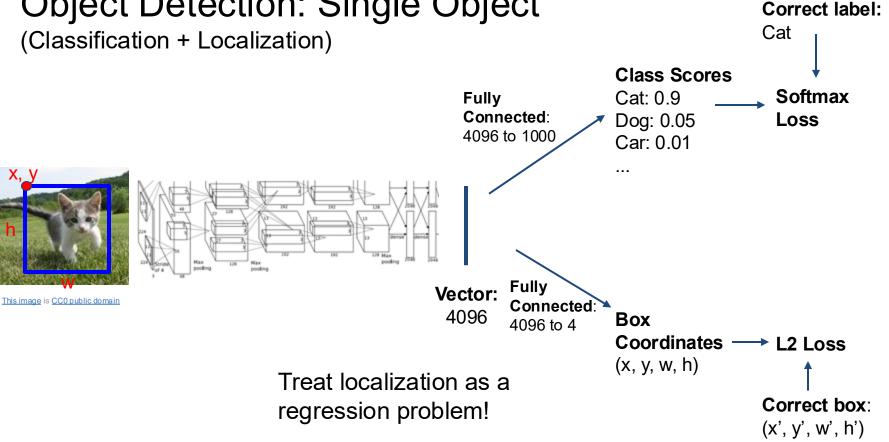
Multiple Object

Object Detection: Single Object

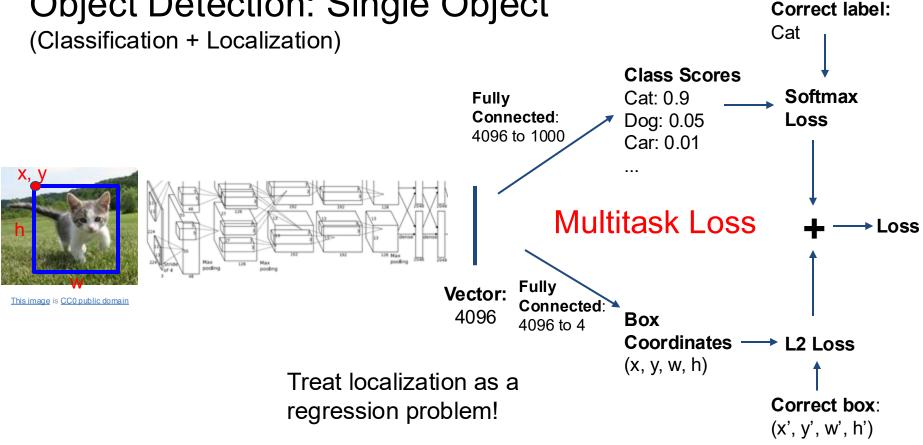
(Classification + Localization)

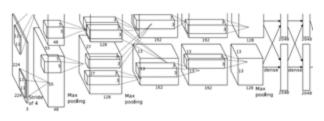


Object Detection: Single Object

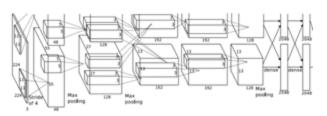


Object Detection: Single Object

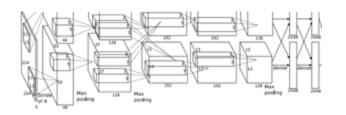




CAT: (x, y, w, h)



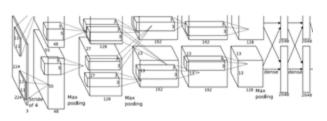
DOG: (x, y, w, h) DOG: (x, y, w, h) CAT: (x, y, w, h)



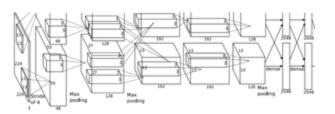
DUCK: (x, y, w, h) DUCK: (x, y, w, h)

. . . .

Each image needs a different number of outputs!



CAT: (x, y, w, h) 4 numbers

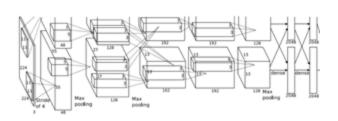


DOG: (x, y, w, h)

DOG: (x, y, w, h)

12 numbers

CAT: (x, y, w, h)

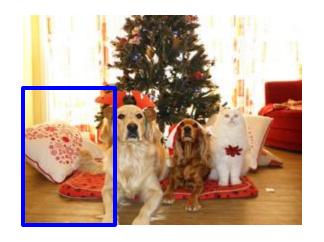


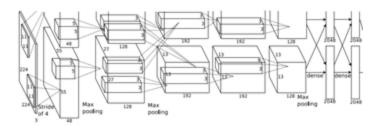
DUCK: (x, y, w, h) Many

DUCK: (x, y, w, h) numbers!

. . . .

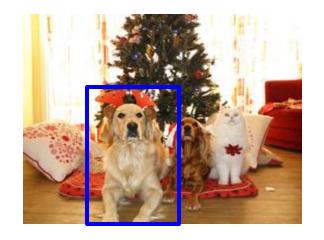
Apply a CNN to many different crops of the image, CNN classifies each crop as object or background

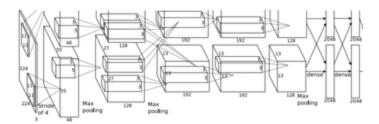




Dog? NO Cat? NO Background? YES

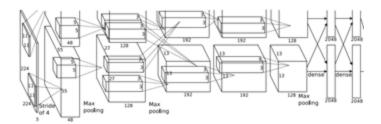
Apply a CNN to many different crops of the image, CNN classifies each crop as object or background





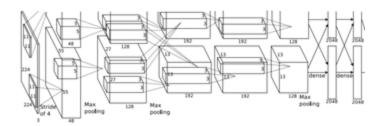
Dog? YES Cat? NO Background? NO

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background



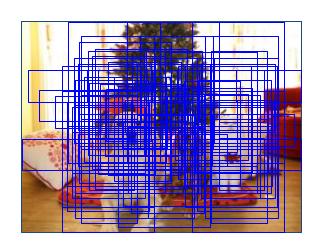
Dog? YES Cat? NO Background? NO

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background

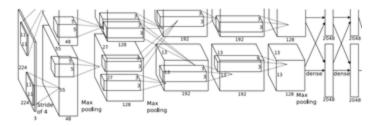


Dog? NO Cat? YES Background? NO

Q: What's the problem with this approach?



Apply a CNN to many different crops of the image, CNN classifies each crop as object or background



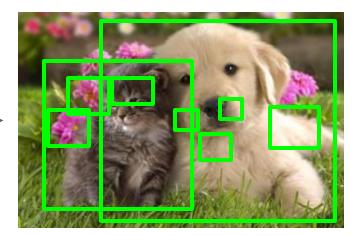
Dog? NO Cat? YES Background? NO

Problem: Need to apply CNN to huge number of locations, scales, and aspect ratios, very computationally expensive!

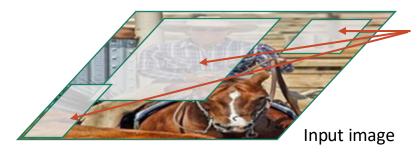
Need to find **promising regions**

Region Proposals: Selective Search

- Find "blobby" image regions that are likely to contain objects
- Relatively fast to run; e.g. Selective Search gives 2000 region proposals in a few seconds on CPU

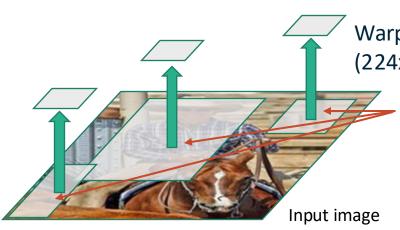


Girshick et al, "Rich feature hierarchies for accurate object detection and semantic segmentation", CVPR 2014.



Regions of Interest (RoI) from a proposal method (~2k)

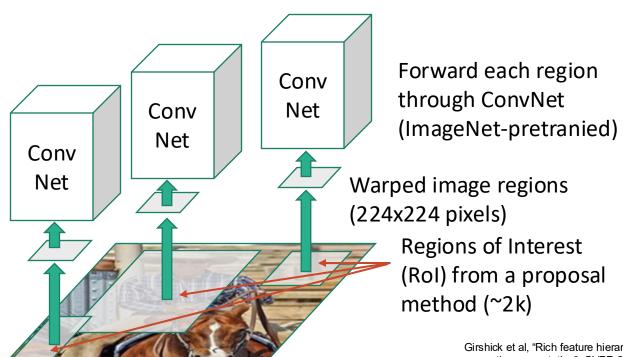
Girshick et al, "Rich feature hierarchies for accurate object detection and semantic segmentation", CVPR 2014.



