CS 4644/7643: Lecture 19
Danfei Xu

Topics:
e Generative Adversarial Networks

e Self-supervised Learning

* Pretext task from image transformation
e Contrastive learning



Administrative

* HW4 / PS4 out. Due Nov 12, Grace Period ends 14th,

* Start the coding part NOW --- it takes some time to run GAN /
diffusion model training on Colab GPUs.

* Milestone Report due Nov 4%, NO GRACE PERIOD



Denoising Diffusion: Image to Noise and Back
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The Denoising Diffusion Process

image from The “forward diffusion” process:

dataset add Gaussian noise each step noise (0, 1)
Xo — X1 — —> X7-1 — XT
e —
soe
Xo «—— Xq ——XT-1 «— XT

The “denoising diffusion” process:
generate an image from noise by
denoising the gaussian noises



Connection to VAES

forward diffusion: encoding X denoising diffusion: decoding

noise V' (0,1) X1
\ ) J

Known / predefined: Unknown / learned:
Q(xllexO)

T
po (xo.7) = p(xT) 1_[299 (xe—1lx¢)
t=1

Similar to VAEs, use the denoising decoding
process to generate new images.



The Diffusion (Encoding) Process

The known forward process Xg —> X{—> oo — X7

q(xi.r]|xg) = 1_[ q(x¢|xt—1) Probability Chain Rule (Markov Chain)
t=1

q(xtlxt_l) = N (x¢; (1 — Br)xe—1, fe]) Conditional Gaussian

[+ is the variance schedule at the diffusion step t

0< By <Py <-<Pr<1,typical value range [0.0001, 0.02], with T = 1000

Xo —> X1— —> X1—1 —> XT




The Denoising (Decoding) Process

The learned denoising process X0 X4 XT
T

po(xo.r) = p(xr) | | Po(x¢—1|xt) Probability Chain Rule (Markov Chain)
t=1
Do (Xe—11xe) = N (xe_q; 1o (xp, ), 2q (1)) Conditional Gaussian
™~

Want to learn time-  Assume fixed / known variance
dependent mean (simplification)

How do we form a learning objective?



The Denoising (Decoding) Process

The learned denoising process Xo X4
P (Xe—11xt) = N (xp—1; 1o (xs, t);zq(t))

High-level intuition: derive a ground truth denoising distribution q(xs_1|x¢, x¢) and
train a neural net pg (x;_1|x;) to match the distribution.

XT

The learning objective: argming D (q(xs—1|xs, x0) || (xe—1]x:))

What does it look like? q(x,_lx;, x0) = N (xe—1; 114 (1), Z4 ()
1

_ (B
uq(t)—\/E(xt mé ,

The “ground truth” noise that brought x;_; to x;

- Recall: Gaussian
e~N (0,1 reparameterization trick



The Denoising (Decoding) Process

The learned denoising process X0 X4 Xt
Do (Xe—1lxt) = N (xe_q; 1o (X, t),Zq(t))

High-level intuition: derive a ground truth denoising distribution q(xs_1|x¢, x¢) and
train a neural net pg (x;_1|x;) to match the distribution.

The learning objective: argming D (q(xs—1|xs, x0) || (xe—1]x:))
What does it look like? q(x,_,|x,,x,) = N(xt_l;ﬂq(t),zq(t))
Assuming identical variance %, (t), we have:
argming Dy (q (x¢—1]x¢, x0)||P9(xt—1|xt)) = argmin9W||uq(t) — po(xe, O

Should be variance-dependent, but constant
works better in practice



p(x) = [ p(x|z)p(2)dz Intractable to estimate!

% + Di1 (q(z|%) || p(z]x))

p(X|Z)p(z)
q(Z|x)

logp(x) = E, [log

= E, [log Evidence Lower Bound (ELBO)

p(Xo|X1.7)p(x1.1)
q(x1.7|%0)

p(xr) HZ=1 po (Xe—11xt)
H{=1 q(xe|xe—1)

logp(xo) = Eq [log X =Xg, Z=Xi.T

= E, [log

... (derivation omitted, see Sohl-Dickstein et al.,, 2015 Appendix B)

T
= _Eq[DKL(q(lexO)l|p(xT))] - thzDKL(Q(xt—ﬂxb x0)||pe(xt—11x)) |+ log pg (xo|x1)

Maximize the agreement between the predicted reverse diffusion
distribution pg and the “ground truth” reverse diffusion distribution g

Deep Unsupervised Learning using Nonequilibrium Thermodynamics, Sohl-Dickstein et al., 2015



Learning the Denoising Process

The learned denoising process Xg «— X1+ eoo «— X7
T
poCror) = pCer) | [ po el
t=1
Po (Xe—11x) = N (xp_q; o (xg, t), Z(1)) Conditional Gaussian

Learning objective: argming||uq () — pg(xe, t)||

L (U .
#q(t)_\/a_t<Xt m6>' € N(O'I)

o Unknown during  Recall: this is the “ground truth”
known during inference . .
inference noise that brought x, to x;

Idea: just learn € with €5 (xg, t)!



Learning the Denoising Process

The learned denoisinngrocess X0 X4 Xt
poCror) = pCer) | [ po el

t=1
Po (Xe—11x) = N (xp_q; o (xg, t), Z(1)) Conditional Gaussian

Simplified learning objective: argming||e — 69(,/67tx0 + 41— e, t)||

- _ 1 _ P
Inference time: ug(x;, t) = \/a_t<xt mEQ(xt, t)>

Predicted “denoising noise”



The Denoising Diffusion Algorithm

Algorithm 1 Training

repeat
Xo ~ q(Xo)

S e D b

24

t ~ Uniform({1,...,7T})
e ~N(0,I)
Take gradient descent step on

Vo “e — €9 (v/arxo + V1 — auee, t)||2

until converged

N@OI) —> | €

X0

t

—

\

-

P

noising

The Denoising Diffusion Probabilistic Models, Ho et al., 2020

—>

Xt

L=||E—€||2<7 €

—>

€g (xtr t)

Compute regression loss



The Denoising Diffusion Algorithm

Algorithm 1 Training  Algorithm 2 Sampling
1 repeat I: xp ~N(0,1)
2: XONQ(_XO) 2: fort="T,...,1do
i' Lot [J{;l(l(f)oar)n({l, s T} 3 z~N(0,I)ift >1,elsez=0
I €~ , . _
5: Take gradient descent step on 4 X1 = \% (Xt - ﬁee(xt, t)) + Uiz Ot = ‘/ﬁt
Vo ||€ — €0 (v/@xo + /I — age, t)||2 5: end for
6: until converged 6: return xo

\ \
Po (xe—1lxr) = N (xe—q; u(t), 2(t))

Xt >

A

€g(Xe, t) | — | Ut

The Denoising Diffusion Probabilistic Models, Ho et al., 2020



Conditional Diffusion Models

\ Conditional
An astronaut riding /
a horse in a

photorealistic style

Diffusion

Simple idea: just condition the model on some text labels y!

eg(xs, v, t)
Problem: Very blurry generation



Classifier-free Guided Diffusion

\ Conditional
An astronaut riding /
a horsein a

photorealistic style

Diffusion

Classifier-free Guided Diffusion: estimate the gradient of the classifier
model with conditional diffusion models!

