CS 4644/7643: Lecture 18
Danfei Xu

Topics:
e Generative Adversarial Networks

e Self-supervised Learning

* Pretext task from image transformation
e Contrastive learning

Administrative

e Start the HW4 coding part NOW --- it takes a long time to run GAN /
diffusion model training on Colab GPUs.

* Milestone Report due Nov 3t", NO GRACE PERIOD

Denoising Diffusion: Image to Noise and Back

Denoising ol = | x X
—p e
Diffusion 0 1 2

Generative
Adversarial
Networks 7| — —

(GANSs)

=N

The Denoising Diffusion Process

image from The “forward diffusion” process:

_ _ noise N'(0,1)
dataset add Gaussian noise each step

—> X171 — X7

——X7-1 «— XT

The “denoising diffusion” process:
generate an image from noise by
denoising the gaussian noises

Connection to VAEs

forward diffusion: encoding X denoising diffusion: decoding

noise N'(0,1)
\) J

Known / predefined: Unknown / learned:
Q(xllexO)

T
po (xo.7) = p(xT) 1_[299 (xe—1lx¢)
t=1

Similar to VAEs, use the denoising decoding
process to generate new images.

The Diffusion (Encoding) Process

The known forward process Xg —> X{—> oo — X7

q(xi7lx) = l_[q(x¢|x¢t—1) Probability Chain Rule (Markov Chain)
t=1

q(xtlxt_l) = N(x¢; (1 — Br)xe—1, f:I) Conditional Gaussian

[+ is the variance schedule at the diffusion step t

0< By <Py <-<Pr<1,typical value range [0.0001, 0.02], with T = 1000

Xo —> X1— —> X1—1 —> XT

The Denoising (Decoding) Process

The learned denoising process X0 X4 Xt
T

po (xo.7) = p(x7) Po(x;—1|x;) Probability Chain Rule (Markov Chain)
t=1
Do (Xe—11x¢) = N (xe—q; g (x,,), 2q (1)) Conditional Gaussian
™~

Want to learn time- Assume fixed / known variance
dependent mean (simplification)

How do we form a learning objective?

The Denoising (Decoding) Process

The learned denoising process Xo X4
Po (xe—1lxt) = N (xe—q; 10 (o, 1), Zq(t))

High-level intuition: derive a ground truth denoising distribution q(xs_1|x¢, x¢) and
train a neural net pg (x;_1|x;) to match the distribution.

XT

The learning objective: argming D (q(xs—1|xs, x0) || (xe—1]x:))

What does it look like? q(x,_;|x;, x0) = N (xt_l; uq(t),zq(t))
1

pq(t) =—<xt—Le :
! Vag Ja—a,)

The “ground truth” noise that brought x;_; to x;

- Recall: Gaussian
e~N (0,1 reparameterization trick

The Denoising (Decoding) Process

The learned denoising process X0 X4 Xt
Do (Xe—11xe) = N (xp_q; g (xy, t);zq(t))

High-level intuition: derive a ground truth denoising distribution q(xs_1|x¢, x¢) and
train a neural net pg (x;_1|x;) to match the distribution.

The learning objective: argming D (q(xs—1|xs, x0) || (xe—1]x:))
What does it look like? q(x,_,|x;, xo) = N(xt_l;ﬂq(t),zq(t))
Assuming identical variance %, (t), we have:
argming Dy (q (x¢—1]x¢, x0)||P9(xt—1|xt)) = argmin9W||uq(t) — po(xe, O

Should be variance-dependent, but constant
works better in practice

p(x) = [p(x|z)p(2)dz Intractable to estimate!

% + Di1 (q(z|%) || p(z]x))

p(X|Z)p(z)
q(Z|x)

logp(x) = E, [log

= E, [log Evidence Lower Bound (ELBO)

p(Xo|X1.7)p(x1.1)
q(x1.7|%0)

p(xr) HZ=1 po (Xe—11xt)
H{=1 q(xe|xe—1)

logp(xo) = Eq [log X =Xg, Z=Xi.T

= E, [log

... (derivation omitted, see Sohl-Dickstein et al.,, 2015 Appendix B)

T
= _Eq[DKL(q(lexO)l|p(xT))] - thzDKL(Q(xt—ﬂxb x0)||pe(xt—11x)) |+ log pg (xo|x1)

Maximize the agreement between the predicted reverse diffusion
distribution pg and the “ground truth” reverse diffusion distribution g

Deep Unsupervised Learning using Nonequilibrium Themodynamics, Sohl-Dickstein et al., 2015

Learning the Denoising Process

The learned denoising process Xg «— X1+ eoo «— X7

T
po (xo.7) = p(x7) 1_[Po (Xe—11xt)
t=1
Po(xe—11x) = N (xe_q; o (xp, t), Z(1)) Conditional Gaussian
Learning objective: argming||uq () — pg(xe, t)||

N (U .
ﬂq(t)_\/a_t<Xt m6>' € N(O'I)

o Unknown during Recall: this is the “ground truth”
known during inference . .
inference noise that brought x, to x;

Idea: just learn € with €5 (xg, t)!