Warped image regions (224x224 pixels)

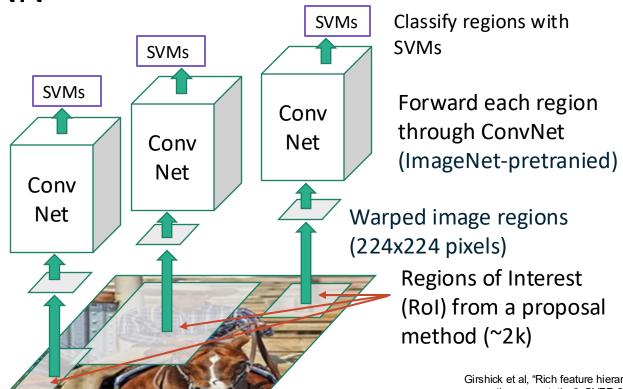
Regions of Interest (RoI) from a proposal method (~2k)

Girshick et al, "Rich feature hierarchies for accurate object detection and semantic segmentation", CVPR 2014.



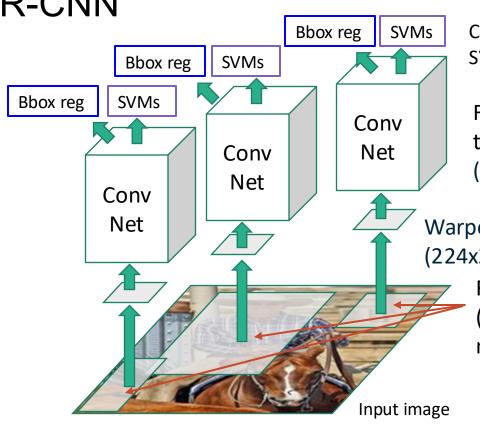
Input image

Girshick et al, "Rich feature hierarchies for accurate object detection and semantic segmentation", CVPR 2014.



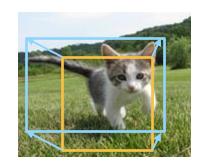
Input image

Girshick et al, "Rich feature hierarchies for accurate object detection and semantic segmentation", CVPR 2014.



Classify regions with **SVMs**

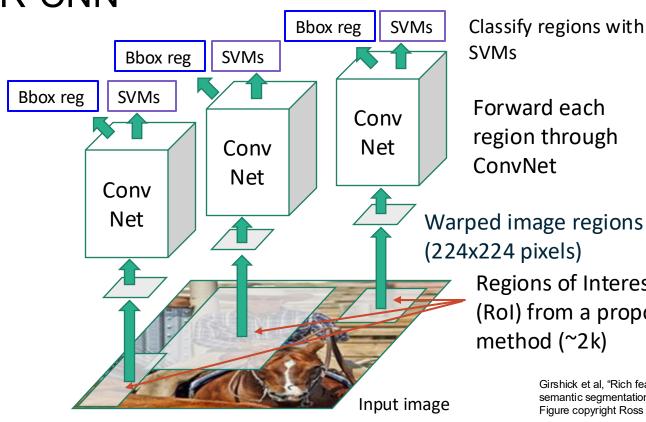
Forward each region through ConvNet (ImageNet-pretranied)



Warped image regions (224x224 pixels)

> Regions of Interest (RoI) from a proposal method (2 k)

> > Girshick et al, "Rich feature hierarchies for accurate object detection and semantic segmentation", CVPR 2014.



Classify regions with **SVMs**

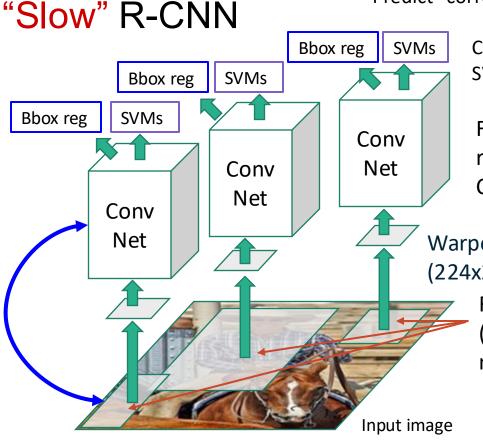
Forward each region through ConvNet

Problem: Very slow! Need to do ~2k independent forward passes for each image!

Regions of Interest (RoI) from a proposal

> Girshick et al, "Rich feature hierarchies for accurate object detection and semantic segmentation", CVPR 2014.

Predict "corrections" to the RoI: 4 numbers: (dx, dy, dw, dh)



Classify regions with SVMs

Forward each region through ConvNet

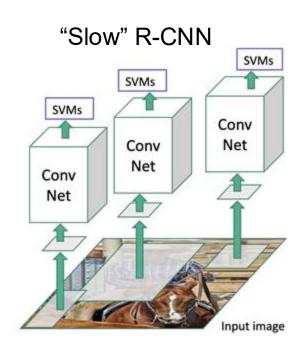
Warped image regions (224x224 pixels)

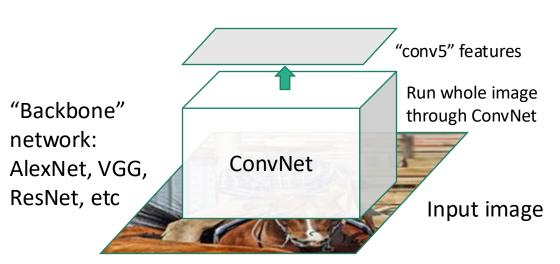
Regions of Interest (RoI) from a proposal method (~2k)

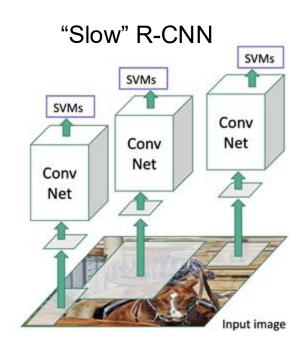
Problem: Very slow! Need to do ~2k independent forward passes for each image!

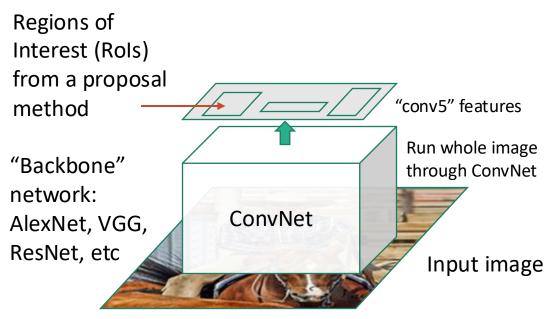
Idea: Pass the image through convnet before cropping! Crop the conv feature instead!

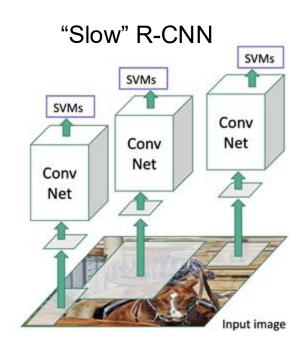
Girshick et al, "Rich feature hierarchies for accurate object detection and semantic segmentation", CVPR 2014.