V.. logf,(ylx,) = —ﬁ (6o t,7) — €9(xer D)
- Ut

€g(xp, t,y) = W+ Deg(x, t,y) — weg(xg, t)
Linearly combine denoisers from an unconditional distribution and a conditional distribution

Ho and Salimans, 2022



Latent-space Diffusion
Problem: Hard to learn diffusion process on high-resolution images

Solution: learn a low-dimensional latent space using a ViT-based autoencoder
and do diffusion on the latent space!

real/fake
{8 S| =f | r:

Transformer

—_— P(S)=H,-p(si|5<i)"..,I'Illll'l,!" tle|r]f

CNN
Discriminator

. \ -~
argmincz |2 — 2|
= =
quantization

The latent space autoencoder

Esser and Rombach et al., 2021



Summary

e Denoising Diffusion model is a type of generative model that learns the
process of “denoising” a known noise source (Gaussian).

e \We can construct a learning problem by deriving the evidence lower
bound (ELBO) of the denoising process.

e The learning objective is to minimize the KL divergence between the
“ground truth” and the learned denoising distribution.

e Asimplified learning objective is to estimate the noise of the forward
diffusion process.

e The diffusion process can be guided to generate targeted samples.
e Can be applied to many different domains. Same underlying principle.
e Very hot topic!



Taxonomy of Generative Models Direct

GAN
Generative models
Explicit density Implicit density
Tractable density Approximate density Markov Chain
. : GSN
Fully Visible Belief Nets \
- NADE : / :
- MADE Variational Markov Chain

- PixelRNN/CNN
- NICE/ RealNVP
- Glow

- Ffjord

Variational Autoencoder Boltzmann Machine
Denoising Diffusion Models

Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.



Recall: Variational Autoencoders

"'“‘J“"".""hbbh We want to estimate the true *
parameters
“ “ -' -' ‘ ‘ ‘ “‘ of this generative model given training data x.

Sample from
true conditional €T

How should we represent this model?

po-(z | 2) |
Decoder Assume p(z) is known and simple, e.qg.
network isotropic Gaussian. Reasonable for latent
Sample from attributes, e.g. pose, how much smile.
true prior ~
(4)
2% ~ py (2) Conditional p(x|z) is complex (generates

/\ Image) => represent with neural network

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014




Recall: Variational Autoencoders

T
Overall, we are trying to match a / \
distribution p(z) to a new distribution >
Hz|z z|z
p(x|z).
Decoder network \/
We need an approximate posterior Pe ($ z) >

z|x) to tell us which z corresponds
a(z]x) P Sample z from z|z ~ N (fz)2, 22)z)

to which x.
/

Hz|x E,z|:1:
Encoder network
Wil SN

Input Data L




Recall: Variational Autoencoders

T
Overall, we are trying to match a / \
distribution p(z) to a new distribution
Hz|z Em]z

p(x|z).

Decoder network \/
We need an approximate posterior Pe ($ z)
q(z|x) to tell us which z in the prior <

. Sample z from z|z ~ N (fz)2, 22)z)

corresponds to which x. /
What if we can learn this mapping Hz|x Z:El-’iﬂ

Encod twork
(prior z to samples x) directly? rEOCET NETOr \/
g¢(z|z)

Input Data L




GANSs: Learning generate samples directly

VAN
Denoising x| = X o 7| = |5
. . X1 | = x| - Xo| —
Diffusion 0 1 2 T 2 1 v
4 I
Generative AN
Adversarial
Networks 7| —— —| ¥
(GANSs)
N\ J




lan Goodfellow et al., “Generative

Generative Adversarial Networks Adversarial Nets’, NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution. No direct
way to do this!

Solution: Sample from a simple distribution we can easily sample from, e.g. random noise.
Learn transformation to training distribution.



Generative Adversarial Networks

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution. No direct

way to do this!

Solution: Sample from a simple distribution we can easily sample from, e.g. random noise.

Learn transformation to training distribution.

Output: Sample from
training distribution

Input: Random noise

i

Generator
Network

A

y4




Generative Adversarial Networks Aoversaria Net" NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution. No direct
way to do this!

Solution: Sample from a simple distribution we can easily sample from, e.g. random noise.
Learn transformation to training distribution.

But we don’t know which
sample z maps to which
training image -> can’t
learn by reconstructing
training images

Output: Sample from
training distribution

i

Generator
Network

A

Input: Random noise z




Generative Adversarial Networks Aoversaria Net" NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution. No direct
way to do this!

Solution: Sample from a simple distribution we can easily sample from, e.g. random noise.
Learn transformation to training distribution.

But we don’t know which
sample z maps to which
training image -> can’t
learn by reconstructing
training images

Output: Sample from

Objective: generated images
training distribution

should look “real”

i

Generator
Network

A

Input: Random noise z




Generative Adversarial Networks

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution. No direct

way to do this!

Solution: Sample from a simple distribution we can easily sample from, e.g. random noise.
Learn transformation to training distribution.

But we don’t know which
sample z maps to which
training image -> can’t
learn by reconstructing
training images

Solution: Use a discriminator
network to tell whether the
generate image is within data
distribution (“real”) or not

Output: Sample from
training distribution

Input: Random noise

Discriminator L, Real?

Network Fake?
T radient
Generator g
Network !
Z




lan Goodfellow et al., “Generative

Tralnlng GANS TWO'pIayer game Adversarial Nets”, NIPS 2014

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images



lan Goodfellow et al., “Generative

Tralnlng GANS TWO'player game Adversarial Nets”, NIPS 2014

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images

Real or Fake

!

Discriminator Network

Fake Images
(from generator) | [~
{

Generator Network

A

Random noise V4

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.



lan Goodfellow et al., “Generative

Tralnlng GANS TWO'player game Adversarial Nets”, NIPS 2014

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images

Real or Fake\ Discriminator learning signal

Generator learning signal T (binary classification)
(gradient from discriminato r) Discriminator Network

Fake Images Real Images
(from generator) ' (from training set)

Generator Network

A

Random noise V4

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.



Tra|n | n g GANS TW()-player gam e lan Goodfellow et al., “Generative

Adversarial Nets”, NIPS 2014

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images

Train jointly in minimax game
Minimax objective function:

néin n’éax [Ezwpdﬂm log Dg,(x) + Ezmp(z) log(1 — Dy, (Gﬁg (2)))

d

Gene/rgltor

objective Discriminator

objective



Adversarial Nets”, NIPS 2014

Tra|n |n g GANS TW()-player gam e lan Goodfellow et al., “Generative

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images

Train jointly in minimax game

Discriminator outputs likelihood in (0,1) of real image
Minimax objective function:

néin max [Emwpdm log Do, (z) + E.np(z) IOE(} — Do, (Go, (3)))}
9 — l

d

I Discriminator output
for real data x

1

Classify all real images Classify all generated
as real images as fake

Discriminator output for
generated fake data G(z)



Tra|n |n g GANS TW()-player gam e lan Goodfellow et al., “Generative

Adversarial Nets”, NIPS 2014

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images

Train jointly in minimax game

Discriminator outputs likelihood in (0,1) of real image
Minimax objective function:

min max [Emwpdm log Do, () + E,np(z) log(1l — Dy, (Gy,(2)))

0, 04 —

I Generator: learn to fool
discriminator. Minimize

log(l ~ Poy (xgen))



Training GANs: Two-player game Aaversaril Notse NIPS 2014

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images

Train jointly in minimax game

Discriminator outputs likelihood in (0,1) of real image
Minimax objective function:

min max [Emm log D, (z) + E,np(z) log(1 — Do, (Gs, (2)))
0 d

- Discriminator (84) wants to maximize objective such that D(x) is close to 1 (real) and
D(G(z2)) is close to O (fake)

- Generator (84) wants to minimize objective such that D(G(z)) is close to 1
(discriminator is fooled into thinking generated G(z) is real)



lan Goodfellow et al., “Generative

Tralnlng GANS TWO'pIayer game Adversarial Nets”, NIPS 2014

Minimax objective function:
min X |Egrpy,, 108 Doy (7) + Eanp(s) 10g(1 — Do, (Go, (2)))]

9, 64

Alternate between:
1. Gradient ascent on discriminator

max [Emmm log Dy, () + E.rp(z) log(1 — Do, (G, (z)))}

2. Gradient descent on generator
r%in ]E'z-"up{z) lﬂg(l - Dﬁd (Gﬁg (Z)))



lan Goodfellow et al., “Generative

Tralnlng GANS TWO'player game Adversarial Nets”, NIPS 2014

Minimax objective function:
min X |Egrpy,, 108 Doy (7) + Eanp(s) 10g(1 — Do, (Go, (2)))]

9, 64

Alternate between:
1. Gradient ascent on discriminator

max [Emmm log Dy, () + E.rp(z) log(1 — Do, (G, (z)))}

2. Gradient descent on generator

] When sample is likely
1’%111 E.p(2) log(1 — D, (Gﬂg (2))) fake, want to learn from |
7 it to improve generator .

[= st -2tcen |

In practice, optimizing this generator objective (m.ove to the right on X ¢ |
axis).

does not work well! : .

4
o o



lan Goodfellow et al., “Generative

Tralnlng GANS TWO'player game Adversarial Nets”, NIPS 2014

Minimax objective function:
min X |Egrpy,, 108 Doy (7) + Eanp(s) 10g(1 — Do, (Go, (2)))]

9, 64

Alternate between:

1. Gradient ascent on discriminator
Gradient signal

max [Emwmam log Dy, () + E,p(z) log(1 — Dy, (G, (z)))} dominated by region
? where sample is

2. Gradient descent on generator . already good
. When sample is likely =X

1’%111 E.p(2) log(1 — D, (Gﬂg (2))) fake, want to learn from | |

q

it to improve generator .

In practice, optimizing this generator objective (m_ove to the right on X *5 |
axis). el
does not work well! 2 .

But gradient in this T N T
region is relatively flat!




lan Goodfellow et al., “Generative

Tralnlng GANS TWO'player game Adversarial Nets”, NIPS 2014

Minimax objective function:
min X |Egrpy,, 108 Doy (7) + Eanp(s) 10g(1 — Do, (Go, (2)))]

9, 64

Alternate between:
1. Gradient ascent on discriminator

max [Emmm log Dy, () + E.rp(z) log(1 — Do, (G, (z)))}

2. Instead: Gradient ascent on generator, different

objective
’ max E. () log(D, (Go, (2)))
a
Instead of minimizing likelihood of discriminator being correct, now High gradient signal
maximize likelihood of discriminator being wrong. ‘;
Same objective of fooling discriminator, but now higher gradient .
signal for bad samples => works much better! Standard in practice. '

S e M W .
I|
|
f
[
I

04 s T .18
Low gradient signal



lan Goodfellow et al., “Generative

Tralnlng GANS TWO'player game Adversarial Nets”, NIPS 2014

Putting it together: GAN training algorithm

for number of training iterations do
for k steps do

e Sample minibatch of m noise samples {z(*), ..., (™)} from noise prior p,(z).
e Sample minibatch of m examples {z(!),..., (™} from data generating distribution
Paata ().
e Update the discriminator by ascending its stochastic gradient:
1 T . .
?ﬂda ; [log Dy, (z) + log(1 — Dg, (G, I[z'["']'))}]
end for
e Sample minibatch of m noise samples {z(), ..., z(™)} from noise prior p, ().

e Update the generator by ascending its stochastic gradient (improved objective):

e

Vo, > 10g(Ds, (Ga, (7))

i=1

end for



Training GANSs: Two-player game

Putting it together: GAN training algorithm

Some find k=1
more stable,
others use k > 1,
no best rule.

Followup work
(e.g. Wasserstein
GAN, BEGAN)
alleviates this
problem, better
stability!

end for

for number of training iterations do

trl sepshio :
e Sample minibatch of m noise samples {z(*), ..., (™)} from noise prior p,(z).
e Sample minibatch of m examples {z(!),..., (™} from data generating distribution
Pdata ().
e Update the discriminator by ascending its stochastic gradient:
1 T . .
Vourm 2 [1og Dy, (+?) + log(1 — Ds,(Go, (z)))]
end for
e Sample minibatch of m noise samples {z(), ..., z(™)} from noise prior p, (). n

e Update the generator by ascending its stochastic gradient (improved objective):

T

Vo, > 10g(Ds, (Ga, (7))

i=1

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Update

 discriminator

Update
generator



GAN Learning Process

O Real Data
X Generated Data



GAN Learning Process

.DQ O Real Data
X Generated Data



GAN Learning Process

Op©O
o O
OOO R

O

O Real Data
X Generated Data



GAN Learning Process

O Real Data
X Generated Data



lan Goodfellow et al., “Generative

Tralnlng GANS TWO'player game Adversarial Nets”, NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Real or Fake

!

Discriminator Network

Fake Images
(from generator)

—_
35S

Generator Network

Random noise

A

y4

After training, use generator network to
generate new images

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.



lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Generative Adversarial Nets

Generated samples

Nearest neighbor from training set

Figures copyright lan Goodfellow et al., 2014. Reproduced with permission.



lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Generative Adversarial Nets
Generated samples (CIFAR-10)

Nearest neighbor from training set

Figures copyright lan Goodfellow et al., 2014. Reproduced with permission.



Generative Adversarial Nets: Convolutional Architectures

Generator is an upsampling network with fractionally-strided convolutions
Discriminator is a convolutional network

Architecture guidelines for stable Deep Convolutional GANs

Replace any pooling layers with strided convolutions (discriminator) and fractional-strided
convolutions (generator).

Use batchnorm in both the generator and the discriminator.
Remove fully connected hidden layers for deeper architectures.
Use ReLLU activation in generator for all layers except for the output, which uses Tanh.

Use LeakyReL.U activation in the discriminator for all layers.

Radford et al, “

Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016




2019: BigGAN

Brock et al., 2019



GANSs were popular ...

0.005

0.004

0.003 — GAN

=~ VAE
0.002

0.001

Proportion of Papers (Quarterly)

2018 2019 2020 2021 2022 2023 2024

0.03

0.0z

0.01

Proportion of Papers (Quarterly)

2018 2019 2020 2021 2022 2023 2024

Source: https://paperswithcode.com



Deep Generative Models

VAE

Denoising
Diffusion

Generative

Adversarial

Networks
(GANSs)

=N

=N




Generative Models: Closing Thoughts

e Learn without supervision = ability to leverage large, raw dataset
e Realism: Generate plausible samples given dataset

e Diversity: Generate diverse samples (avoid mode collapse)

e Controllability: Generate based on instruction / conditioning

e Healthy combination of theory and deep learning magic

e Generative Modeling is extremely hot in 2024. More will come ...