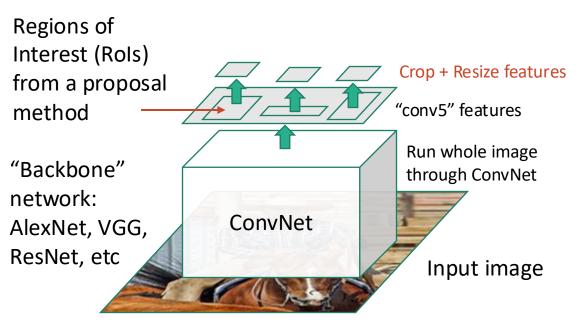


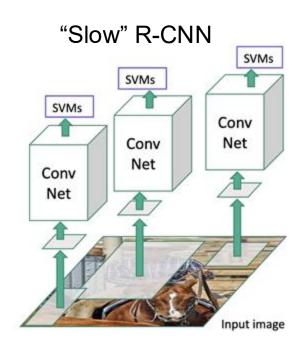


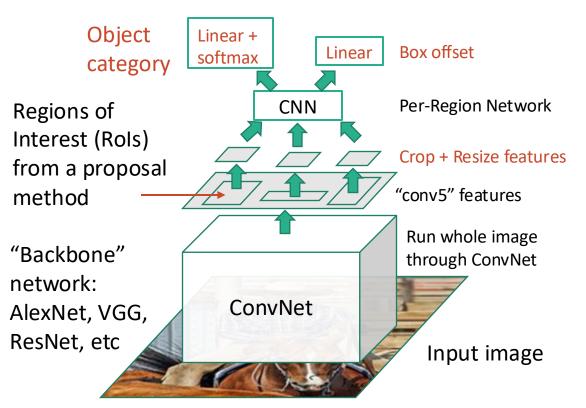


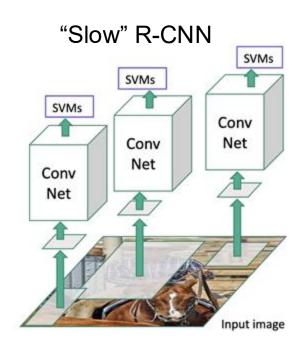


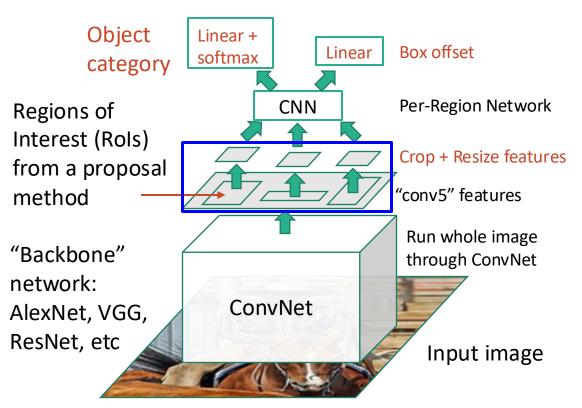


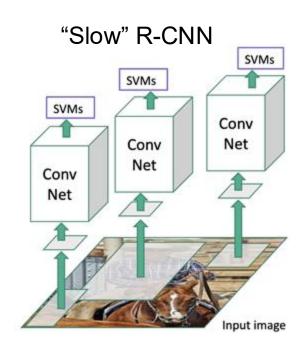




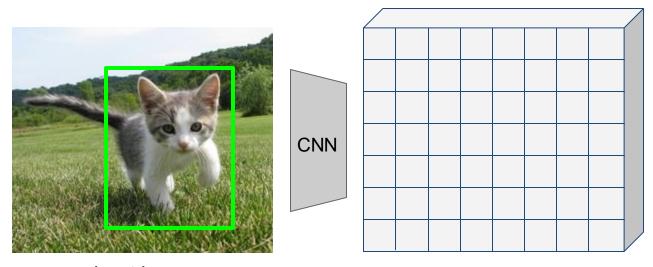








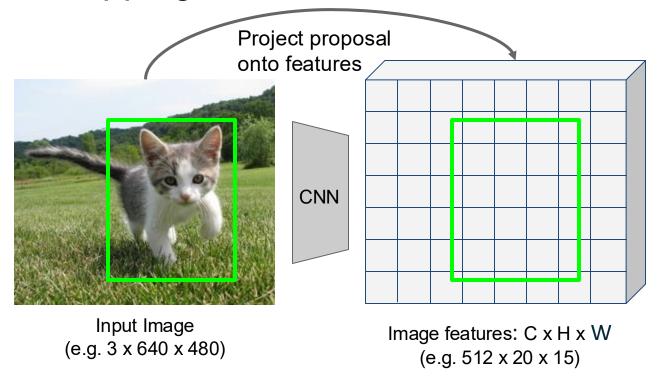
Cropping Features: Rol Pool



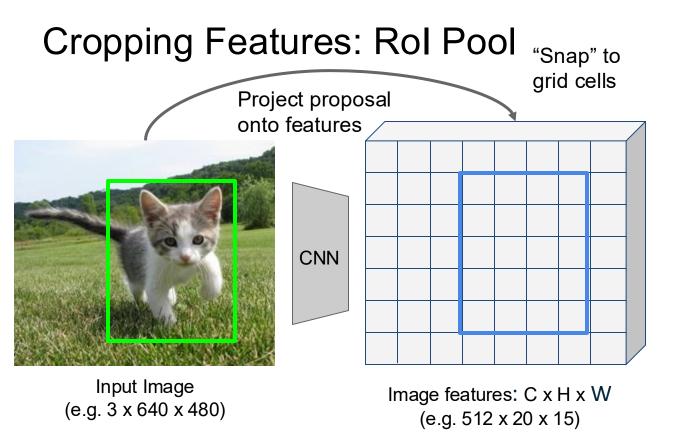
Input Image (e.g. 3 x 640 x 480)

Image features: C x H x W (e.g. 512 x 20 x 15)

Cropping Features: Rol Pool



Cropping Features: Rol Pool "Snap" to grid cells Project proposal onto features **CNN** Input Image Image features: C x H x W (e.g. 3 x 640 x 480) (e.g. 512 x 20 x 15)



Q: how do we resize the 512 x 20 x 15 region to, e.g., a 512 x 2 x 2 tensor?

Cropping Features: Rol Pool "Snap" to grid cells Project proposal onto features **CNN** Input Image Image features: C x H x W $(e.g. 3 \times 640 \times 480)$

(e.g. 512 x 20 x 15)

Divide into 2x2 grid of (roughly) equal subregions

Q: how do we resize the 512 x 20 x 15 region to, e.g., a 512 x 2 x 2 tensor?

Cropping Features: Rol Pool

Project proposal onto features **CNN**

Input Image (e.g. 3 x 640 x 480)

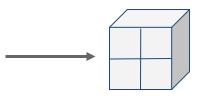
Image features: C x H x W (e.g. 512 x 20 x 15)

"Snap" to

grid cells

Divide into 2x2 grid of (roughly) equal subregions

Max-pool within each subregion



Region features (here 512 x 2 x 2; In practice e.g 512 x 7 x 7)

Region features always the same size even if input regions have different sizes!

Cropping Features: Rol Pool

grid cells Project proposal onto features **CNN**

Input Image (e.g. 3 x 640 x 480)

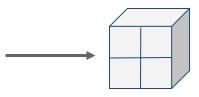
Image features: C x H x W (e.g. 512 x 20 x 15)

"Snap" to

Problem: Region features slightly misaligned

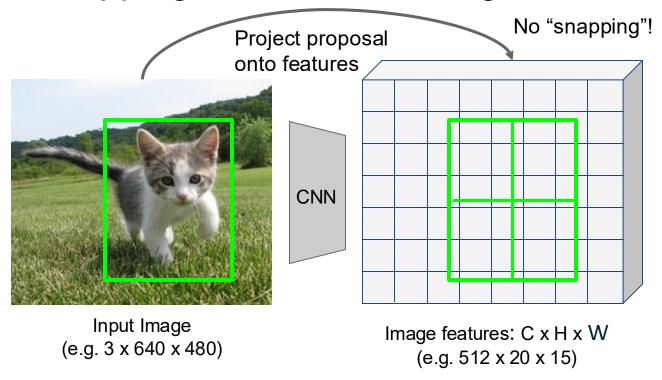
Divide into 2x2 grid of (roughly) equal subregions

Max-pool within each subregion



Region features (here 512 x 2 x 2; In practice e.g 512 x 7 x 7)

Region features always the same size even if input regions have different sizes!



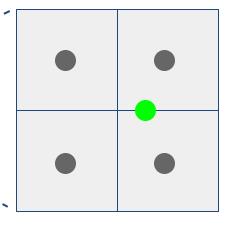
No "snapping"! Project proposal onto features **CNN** Input Image Image features: C x H x W (e.g. 3 x 640 x 480) (e.g. 512 x 20 x 15)

Sample at regular points in each subregion using bilinear interpolation

He et al, "Mask R-CNN", ICCV 2017

No "snapping"! Project proposal onto features **CNN** Input Image Image features: C x H x W $(e.g. 3 \times 640 \times 480)$ (e.g. 512 x 20 x 15)

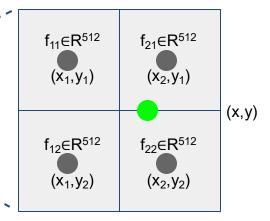
Sample at regular points in each subregion using bilinear interpolation



Feature f_{xy} for point (x, y) is a linear combination of features at its four neighboring grid cells:

No "snapping"! Project proposal onto features **CNN** Input Image Image features: C x H x W

Sample at regular points in each subregion using bilinear interpolation



Feature f_{xy} for point (x, y)is a linear combination of features at its four neighboring grid cells:

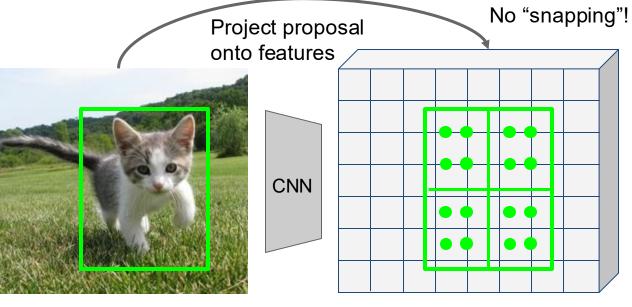
(e.g. 3 x 640 x 480)