Supervised
Learning

Train Input: {X, Y}

Learning output:
f:X =Y, P(ylx)

e.g. classification

Unsupervised
Learning
Input: {X}

Learning
output: P(x)

Example: Clustering,
density estimation,
generative modeling

m] ]
I:I|:||:||:F|':I - .I...
[m] |

DE% -
m ]
m} - 7l

Self-Supervised Learning:
Create your own supervision

Reinforcement
Learning

Evaluative
feedback in the
form of reward

No supervision on
the right action

TR
Envirgnment

=} = : |

- Rﬁ'*arﬁ Edl

nErpreEs ¥

1 .-'-.
x“%*'_,., .Hﬂ'i;_; -

Agent



Self-supervised Learning

In short: still supervised learning, with two important distinctions:

1. Learn from labels generated autonomously instead of human annotations.

2. The goalis to learn good representations for other target tasks.

dataset (no labels)

pre-training
model

pretext
task
knowledge
transfer
[ - target
task

target model

Source: Noroozi et al., 2018



Self-supervised pretext tasks

Example: learn to predict image transformations / complete corrupted images

. &

image completion rotation prediction “jigsaw puzzle” colorization

1. Solving the pretext tasks allow the model to learn good features.
2. We can automatically generate labels for the pretext tasks.



Generative vs. Self-supervised Learning

g -
ONE @ DOLLAR
L& :e h:ﬁ Q

Left: Drawing of a dollar bill from memory. Right: Drawing subsequently made with a
dollar bill present. Image source: Epstein, 2016

Learning to generate pixel-level details is often unnecessary; learn high-level
semantic features with pretext tasks instead

Source: Anand, 2020



https://aeon.co/essays/your-brain-does-not-process-information-and-it-is-not-a-computer
https://ankeshanand.com/blog/2020/01/26/contrative-self-supervised-learning.html
https://ankeshanand.com/blog/2020/01/26/contrative-self-supervised-learning.html

How to evaluate a self-supervised learning method?

We usually don’t care about the performance of the self-supervised learning

task, e.g., we don’t care if the model learns to predict image rotation
perfectly.

Evaluate the learned feature encoders on downstream target tasks



How to evaluate a self-supervised learning method?

feature

@ I:> self-supervised I:> extractor
learning (e.g., a

convnet)

lots of

unlabeled
data ;\ 90°
—

conv fc

1. Learn good feature extractors from
self-supervised pretext tasks, e.g.,
predicting image rotations



How to evaluate a self-supervised learning method?

feature

I:> self-supervised I:> extractor = supervised :[ evaluate on the }

(e.g., a
convnet)

learning learning target task

e.g. classification, detection
lots of

unlabeled
data * 90° 4 bird
smaIIamount of

labeled data on the

conv fc target task Imear
cIaSS|f|er
1. Learn good feature extractors from 2. Attach a shallow network on the
self-supervised pretext tasks, e.g., feature extractor; train the shallow
predicting image rotations network on the target task with small

amount of labeled data



Broader picture

Today’s lecture

computer vision

Doersch et al., 2015

robot / reinforcement learning

Dense Object Net (Florence
and Manuelli et al., 2018)

language modeling

Lamguage Models are Few-Shol Learners
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GPT3 (Brown, Mann, Ryder,
Subbiah et al., 2020)

111

speech synthesis
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-

] |
odegilesilesd]
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Wavenet (van den Oord et al.,

2016)



Today’s Agenda

Pretext tasks from image transformations

- Rotation, inpainting, rearrangement, coloring
Contrastive representation learning

- Intuition and formulation

- Instance contrastive learning: SImCLR and MOCO
- Sequence contrastive learning: CPC



Today’s Agenda

Pretext tasks from image transformations
- Rotation, inpainting, rearrangement, coloring



Pretext task: predict rotations

|

90° rotation 270° rotation 180° rotation 0° rotation 270° rotation

Hypothesis: a model could recognize the correct rotation of an object only if it
has the “visual commonsense” of what the object should look like
unperturbed.

(Image source: Gidaris et al. 2018)



https://arxiv.org/abs/1803.07728

Pretext task: predict rotations

> g(X.y=0) »
REMOSEEN st mege X Self-supervised
learning by rotating the
o glX,y=1) - > entire input images.
Rotate 90 degrees
Rotated image: X'
The model learns to
ol ol y=2) . i predict which rotation
Rotate 180 degrees is applied (4-way

Rotated image: X°

' i
Rotate 270 degrees

» glX,y=3) -
Rotated image: X'

classification)

(Image source: Gidaris et al. 2018)



https://arxiv.org/abs/1803.07728

Pretext task: predict rotations

> g(Xx.y=0) oi
Rotate 0 degrees
Rotated image: X*
— g(X,y=1) - B
Rotate 90 degrees
Rotated image: X'
Rotate 180 degrees

Rotated image: X°

> glX,y=3)

Rotate 270 degrees L
Rotated image: X

ConvNet
model F(.)

ConvNet
model F(.)

ConvNet
model F(.)

ConvNet
model F(.)

Objectives:
Maximize prob.
F(X°) \
Predict 0 degrees rotation (y=0) S e I f_s u p e rVi se d
learning by rotating the
Maximize prob. H H H
gt  entire input images.

Predict 90 degrees rotation (y=1)

The model learns to

»iE - predict which rotation
Predict 180 degrees rotation (y=2) is applled (4_Way
classification)
Maximize prob.
F(x?)

Predict 270 degrees rotation (y=3)

(Image source: Gidaris et al. 2018)



https://arxiv.org/abs/1803.07728

Evaluation on semi-supervised learning

1100

a0

" Self-supervised learning on
CIFAR10 (entire training set).
. 70
% . Freeze convl + conv2
j Learn conv3 + linear layers with
30 subset of labeled CIFAR10 data
0 (classification).
30| Ours - Semi-supervised
—— Supervised
}:éﬂ 1060 4000 1000 S0

# Training examples

(Image source: Gidaris et al. 2018)
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Transfer learned features to supervised learning

Pretrained with full

ImageNet supervision

“— No pretraining

Self-supervised learning on
ImageNet (entire training
set) with AlexNet.

Finetune on labeled data
from Pascal VOC 2007.

Classification  Detection Segmentation
(FomAP) (FemAP) (Femlol)

Trained layers | fc6-8  all all all
ImageNet labels | 789 799 56.8 48.0
Random 533 434 19.8
Random rescaled Krihenbiihl et al. (2015) | 392  56.6 45.6 326
Egomotion (Agrawal et al., 20135) 31.0 34.2 439
Context Encoders (Pathak et al., 2016b) 34.6 56.5 44,5 207
Tracking (Wang & Gupta, 2013) 55.6 63.1 47.4
Context (Doersch et al., 2015) 55.1 65.3 51.1
Colorization (Zhang et al., 2016a) 61.5 656 46.9 56
BIGAN (Donahue et al., 2016} 523 60.1 46.9 349
Jigsaw Puzzles (Noroozi & Favaro, 2016) - 67.6 532 376
NAT (Bojanowski & Joulin, 2017) 56.7 633 49.4
Split-Brain (Zhang et al., 2016b) 63.0 67.1 46.7 36.0
ColorProxy (Larsson et al., 2017) 65.9 384
Counting (Noroozi et al., 2017) - 67.7 514 36.6

[ (Ours) RotNet 70.87 7297 54.4 39.1 |

Self-supervised learning with rotation

prediction

source: Gidaris et al. 2018



https://arxiv.org/abs/1803.07728

Visualize learned visual attentions

2

Convl 27 x 27 Conv313x 13 Conv56x6 Convl 27 x 27 Conv3 13 x 13 Conv56 x 6

(a) Attention maps of supervised model (b) Attention maps of our self-supervised model
(Image source: Gidaris et al. 2018)
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Pretext task: predict relative patch locations

Example:

(Image source: Doersch et al., 2015)



https://arxiv.org/abs/1505.05192

Pretext task: solving “jigsaw puzzles”

shuffled

2
3

4

(¥,

é
Permutation Set

index permutation Reorder patches accordingto

i
=
the selected permutation e
64

9,4.683251.7 2
9

J» ARNEAmS! "
e T e

xi

]

A -G -
L4 & f—
’-1-- e
' o
- de e .
. o
-"‘- - -
53
. ’-'2- ——f L fors f oo / i
" -‘hi“’:- — ./_ 7  fc8 softmax
o
55256 D84 TAABL 225 cé

(Image source: Noroozi & Favaro, 2016)


https://arxiv.org/abs/1603.09246

Transfer learned features to supervised learning

Table 1: Results on PASCAL VOC 2007 Detection and Classification. The results
of the other methods are taken from Pathak et al. [30].

Method Pretraining time  Supervision  Classification Detection Segmentation
Krizhevskyet al. [25] 3 days 1000 class labels 78.2% 56.8% 48.0%
Wang and Gupta[39] 1 week motion 58.4% 44.0% -
Doersch et al. [10] 4 weeks context 55.3% 46.6% -
Pathak et al. [30] 14 hours context 56.5% 44.5% 29.7%
Ours 2.5 days context 67.6% 53.2% 37.6%

“Ours” is feature learned from solving image Jigsaw puzzles (Noroozi & Favaro,
2016). Doersch et al. is the method with relative patch location

(source: Noroozi & Favaro, 2016)



https://arxiv.org/abs/1603.09246

Pretext task: image coloring

:‘ 3
Grayscale image: L channel Color information: ab channels
X ¢ RHxWx1 ?ERHxsz

T

Source: Richard Zhang / Phillip
Isola



Pretext task: image coloring

At

Grayscale image: L channel

X e IR/HX"‘/XI

L

Concatenate (L,ab) channels

(X,Y)

ab

Source: Richard Zhang / Phillip
Isola



Transfer learned features to supervised learning

- Flaces-labels @-@ Pathak et al.
50 BB ImageNet-labels @@ Zhang et al.
8@ Krachenbuehl et al, 0-0 Owens et al,
>0 bosrs 6 Spit-Brain At Self-supervised learning on
@-@ Doersch et al, -4 Split-Brain Autolcl,cl) -
45 @@ Wang & Gupta — —4

+=
L=

, ImageNet (entire training set).
supervised

£ 35| - Use concatenated features
<l ——— ¢y~ this paper from F;and F,
E T——1

25 Labeled data is from the

Places (Zhou 2016).

—
15 .
o ‘?“d\

Source: Zhang et al., 2017
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Pretext task: image coloring

Source: Richard Zhang / Phillip
Isola



Pretext task: image coloring

Source: Richard Zhang / Phillip
Isola



Pretext task: video coloring

Idea: model the temporal coherence of colors in videos

reference frame how should | color these frames?

Source: Vondrick et al.,

2018


https://arxiv.org/abs/1806.09594
https://arxiv.org/abs/1806.09594

Pretext task: video coloring

Idea: model the temporal coherence of colors in videos

reference frame how should | color these frames?

Hypothesis: learning to color video frames should allow model to learn to

track regions or objects without labels!
Source: Vondrick et al.,

2018


https://arxiv.org/abs/1806.09594
https://arxiv.org/abs/1806.09594

Learning to color videos

Reference Frame Input Frame

Learning objective:

Establish mappings
between reference and
target frames in a learned
feature space.

0 P T YN
“!--- »

Use the mapping as
“pointers” to copy the
correct color (LAB).

a®

Reference Colors Target Colors

Source: Vondrick et al.,
2018
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Learning to color videos

Grayscale Video Embeddings
Reference A Af: AS | peference
Frame O ® 1 [ Colors

.1I‘

Target

Predicted
Frame | © A

® ‘fj L ‘é’; Colors

attention map on the reference
frame

L en(fT)
Y Zkexp (fff;)

Source: Vondrick et al.,
2018
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Learning to color videos

Grayscale Video Embeddings
Reference ‘ ‘ f t
Frame ® I
1
Target 4
Frame © A L AW \ 'fj

attention map on the reference  predicted color = weighted
frame sum of the reference color

exp (£ ;) _
A = = Aijci
S (7T5) ; g

Aci Reference
® Colors

o : Predicted
‘yj Colors

Source: Vondrick et al.,
2018
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Learning to color videos

Grayscale Video Embeddings

Reference ‘ ‘ f £
Frame ® I
1
Target 4
Frame  © A ® A fj

predicted color = weighted
sum of the reference color

Yi = Z Aije
0

attention map on the reference
frame

L en(fT)
Y Zkexl} (fff;)

Aci Reference

® Colors
o ? gr?dmted
yj olors

loss between predicted color
and ground truth color

m&nZﬁ(yj,cj)
J

Source: Vondrick et al.,
2018
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Colorizing videos (qualitative)

reference frame target frames (gray) predicted color

Source: Google Al blog
post



https://ai.googleblog.com/2018/06/self-supervised-tracking-via-video.html
https://ai.googleblog.com/2018/06/self-supervised-tracking-via-video.html

Colorizing videos (qualitative)

reference frame target frames (gray) predicted color

Source: Google Al blog
post
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Tracking emerges from colorization

Propagate segmentation masks using learned attention

Source: Google Al blog
post



https://ai.googleblog.com/2018/06/self-supervised-tracking-via-video.html
https://ai.googleblog.com/2018/06/self-supervised-tracking-via-video.html

Tracking emerges from colorization

Propagate pose keypoints using learned attention

T —
p—
— —
—
—
— —
——
—_—
*_
—_—
——
———
——
==
o
.

Source: Google Al blog
post
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Summary: pretext tasks from image transformations

® Pretext tasks focus on “visual common sense”, e.g., predict rotations,
inpainting, rearrangement, and colorization.

e The models are forced learn good features about natural images, e.g.,
semantic representation of an object category, in order to solve the pretext
tasks.

e \We don’t care about the performance of these pretext tasks, but rather how
useful the learned features are for downstream tasks (classification, detection,

segmentation).



Summary: pretext tasks from image transformations

® Pretext tasks focus on “visual common sense”, e.g., predict rotations,
inpainting, rearrangement, and colorization.

e The models are forced learn good features about natural images, e.g.,
semantic representation of an object category, in order to solve the pretext
tasks.

e \We don’t care about the performance of these pretext tasks, but rather how
useful the learned features are for downstream tasks (classification, detection,
segmentation).

® Problems: 1) coming up with individual pretext tasks is tedious, and 2) the
learned representations may not be general.



Pretext tasks from image transformations

m € o

image rotation “jigsaw puzzle” colorization
completion prediction

Learned representations may be tied to a specific pretext task!
Can we come up with a more general pretext task?



A more general pretext task?

same object




A more general pretext task?

e
\

same object




Contrastive Representation Learning

e
\

attract




Today’s Agenda

Contrastive representation learning

- Intuition and formulation

- Instance contrastive learning: SImCLR and MOCO
- Sequence contrastive learning: CPC



Contrastive Representation Learning

e
\

attract




Contrastive Representation Learning
_|_

£

L reference
+

L positive

T negative




Contrastive Representation Learning

213+

~. /

L reference
xt positive
I  negative

_|_

L
2
“This image”

“Any other image”



A formulation of contrastive learning

What we want:

score( f(x), f(xT)) >> score(f(z), f(z7))

x: reference sample; x* positive sample; x” negative sample

Given a chosen score function, we aim to learn an encoder

function f that yields high score for positive pairs (x, x*) and low
scores for negative pairs (x, x).