(e.g. 512 x 20 x 15)

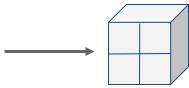
He et al, "Mask R-CNN", ICCV 2017

$$f_{xy} = \sum_{i,j=1}^{2} f_{i,j} \max(0, 1 - |x - x_i|) \max(0, 1 - |y - y_j|)$$

Sample at regular points in each subregion using bilinear interpolation



Max-pool within each subregion

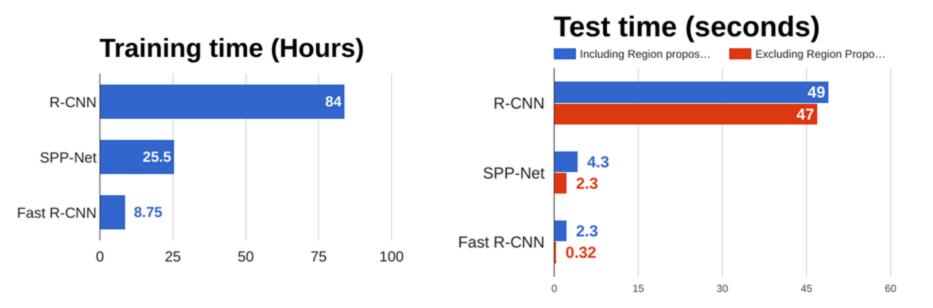


Region features (here 512 x 2 x 2; In practice e.g 512 x 7 x 7)

Input Image (e.g. 3 x 640 x 480)

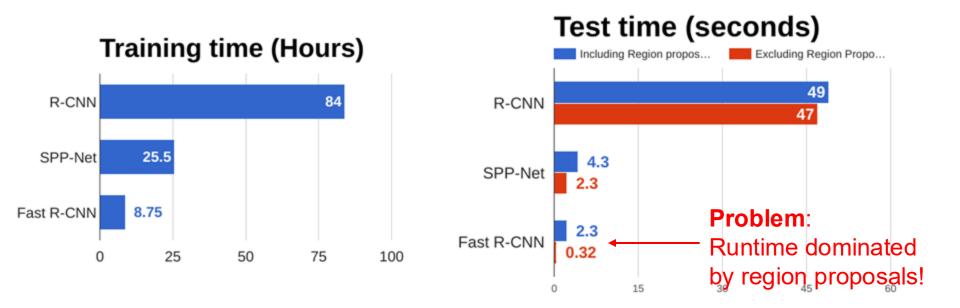
Image features: C x H x W (e.g. 512 x 20 x 15)

R-CNN vs Fast R-CNN



Girshick et al, "Rich feature hierarchies for accurate object detection and semantic segmentation", CVPR 2014. He et al, "Spatial pyramid pooling in deep convolutional networks for visual recognition", ECCV 2014 Girshick, "Fast R-CNN", ICCV 2015

R-CNN vs Fast R-CNN



Girshick et al, "Rich feature hierarchies for accurate object detection and semantic segmentation", CVPR 2014. He et al, "Spatial pyramid pooling in deep convolutional networks for visual recognition", ECCV 2014 Girshick, "Fast R-CNN", ICCV 2015

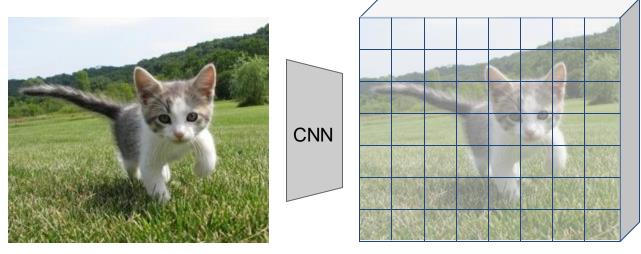
Faster R-CNN: Make CNN do proposals!

Insert Region Proposal
Network (RPN) to predict
proposals from features

Otherwise same as Fast R-CNN: Crop features for each proposal, classify each one

Classification Bounding-box regression loss Classification **Bounding-box** Rol pooling loss regression loss proposals Region Proposal Network feature map CNN

Ren et al, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", NIPS 2015 Figure copyright 2015, Ross Girshick; reproduced with permission



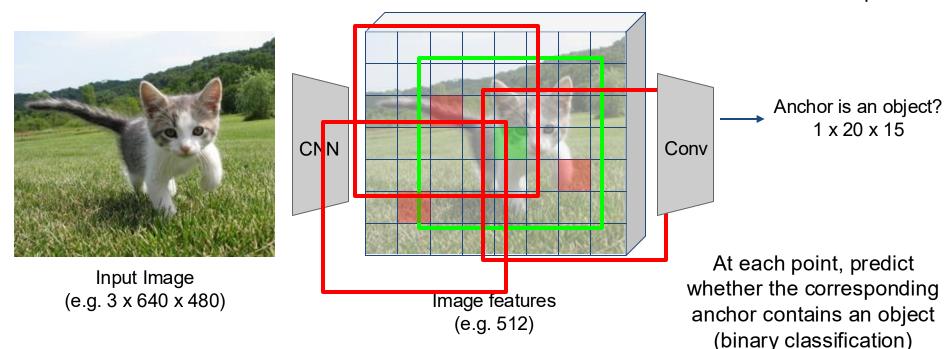
Input Image (e.g. 3 x 640 x 480)

Image features (e.g. 512 x 20 x 15)

CNN Input Image (e.g. 3 x 640 x 480) Image features (e.g. 512)

Imagine an **anchor box** of fixed size at each point in the feature map

box uniformly sampled on the feature map



CNN

Input Image (e.g. 3 x 640 x 480)

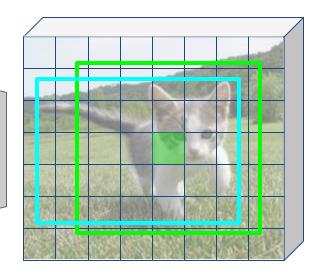
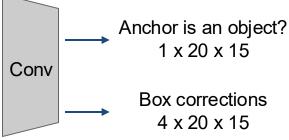


Image features (e.g. 512)

Example: 20 x 15 **anchor box** uniformly

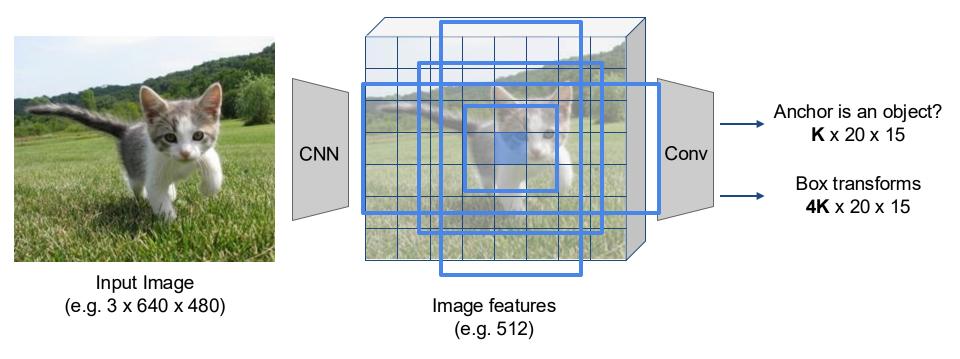
sampled on the feature

map

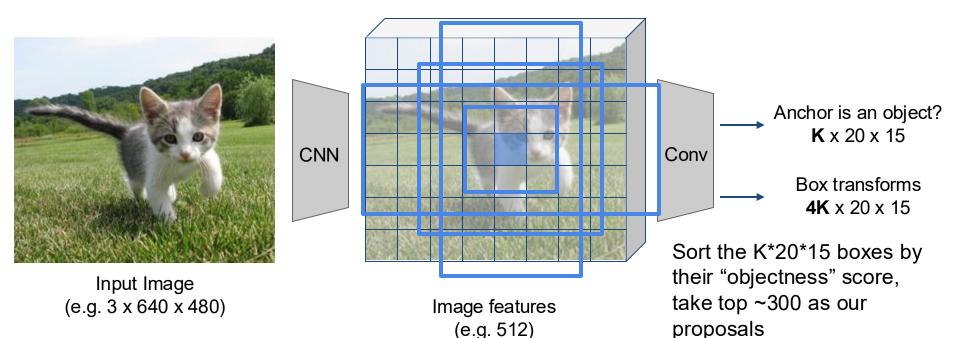


For positive boxes, also predict a corrections from the anchor to the ground-truth box (regress 4 numbers per pixel)

In practice use K different anchor boxes of different size / scale at each point



In practice use K different anchor boxes of different size / scale at each point



Faster R-CNN: Make CNN do proposals!