A formulation of contrastive learning

Loss function given 1 positive sample and N - 1 negative samples:

L=-Ex

exp(s(f(z), f(z™))

log N—1 —
exp(s(f(z), f(zT)) + 25—, exp(s(f(z), f(z;))




A formulation of contrastive learning

Loss function given 1 positive sample and N - 1 negative samples:

L=—-Ex |log exP(S(f(m;;fl(m+))
exp(s(f(z), f(=*)) + 2=, exp(s(f(2), f(z5))




A formulation of contrastive learning

Loss function given 1 positive sample and N - 1 negative samples:

L=-Ex

log

exp(s(f(z), f(z™))

N-—-1 —
exp(s(f(x), f(z*)) + 20" exp(s(f (@), f(]))
score for the positive score for the N-1 negative
pair pairs

This seems familiar ...




A formulation of contrastive learning

Loss function given 1 positive sample and N - 1 negative samples:

L=-Ex

log

exp(s(f(z), f(z™))

N-—-1 —
exp(s(f(x), f(z+)) + L0, exp(s(f (@), £ (z7))
score for the positive score for the N-1 negative
pair pairs

This seems familiar ...
Cross entropy loss for a N-way softmax classifier!
l.e., learn to find the positive sample from the N samples




A formulation of contrastive learning
Loss functic_)n given 1 positive sample and N - 1 negative samples:
+
L= _Ey |log exp(s(f (-’Ei; _fl(-’r ) _
exp(s(f(z), f(zT1)) + Zj:l exp(s(f(z), f(-’ﬂj )

Commonly known as the InfoNCE loss (van den Oord et al., 2018)
A lower bound on the mutual information between f(x) and f(x*)

MI[f(z), f(z*)] — log(N) > —L

The larger the negative sample size (N), the tighter the bound

Detailed derivation: Poole et al., 2019



https://arxiv.org/abs/1807.03748
https://arxiv.org/pdf/1905.06922.pdf

SImCLR: A Simple Framework for Contrastive Learning

Cosine similarity as the score function:

- HT'U
s(u,v) = i

Use a projection network h(:) to project
features to a space where contrastive learning

is applied

Generate positive samples through data

augmentation:
® random cropping, random color
distortion, and random blur.

Maximize agreement

Zi - zj
90| o()
h; +— Representation — h;
Q) f()

’
> A

Source: Chen et al.,
2020



https://arxiv.org/pdf/2002.05709.pdf
https://arxiv.org/pdf/2002.05709.pdf

SImCLR: generating positive samples from data
augmentation

(b) Crop and resize  (c) Crop, resize (and flip) (d) Color distort. (drop) (e) Color distort. (jitter)

(f) Rotate {90°, 180°,270°} (g) Cutout (h) Gaussian noise (1) Gaussian blur (j) Sobel filtering

Source: Chen et al.,

2020


https://arxiv.org/pdf/2002.05709.pdf
https://arxiv.org/pdf/2002.05709.pdf

SImCLR

Generate a positive pair
by sampling data
augmentation functions

Algorithm 1 SimCLR’s main learning algorithm.

input: batch size N, constant 7, structure of f, g, T.
for sampled minibatch {z; };_, do
forallke{1.....Nldo

draw two augmentation functions t~T, t' ~T
/# the hirst augmentation
Top—1 = t{zk)

— hak—1 = J(@2k-1) # representation
2op—1 = glhog—1) # projection
# the second augmentation
Tox = t'(xk)
hap = fl@a) # representation
Zo = glhoy) # projection
end for
foralli € {1,...,2N}and j € {1,...,2N} do
si; = z; zi/(||zllz;]) # pairwise similarity
end for

define £(i, j) as £(i, j)=—log o exp(si;/7)

=1 Lprzi] exp(sik/T)
L= Sa [6(2k—1,2k) + £(2k, 2k—1)]
update networks f and g to minimize £

end for

return encoder network f(-), and throw away g(-)

Source: Chen et al.,
2020



https://arxiv.org/pdf/2002.05709.pdf
https://arxiv.org/pdf/2002.05709.pdf

Algorithm 1 SimCLR’s main learning algorithm.
Sl m C |_ R input: batch size N, constant 7, structure of f, g, T.

for sampled minibatch {z; };_, do
forallke{1.....Nldo

draw two augmentation functions t~T, t' ~T
/# the hirst augmentation

Top—1 = t(my)

Generate a positive pair — hak—1 = J(@2k-1) # representation
by sampling data 2op_1 = glhax_1) # projection
augmentation functions # the second augmentation
T | g =t ()
hap = fl@a) # representation
Zo = glhoy) # projection
end for
foralli € {1,...,2N}and j € {1,...,2N} do
si; =z z;/(|zllllz;ll)  # pairwise similarity InfoNCE loss:
endfor — e Use all non-positive
define £(i, j) as (4, j)=—log s 7 "G/ [ samples in the batch
L= S [6(2k—T1,2K) + £(2k, 2k—1)] as x-
update networks f and g to minimize £
end for

return encoder network f(-), and throw away g(-)
Source: Chen et al.,

2020
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Algorithm 1 SimCLR’s main learning algorithm.
Sl m C |_ R input: batch size N, constant 7, structure of f, g, T.

for sampled minibatch {z; };_, do
forallke{1.....Nldo

draw two augmentation functions t ~T, t' ~T
/# the hirst augmentation
Top—1 = t(my)

Generate a positive pair _—" Pk =T @) # representation
by sampling data 2op_1 = glhax_1) # projection
augmentation functions # the second augmentation
T | g =t ()
hap = fl@a) # representation
zok = glhag) # projection
end for
foralli € {1,...,2N}and j € {1,...,2N} do
si; = z; zi/(||zllz;]) # pairwise similarity InfoNCE loss:
Iterate through and use 322:21;{1- i) as (i, /)= — log exp(si,;/7) «— Use all ngn-p05|t|ve
’ : AT ) L) exP(8:,/7) samples in the batch
each of the 2N sample as L N
— L= 55 > 1 [€(2k—1,2k) + £(2k, 2k—1)] as x-
reference, compute update networks f and g to minimize £
average loss end for

return encoder network f(-), and throw away g(-)
Source: Chen et al.,

2020
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Training linear classifier on SImCLR features

% Supervised #SimCLR (4x)
— 5 - .
S *SimCLR (2x) Train feature encoder on ImageNet
%‘ -0 oCPCv2-L (entire training set) using SimCLR.
5 *SimCLR oCMC JMGGD,MXJ
0 ePIRL-c2x . .
< ; o oMoCo (2x) AMDIM Freeze feature encoder, train a linear
a ° qCPCv2 PIRL-ens. classifier on top with labeled data.
L PIRL SHiaRi
— BigBiGAN
3 60} *MGCG
5 LA
o
E 55} eRotation
25 e|nstDisc
T 25 50 100 200 400 626

Number of Parameters (Millions)

Source: Chen et al.,
2020
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Semi-supervised learning on SImMCLR features

Label fraction
Method Architecture 1% 10%
Top 5

Supervised baseline ResNet-30 484  B04
Methods using other label-propagation:

Pseudo-label ResNet-50 516 824
VAT+Entropy Min. ResNet-50 470 834
UDA (w. RandAug) ResNet-50 - 88.5
FixMatch (w. RandAug) ResNet-50 - 89.1
S4L (Rot+VAT+En. M.) ResNet-50 (4x) - 01.2
Methods using representation learning only:

InstDisc ResNMet-50 392 77.4
BigBiGAN RevNet-50 (4x) 552 788
PIRL ResNet-50 57.2 838
CPC v2 ResNet-161(*) 779 912
SimCLR (ours) ResNet-50 75.5 87.8
SimCLR (ours) ResNet-30(2x) 83.0 91.2
SimCLR (ours) ResNet-50 (4x) 85.8 92.6

Table 7. ImageNet accuracy of models trained with few labels.

Train feature encoder on ImageNet
(entire training set) using SimCLR.

Finetune the encoder with 1% / 10%
of labeled data on ImageNet.

Source: Chen et al.,
2020
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SimCLR design choices: projection head

60 I II II Linear / non-linear projection heads improve
250 | Projection representation learning.
= = Linear
40 | mmm Non-linear . .
— Nﬂnel A possible explanation:
30 - . . . . ]
Dt 'i:]h%

” ® contrastive learning objective may discard
useful information for downstream tasks
® representation space z is trained to be

F'rojecl:m n uutput dlrn & nslunahty

Ty T—— invariant to data transformation.
;I ‘J . . .
[ o0 et ] ® by leveraging the projection head g(:), more
hi  — Representation—  h, information can be preserved in the h
I{-]‘ /Jff-} representation space
T P
I\%:.# e ,.--""-fif’l
P 5(, ~— #:{
\__f’

Source: Chen et al.,

2020
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SimCLR design choices: large batch size

Large training batch size is crucial for

SimCLR!
| Large batch size causes large memory

Batm L footprint during backpropagation:

:ig requires distributed training on TPUs

1024 (ImageNet experiments)
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|
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.
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Figure 9. Linear evaluation models (ResNet-50) trained with differ-
ent batch size and epochs. Each bar is a single run from scratch.'”
Source: Chen et al.,

2020
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Momentum Contrastive Learning (MoCo)

Key differences to SimCLR:

-::cuntras.t..|\.re loss no_grad
similarity < / e Keep arunning queue of keys (negative
samples).
q kﬁ kl k? e Compute gradients and update the
: queue encoder only through the queries.
e Decouple min-batch size with the number
encoder m::";gt:rm of keys: can support a large number of
negative samples.
ke ke ke
pauery Ty Xy° Ty ..

Source: He et al., 2020
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Momentum Contrastive Learning (MoCo)

-::-:untrashue loss no_g rad

similarity /

q ko k1 ko ...

queue
encoder momentum
encoder
ke ke ke
pauery Ty Xy° Ty ..

Key differences to SimCLR:

Keep a running queue of keys (negative
samples).

Compute gradients and update the
encoder only through the queries.

Decouple min-batch size with the number
of keys: can support a large number of
negative samples.

The key encoder is slowly progressing through
the momentum update rules:

9].; “— mgk + (1 — m)Gq

Source: He et al., 2020
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MoCo

Generate a positive pair
by sampling data
augmentation functions

Algorithm 1 Pseudocode of MoCo in a PyTorch-like style.

= " LS : e By
= di | : K ke [Cx
f_k.params = £f_g.params & initialize
for x in loader: # load a minibat imp le:
¥_g = aug{x) # a randomly
¥_k = augi{x) § a her r
g = f_g.forward({x_qg) # g_h
k= f k.forwardix k) & ke NxC
E = k. ﬂ&tacht] ¥ no gradlent o kEey:

. / 1_pos - br-:ﬂwqq a.u-;n;l[;wlui i, k.view(N,C, 1)) Use the running queue
No gradient through } negative logits: NaK «——— of keys as the negative

the positive sample

Update the FIFO negative
—

sample queue

1_neg = Hrriq view(N,C), gquele.view (T, K} )

— samples

!oq .:.s = ca;zltir::.us, 1_neg]l, dim=1)

. Ean. (1) -

132315 Er;‘f;gﬁ:?ép;L;:‘;ﬁ[le::uglLst, lglt:.-c.lslb:. «<— |InfoNCE loss

¥ SGD update: query network
loss . backward ()
update (f_g.params)

Update f_k through
4—

f_k.params -.m-E_k.paQam$4[l—mbﬁf_q.params
momentum

engqueua (gquéuea, K] F engueue Che Current minibatch
dequeue {gueve) # degqueue the earliest minibateh

bmm: batch matrix multiplication; mm: matrix multiplication; cat: concalenation. SO urce: H e et a | 2 020



https://arxiv.org/abs/1911.05722

“MoCo V2~

Improved Baselines with Momentum Contrastive Learning

Xinlei Chen Haogi Fan Ross Girshick Kaiming He
Facebook Al Research (FAIR)

A hybrid of ideas from SimCLR and MoCo:
e From SimCLR: non-linear projection head and strong data
augmentation.
e From MoCo: momentum-updated queues that allow training on a
large number of negative samples (no TPU required!).

Source: Chen et al.,
2020
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MoCo vs. SImCLR vs. MoCo V2

unsup. pre-train ImageMet VOC detection

case MLP aug+ cos epochs ace. APsy AP AP4s
supervised 76.5 81.3 53.5 58.8
MaoCo vl 200 60.6 BL.S 559 626
(a) v 200 66.2 820 564 62.6

ib) e 200 63.4 82.2 568 63.2

(c) v v 200 67.3 825 572 639

(d) v v o 200 67.5 824 570 63.6

(e) v . s 00 71.1 825 574 64.0

Table 1. Ablation of MoCo baselines, evaluated by ResNet-50 for
(i) ImageNet linear classification, and (ii) fine-tuning VOC object
detection (mean of 5 trials). “MLP": with an MLP head; “aug+":
with extra blur augmentation; “cos™: cosine learning rate schedule.

Key takeaways:

Non-linear projection head and strong
data augmentation are crucial for
contrastive learning.

Source: Chen et al.,
2020
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MoCo vs. SImCLR vs. MoCo V2

unsup. pre-train ImageNet

case MLF aug+ cos epochs batch ace.
MoCo vl [6] 200 256 60.6
SimCLR [2] v v v 200 256 61.9
SimCLR [2] v v v 200 8192 66.6
MoCo v2 v v v 200 2536 67.5
results of longer unsupervised training follow:

SimCLR [2] v v v 1000 4096 69.3
MoCo v2 v v v 800 256 71.1

Table 2. MoCo vs. SimCLR: ImageNet linear classifier accuracy
(ResNet-50, 1-crop 224 < 224), trained on features from unsuper-
vised pre-training. “aug+" in SimCLR includes blur and stronger
color distortion. SimCLR ablations are from Fig. 9 in [2] (we
thank the authors for providing the numerical results).

Key takeaways:

® Non-linear projection head and strong
data augmentation are crucial for
contrastive learning.

e Decoupling mini-batch size with negative
sample size allows MoCo-V2 to
outperform SimCLR with smaller batch
size (256 vs. 8192).

Source: Chen et al.,
2020
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MoCo vs. SImCLR vs. MoCo V2

mechanism  batch  memory / GPU  time / 200-ep.

MoCo 256 5.0G 53 hrs
end-to-end 256 7.4G 63 hrs
end-to-end 4096 93.0GT nfa

Table 3. Memory and time cost in 8 V100 16G GPUs, imple-
mented in PyTorch. ': based on our estimation.

Key takeaways:

Non-linear projection head and strong
data augmentation are crucial for
contrastive learning.