Classification loss

Jointly train with 4 losses:

1. RPN classify object / not object

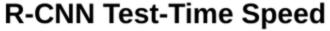
- 2. RPN regress box coordinate residuals
- 3. Final classification score (object classes)
- 4. Final box coordinates

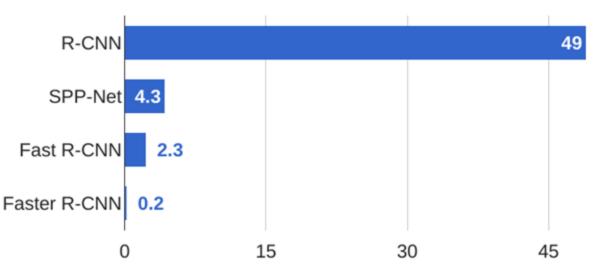
Classification Bounding-box regression loss **Bounding-box** Rol pooling regression loss proposals Region Proposal Network feature map CNN

Ren et al, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", NIPS 2015 Figure copyright 2015, Ross Girshick; reproduced with permission

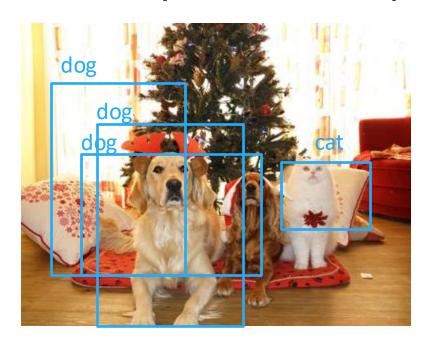
Faster R-CNN:

Make CNN do proposals!



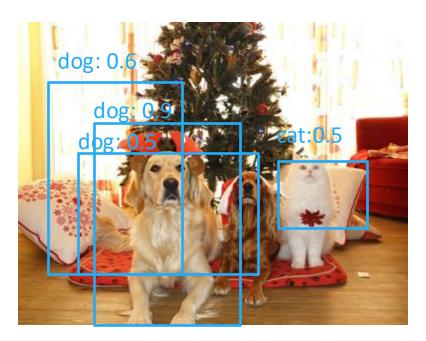


Which prediction to pick?

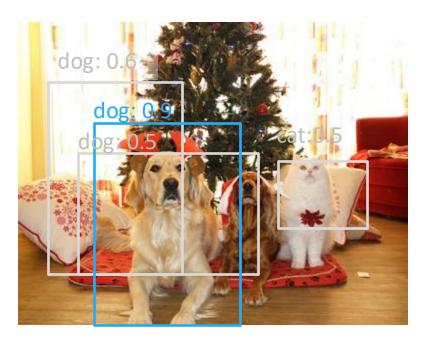


Problem: Detectors almost always generate more box predictions than the number of objects in the image!
E.g., 300 is an upper bound how many objects we wish to detect.

We need to remove the **redundant predictions!**

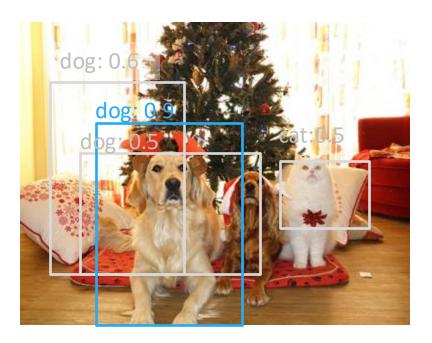


Intuitively: locally pick the box that has the highest "objectless" or class score and suppress other boxes that have significant overlap with the chosen box



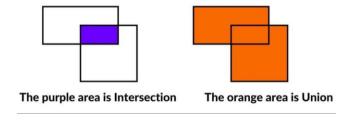
Intuitively: locally pick the box that has the highest "objectless" or class score and suppress other boxes that have significant overlap with the chosen box

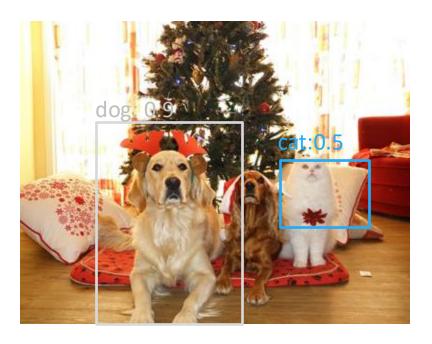
Step 1: Pick highest-score prediction box



Intuitively: locally pick the box that has the highest "objectless" or class score and suppress other boxes that have significant overlap with the chosen box

Step 1: Pick highest-score prediction box Step 2: Remove bounding boxes with Intersection over Union (IoU) scores higher than certain threshold (e.g., 0.5)





Intuitively: locally pick the box that has the highest "objectless" or class score and suppress other boxes that have significant overlap with the chosen box

Step 1: Pick highest-score prediction box Step 2: Remove bounding boxes with Intersection over Union (IoU) scores higher than certain threshold (e.g., 0.5)

Go back to step 1

Faster R-CNN: Make CNN do proposals!

Classification loss

Glossing over many details:

- How are anchors determined?
- How do we sample positive / negative samples for training the RPN?
- How to parameterize bounding box regression?

Classification Bounding-box regression loss loss Bounding-box Rol pooling regression loss proposals Region Proposal Network feature map CNN

Ren et al, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", NIPS 2015 Figure copyright 2015, Ross Girshick; reproduced with permission

Faster R-CNN:

Make CNN do proposals!

Faster R-CNN is a Two-stage object detector loss

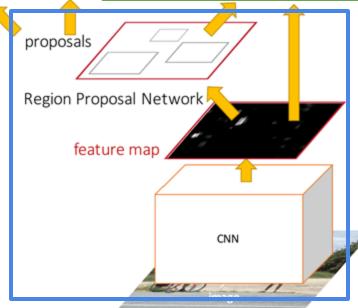
Classification

First stage: Run once per image

- Backbone network
- Region proposal network

Second stage: Run once per region

- Crop features: Rol pool / align
- Predict object class
- Prediction bbox offset



Faster R-CNN: Make CNN do proposals!

Do we really need the second stage?

Classification loss Bounding-box regression loss

Faster R-CNN is a **Two-stage object detector**

Classification loss

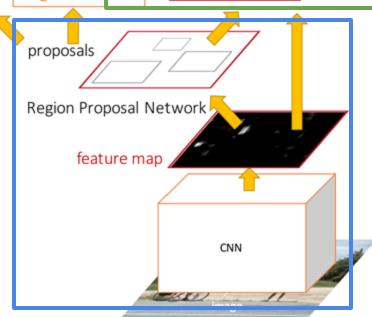
Bounding-pox regression oss

First stage: Run once per image

- Backbone network
- Region proposal network

Second stage: Run once per region

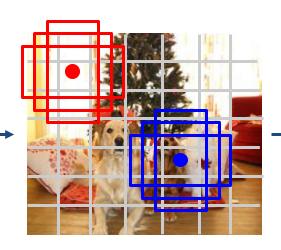
- Crop features: Rol pool / align
- Predict object class
- Prediction bbox offset



Single-Stage Object Detectors: YOLO / SSD / RetinaNet

Input image 3 x H x W

Redmon et al, "You Only Look Once: Unified, Real-Time Object Detection", CVPR 2016 Liu et al, "SSD: Single-Shot MultiBox Detector", ECCV 2016 Lin et al, "Focal Loss for Dense Object Detection", ICCV 2017



Divide image into grid 7 x 7

Image a set of **base boxes** centered at each grid cell Here B = 3

Within each grid cell:

- Regress from each of the B base boxes to a final box with 5 numbers:
 (dx, dy, dh, dw, confidence)
- Predict scores for each of C classes (including background as a class)
- Looks a lot like RPN, but category-specific!

Output: 7 x 7 x (5 * B + C)

Object Detection: Lots of variables ...

Backbone Network

VGG16

ResNet-101

Inception V2

Inception V3

Inception

ResNet

MobileNet

"Meta-Architecture"

Two-stage: Faster R-CNN Single-stage: YOLO / SSD

Hybrid: R-FCN

Image Size # Region Proposals

- - -

Takeaways

Faster R-CNN is slower but more accurate

SSD is much faster but not as accurate

Bigger / Deeper backbones work better

Huang et al, "Speed/accuracy trade-offs for modern convolutional object detectors", CVPR 2017 Zou et al, "Object Detection in 20 Years: A Survey", arXiv 2019

R-FCN: Dai et al, "R-FCN: Object Detection via Region-based Fully Convolutional Networks", NIPS 2016
Inception-V2: Ioffe and Szegedy, "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shiff", ICML 2015
Inception V3: Szegedy et al, "Rethinking the Inception Architecture for Computer Vision", arXiv 2016
Inception ResNet: Szegedy et al, "Inception-V4, Inception-ResNet and the Impact of Residual Connections on Learning", arXiv 2016
MobileNet: Howard et al, "Efficient Convolutional Neural Networks for Mobile Vision Applications", arXiv 2017

Instance Segmentation

Classification

CAT

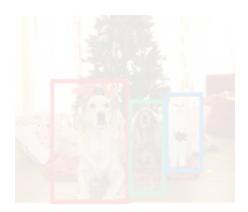
No spatial extent

Semantic Segmentation

TREE, SKY

No objects, just pixels

Object Detection



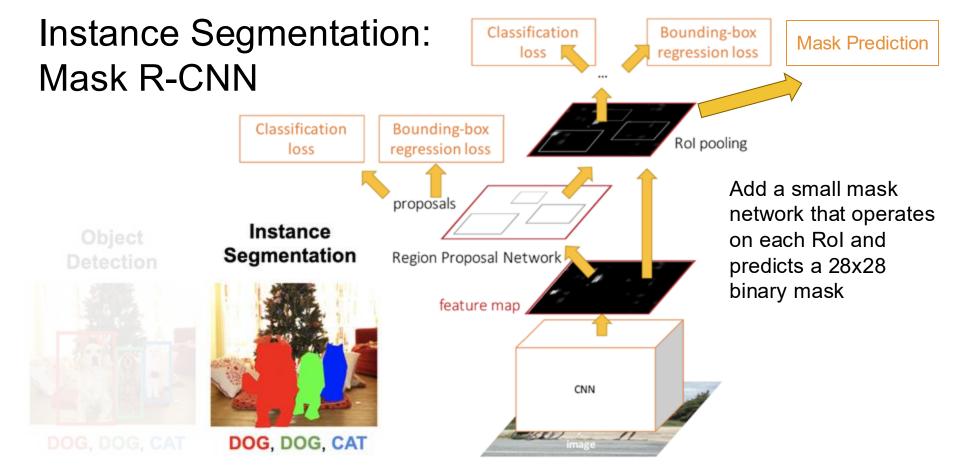
DOG, DOG, CAT

Instance Segmentation

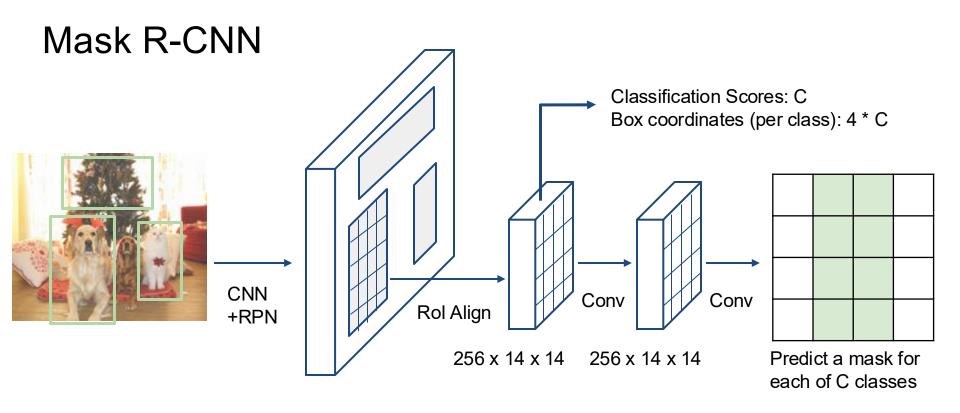
DOG, DOG, CAT

Multiple Object

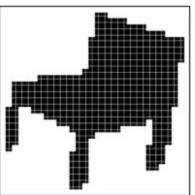
Object Detection: Classification Bounding-box regression loss loss **Faster R-CNN** Classification Bounding-box Rol pooling regression loss loss proposals Object Region Proposal Network Detection feature map CNN DOG, DOG, CAT

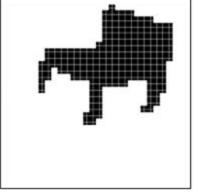


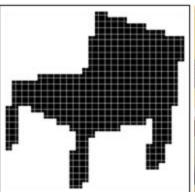
He et al, "Mask R-CNN", ICCV 2017

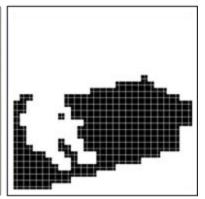


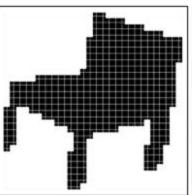
C x 28 x 28

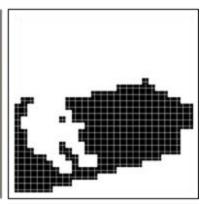


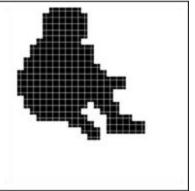




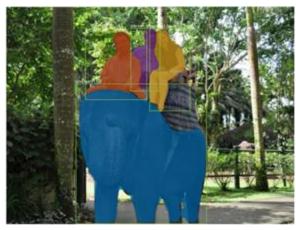




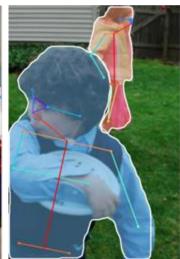




Mask R-CNN: Very Good Results!



Mask R-CNN Also does pose

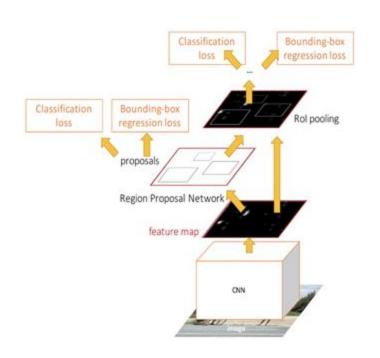


RCNN Series

- R-CNN: Per-region detection, handcrafted region proposal
- Fast R-CNN: Shared feature extraction, Rol Pooling, Anchors
- Faster R-CNN: Region Proposal Networks, Rol Align
- Mask R-CNN: Instance Segmentation

Detectors are becoming more complex! Many hyperparameters to tune for each components ...

Can we simplify it?



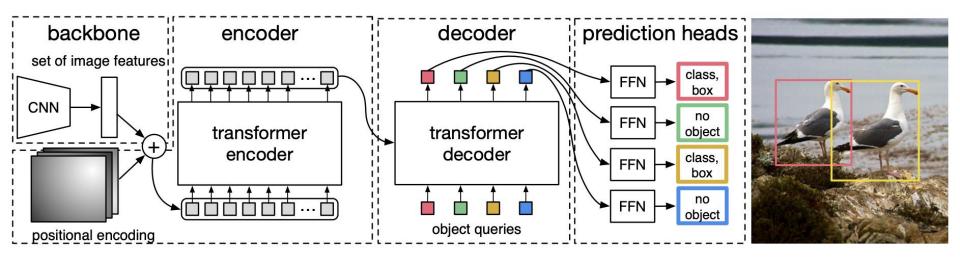
End-to-End Object Detection with Transformers

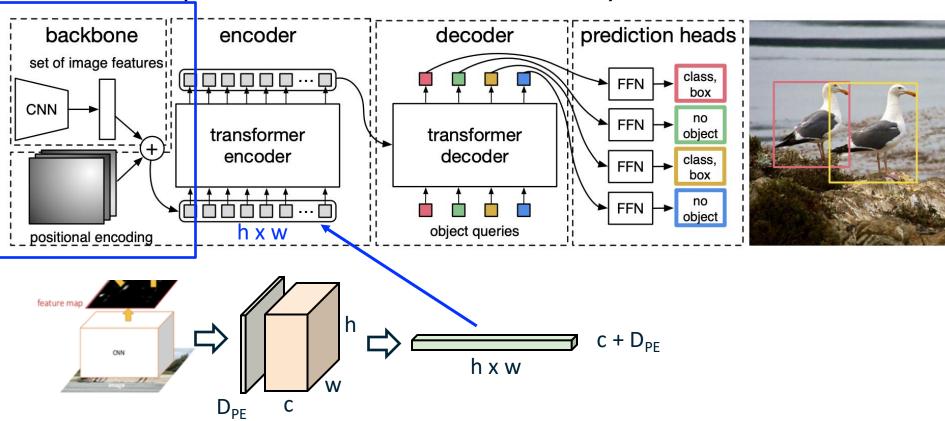
Nicolas Carion*, Francisco Massa*, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey Zagoruyko