Decoupling mini-batch size with negative
sample size allows MoCo-V2 to
outperform SimCLR with smaller batch
size (256 vs. 8192).

... all with much smaller memory
footprint! (“end-to-end” means SimCLR
here)

Source: Chen et al.,
2020
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Instance vs. Sequence Contrastive Learning

E:IJ (& I i'.'[ i1.|| 15

Fi—3 Tpa Tpq2 Tega Lo

wlll”.“”fu”ﬂ“n-m wllllll — *ﬂ ~ M

Source: van den Oord et al., 2018

Instance-level contrastive learning: Sequence-level contrastive learning:
contrastive learning based on contrastive learning based on
positive & negative instances. sequential / temporal orders.

Examp|e5; SimCLR, MoCo Example: Contrastive Predictive Coding (CPC)
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Contrastive Predictive Coding (CPC)

Predictions

Contrastive: contrast between “right”
Y \ AN and “wrong” sequences using
contrastive learning.

Km..(\ X"hm\ /q\ Xm.“\ Kj\ ﬁ*\ KM\ Xq*\ Predictive: the model has to predict

o1 | Tz | T | e future patterns given the current

EEER .

Coding: the model learns useful

. . positive feature vectors, or “code”, for
downstream tasks, similar to other
5 O W

self-supervised methods.
negative

Figure source Source: van den Oord et al.,

20138,
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Contrastive Predictive Coding (CPC)

a::t Predictions 1. Encode all samples in a sequence

_ —:“ 1:" into vectors z; = g, (X, )
PRI N
[o=) [o= [ [ [ \K \/1..1\;#“\

EEHEE v
oot [ 5 @

negative
- J
Figure source Source: van den Oord et al.,

20138,
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Contrastive Predictive Coding (CPC)

1. Encode all samples in a sequence
into vectors z, = g.,{X;)

Predictions

2. Summarize context (e.g., half of a
sequence) into a context code ¢, using
an auto-regressive model (g,,).

J b e b b
[\ [\ =3 [\ [ [ [

Tl fr+*2 Lits Lypd

¢ 7 P E
. . - positive
context . .

negative

Source: van den QOord et al.,

Figure source
2018,
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Contrastive Predictive Coding (CPC)

.
Predictions 1. Encode all samples in a sequence
» - » R el T into vectors z, = g.,{X;)
@ @ @ % i % 2. Summarize context (e.g., half of a
* * * sequence) into a context code ¢, using

Kﬂ \Kﬁ,\ /q\ X” \ qu\ X” \ K“’“‘\ X” \ an auto-regressive model (g,,).

Ta | Tea | @ | T 3. Compute InfoNCE loss between the
context ¢, and future code z,,, using
- ﬂ . . the following time-dependent score
= E positive e
Fi

Sk (zi—i-k? Ct) - zi;‘, cht
context

, where W, is a trainable matrix.

negative

Figure source Source: van den Oord et al.,

2018,
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CPC example: modeling audio sequences

Ct Predictions
- - -‘1""‘.“‘_\ T ~. e, -
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Source: van den QOord et al.,
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CPC example: modeling audio sequences
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Figure 2: t-SNE visualization of audio (speech)
representations for a subset of 10 speakers (out
of 251). Every color represents a different
speaker.

Method | ACC
Phone classification

Random initialization 27.6
MFCC features 39.7
CPC 64.6
Supervised 74.6
Speaker classification
Random initialization 1.87
MFCC features 17.6
CPC 07.4
Supervised 98.5

Linear classification on trained
representations (LibriSpeech
dataset)

Source: van den QOord et al.,

2018,
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CPC example: modeling visual context

Idea: split image into patches, model rows of patches from top to bottom as a
sequence. l.e., use top rows as context to predict bottom rows.
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Source: van den QOord et al.,

2018,
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CPC example: modeling visual context

Method - Top-1 ACC
Using AlexNet conv5

Video [28] 20.8
Relative Position [11] 304
BiGan [35] 348
Colorization [10] 352
Jigsaw [29] * 38.1
Using ResNet-V2

Motion Segmentation [36] 27.6
Exemplar [36] 31.5
Relative Position [36] 36.2
Colorization [36] 396
CPC 48.7

Table 3: ImageNet top-1 unsupervised classifi-
cation results. *Jigsaw is not directly compa-
rable to the other AlexNet results because of

architectural differences.

Compares favorably with other pretext task-
based self-supervised learning method.

Doesn’t do as well compared to newer instance-
based contrastive learning methods on image

feature learning.

% Supervised *SimCLR (dx)
i *SimCLR (2x)

| & -
*SimCLR JMoCo (4x)
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o
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Source: van den Oord et al.,
2018,
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Summary: Contrastive Representation Learning

A general formulation for contrastive learning:

score(f(z), f(@™)) >> score(f(x), f(z™))

InfoNCE loss: N-way classification among positive and negative samples
exp(s(f(z), f(z™))
exp(s(f(z), f(@+)) + 355, exp(s(f(2), f(z}))

L=—-Ex |log

Commonly known as the INfoNCE loss (van den Oord et al., 2018)

A lower bound on the mutual information between f(x) and f(x*)

MIf(z), f(z7)] —log(N) > —L


https://arxiv.org/abs/1807.03748

Summary: Contrastive Representation Learning

SimCLR: a simple framework for contrastive
representation learning

Key ideas: non-linear projection head to allow
flexible representation learning

Simple to implement, effective in learning visual
representation

Requires large training batch size to be effective;
large memory footprint

Maximize agreement

Zi - - Z;
9() la0)
h; +— Representation —» h;
fC) £()
Y @
@T; | x|
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Summary: Contrastive Representation Learning

MoCo (v1, v2): contrastive learning using momentum

sample encoder

e Decouples negative sample size from minibatch
size; allows large batch training without TPU

® MoCo-v2 combines the key ideas from SimCLR,
i.e., nonlinear projection head, strong data
augmentation, with momentum contrastive

learning

contrastive loss

similarity
q ko ki ks ..
queue
I momentum
encoder
X key key ke
:Equr,ry ‘TU h 5'31 h 3:2 Y .



Summary: Contrastive Representation Learning

CPC: sequence-level contrastive learning

Contrast “right” sequence with “wrong”
sequence.

InfoNCE loss with a time-dependent score
function.

Can be applied to a variety of learning
problems, but not as effective in learning
image representations compared to instance-
level methods.
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Other examples

Contrastive learning between image and natural language sentences

1. Contrastive pre-training 2, Create dataset classifier from label text
plane
papper tha Taxt
aussle pup —_— Encoder & photo of Taxt
l l ] ] a {object). E nacoeier
b 1
T, T Ty Ty
o= Il II i'l Iy r, II J'J I'i| IH
— I, T, IpTy, IpTg I3 Ty 3. Use for zero-shot prediction
- - i
il I - T, T T, = Ty
| L
_3- | — e 1 g e e | Fe I-T,
#
I o
; ; ; ; ; = EI_":;gm . - I, LN LT LT - LTy,
—_— Iy Ty Ty Iyl IN'TJ Ty Ty l

a phats of
a dog.

CLIP (Contrastive Language—Image Pre-training) Radford et al., 2021



Other examples

Contrastive learning on pixel-wise feature descriptors

(c) Background Randomization (d) Cross Object Loss (f) Synthetic Multi Object

| ™
(2

Dense Object Net, Florence et al., 2018



Other examples

Dense Object Net, Florence et al., 2018
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