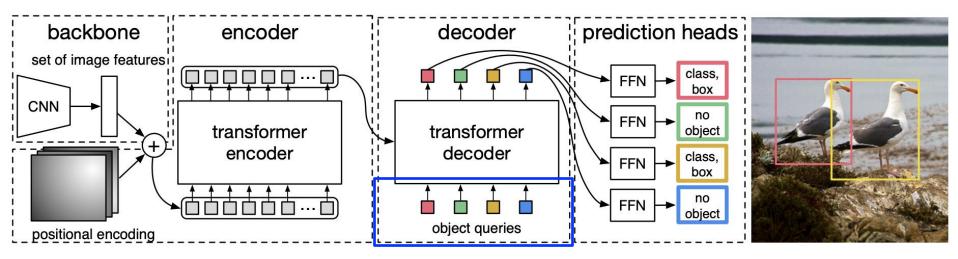
Facebook AI

Key ideas:

- Detection as a set-to-set prediction problem
- Use Transformer to model the detection problem

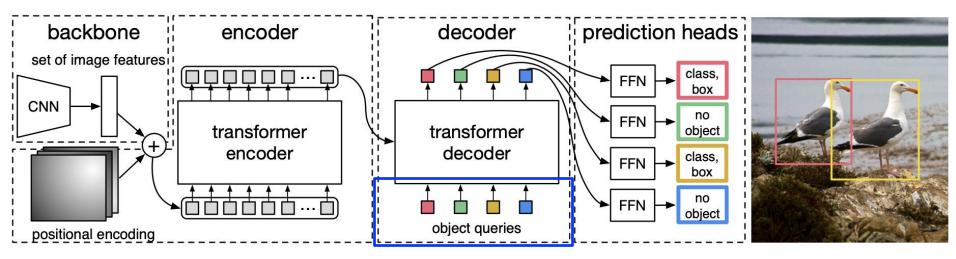


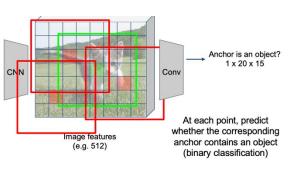




A fixed set of learnable embeddings, e.g., 300 size-N vectors

Q: Why?





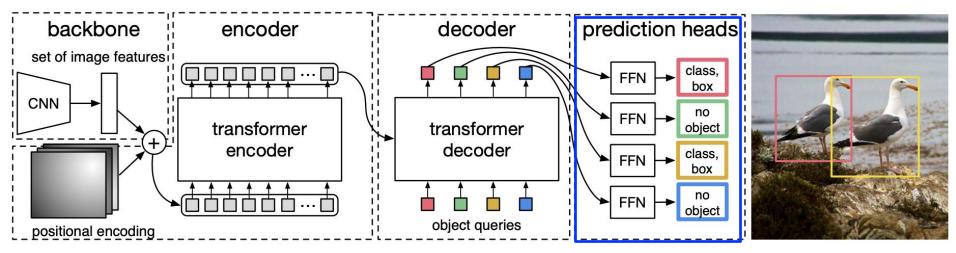
A fixed set of learnable embeddings, e.g., 300 size-N vectors

Q: Why?

A: Break the symmetry of predictions, so that each prediction is different.

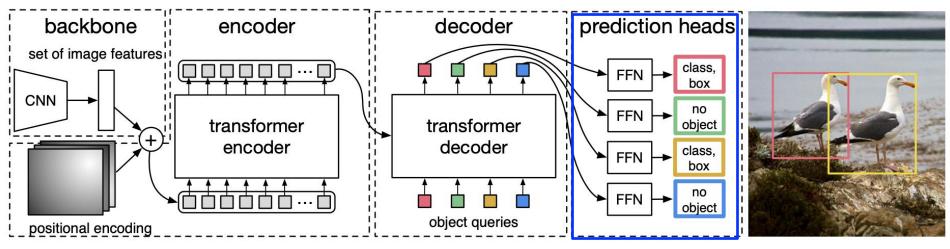
Analogous to anchors in *R-CNN, but no spatial location

DETR (DEtection TRansformer)



Problem: We don't know which query corresponds to which ground truth during training! We can't predetermine a fixed order like in sequence decoding.

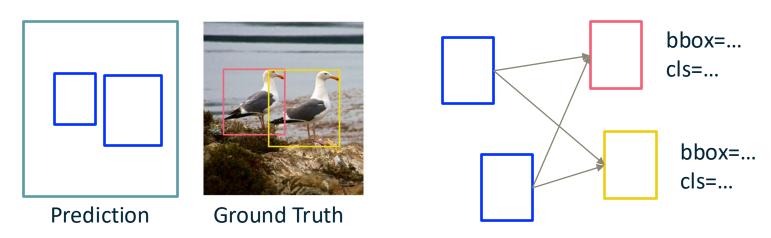
DETR (DEtection TRansformer)



Problem: We don't know which query corresponds to which ground truth during training! We can't predetermine a fixed order like in sequence decoding.

Solution: Set matching loss --- train your model to generate a set of predictions that matches ground truth regardless of its order.

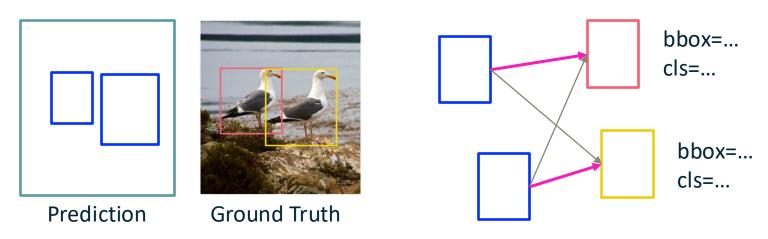
Hangarian Loss (Set Matching Loss)



Goal: minimize bipartite distance

Problem: each query should be trained to match one ground truth. We don't know the matching!

Hangarian Loss (Set Matching Loss)



Goal: minimize bipartite distance

- 1. **Hungarian matching:** find the minimum-loss bipartite matching between prediction and ground truth given the current prediction.
- 2. **Minimize matched loss:** Given the matched prediction and ground truth, minimize the detection loss (bounding box distance and classification CE loss)

Comparison with FasterRCNN

Model	GFLOPS/FPS	#params	AP	AP_{50}	AP ₇₅	AP_{S}	AP_{M}	$\overline{\mathrm{AP_L}}$
Faster RCNN-DC5	320/16	166M	39.0	60.5	42.3	21.4	43.5	52.5
Faster RCNN-FPN	180/26	42M	40.2	61.0	43.8	24.2	43.5	52.0
Faster RCNN-R101-FPN	246/20	60M	42.0	62.5	45.9	25.2	45.6	54.6
Faster RCNN-DC5+	320/16	166M	41.1	61.4	44.3	22.9	45.9	55.0
Faster RCNN-FPN+	180/26	42M	42.0	62.1	45.5	26.6	45.4	53.4
Faster RCNN-R101-FPN+	246/20	60M	44.0	63.9	47.8	27.2	48.1	56.0
DETR	86/28	41M	42.0	62.4	44.2	20.5	45.8	61.1
DETR-DC5	187/12	41M	43.3	63.1	45.9	22.5	47.3	61.1
DETR-R101	152/20	60M	43.5	63.8	46.4	21.9	48.0	61.8
DETR-DC5-R101	253/10	60M	44.9	64.7	47.7	23.7	49.5	62.3

Similar size, simpler, and (mostly) better!

We are still detecting a fixed number of object with finite vocabulary ...

Segment Anything

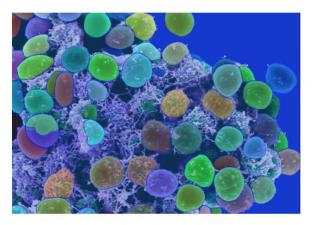
Alexander Kirillov^{1,2,4} Eric Mintun² Nikhila Ravi^{1,2} Hanzi Mao² Chloe Rolland³ Laura Gustafson³ Tete Xiao³ Spencer Whitehead Alexander C. Berg Wan-Yen Lo Piotr Dollár⁴ Ross Girshick⁴

¹project lead ²joint first author ³equal contribution ⁴directional lead

Meta AI Research, FAIR

Key ideas:

- Query-based prediction instead of fixed set-to-set prediction
- Large-scale training data with auto-labeling

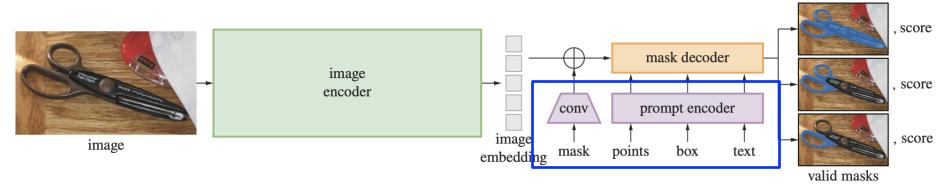


SegmentAnything (Meta AI, 2023)

Try it yourself! https://segment-anything.com/demo#

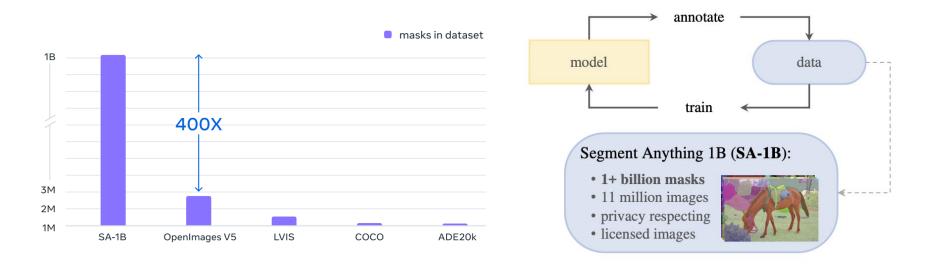
SegmentAnything (Meta AI, 2023)

Try it yourself! https://segment-anything.com/demo#



No more learned embeddings. Query anything you want!

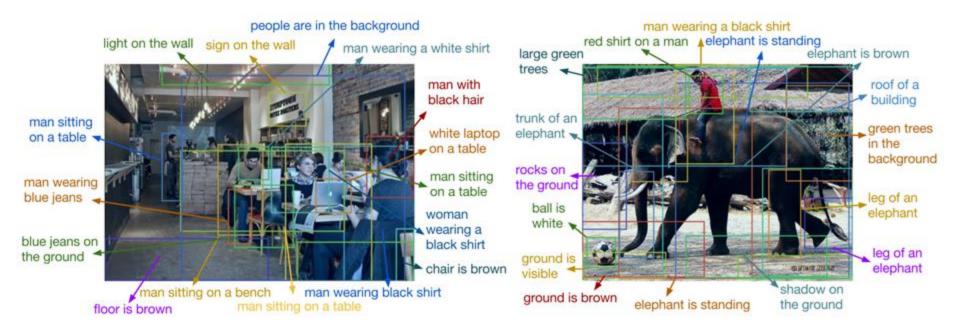
SegmentAnything (Meta AI, 2023)



SegmentAnything (Meta AI, 2023)

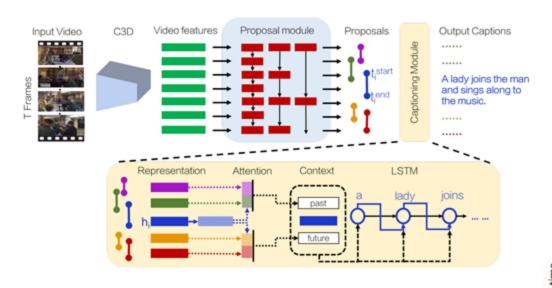
Beyond 2D Object Detection...

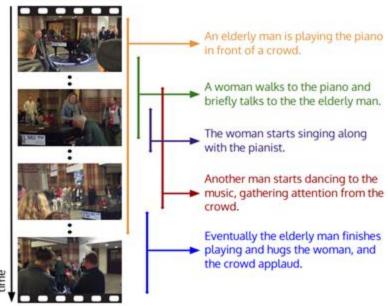
Object Detection + Captioning = Dense Captioning



Johnson, Karpathy, and Fei-Fei, "DenseCap: Fully Convolutional Localization Networks for Dense Captioning", CVPR 2016 Figure copyright IEEE, 2016. Reproduced for educational purposes.

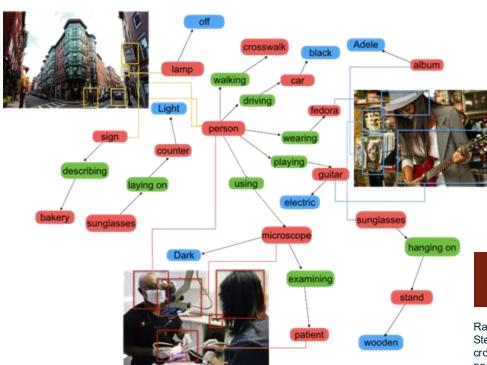
Dense Video Captioning





Ranjay Krishna et al., "Dense-Captioning Events in Videos", ICCV 2017 Figure copyright IEEE, 2017. Reproduced with permission.

Objects + Relationships = Scene Graphs



108,077 Images

5.4 Million Region Descriptions

1.7 Million Visual Question Answers

3.8 Million Object Instances

2.8 Million Attributes

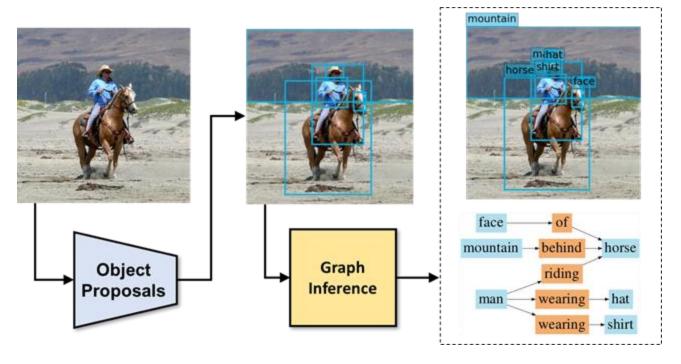
2.3 Million Relationships

Everything Mapped to Wordnet Synsets

VISUALGENOME

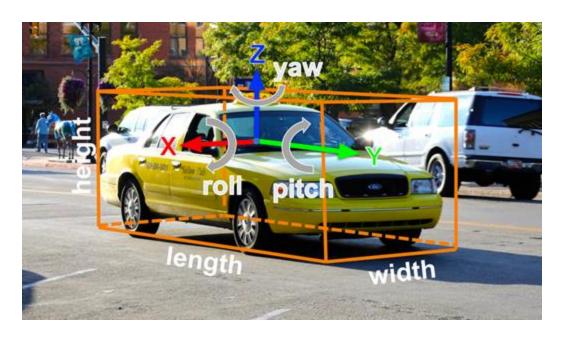
Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz, Stephanie Chen et al. "Visual genome: Connecting language and vision using crowdsourced dense image annotations." International Journal of Computer Vision 123, no. 1 (2017): 32-73.

Scene Graph Prediction



Xu, Zhu, Choy, and Fei-Fei, "Scene Graph Generation by Iterative Message Passing", CVPR 2017 Figure copyright IEEE, 2018. Reproduced for educational purposes.

3D Object Detection



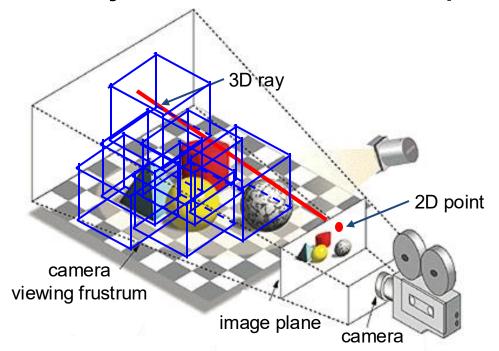
2D Object Detection: 2D bounding box (x, y, w, h)

3D Object Detection: 3D oriented bounding box (x, y, z, w, h, l, r, p, y)

Simplified bbox: no roll & pitch

Much harder problem than 2D object detection!

3D Object Detection: Simple Camera Model

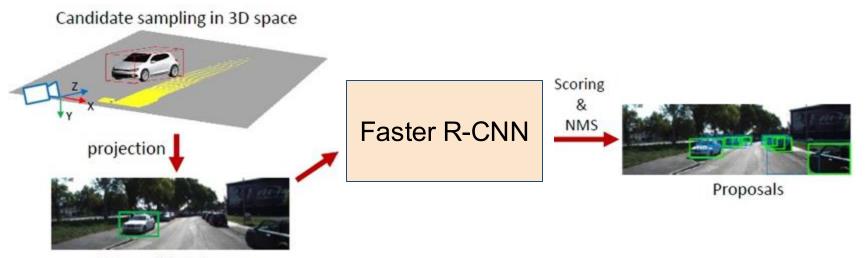


A point on the image plane corresponds to a ray in the 3D space

A 2D bounding box on an image is a **frustrum** in the 3D space

Localize an object in 3D: The object can be anywhere in the **camera viewing frustrum!**

3D Object Detection: Monocular Camera



2D candidate boxes

- Same idea as Faster RCNN, but proposals are in 3D
- 3D bounding box proposal, regress 3D box parameters + class score

Chen, Xiaozhi, Kaustav Kundu, Ziyu Zhang, Huimin Ma, Sanja Fidler, and Raquel Urtasun. "Monocular 3d object detection for autonomous driving." CVPR 2016.

3D Shape Prediction: Mesh R-CNN