Learning the Denoising Process

The learned denoisinngrocess X0 X4 Xt
P (xo.7) = p(x7) 1_[po (xe—1xt)

t=1
Po(xe—11x) = N (xe_q; o (xp, t), Z(1)) Conditional Gaussian

Simplified learning objective: argming||e — 69(,/67tx0 + 41— e, t)||

- _ 1 _ P
Inference time: ug(x;, t) = \/a_t<xt mEQ(xt, t)>

Predicted “denoising noise”

The Denoising Diffusion Algorithm

Algorithm 1 Training

repeat
Xo ~ q(Xo)

S e D b

A

t ~ Uniform({1,...,7T})
e ~N(0,I)
Take gradient descent step on

Vo “e — €9 (v/arxo + V1 — auee, t)||2

until converged

N@OI) —> | €

X0

t

E—

N\

—>

PRt

noising

The Denoising Diffusion Probabilistic Models, Ho et al., 2020

—>

Xt

L=|IE—€||2<— €

—>

€g (xtr t)

Compute regression loss

The Denoising Diffusion Algorithm

Algorithm 1 Training Algorithm 2 Sampling
1 repeat I: xp ~N(0,1)
2: XONQ(_XO) 2: fort="T,...,1do
i' Lot [J{;l(l(f)oar)n({l, s T} 3 z~N(0,I)ift >1,elsez=0
I €~ , . _
5: Take gradient descent step on 4 X1 = \% (Xt - ﬁee(xt, t)) + Uiz Ot = ‘/ﬁt
Vo ||€ — €0 (v/@xo + /I — age, t)||2 5: end for
6: until converged 6: return xo

\ \
Po (xe—1lxr) = N (xe—q; u(t), 2(t))

Xt|—

1/

€g(Xe, t) | — | Ut

The Denoising Diffusion Probabilistic Models, Ho et al., 2020

Conditional Diffusion Models

\ Conditional
An astronaut riding /
a horse in a

photorealistic style

Diffusion

Simple idea: just condition the model on some text labels y!

eg(xs, v, t)
Problem: Very blurry generation

Classifier-free Guided Diffusion

\ Conditional
An astronaut riding /
a horsein a

photorealistic style

Diffusion

Classifier-free Guided Diffusion: estimate the gradient of the classifier
model with conditional diffusion models!

V.. logf,(ylx,) = —ﬁ (6o t,7) — €9(xer D)
- Ut

€g(xp, t,y) = W+ Deg(x, t,y) — weg(xg, t)
Linearly combine denoisers from an unconditional distribution and a conditional distribution

Ho and Salimans, 2022

Latent-space Diffusion

Problem: Hard to learn diffusion process on high-resolution images

Solution: learn a low-dimensional latent space using a ViT-based autoencoder
and do diffusion on the latent space!

real/fake
{8 S| =f | r:

e — Transformer

—_— p(s)=H,-p(si|5<i)"T,I'Illll'l,!" fle|r]|f

. \ -~
argmin; ez [|2 — 2|
= = 7 =
quantization

The latent space autoencoder

Esser and Rombach et al., 2021

Hot off arXiv!

https://www.arxiv.org/pdf/2510.21890

The Principles of Diffusion Models

From Origins to Advances

Chieh-Hsin Lai
Sony Al

Yang Song
OpenAl

Dongjun Kim
Stanford University

Yuki Mitsufuji
Sony Corporation, Sony Al

Stefano Ermon
Stanford University

https://www.arxiv.org/pdf/2510.21890

Summary

e Denoising Diffusion model is a type of generative model that learns the
process of “denoising” a known noise source (Gaussian).

e Ve can construct a learning problem by deriving the evidence lower
bound (ELBO) of the denoising process.

e The learning objective is to minimize the KL divergence between the
“ground truth” and the learned denoising distribution.

e A simplified learning objective is to estimate the noise of the forward
diffusion process.

e The diffusion process can be guided to generate targeted samples.
e Can be applied to many different domains. Same underlying principle.
e Very hot topic!

Taxonomy of Generative Models Direct

GAN
Generative models
Explicit density Implicit density
Tractable density Approximate density Markov Chain

Fully Visible Belief Nets T~ GSN

- NADE —* :

- MADE Variational Markov Chain

- PixelRNN/CNN Variational Autoencoder Boltzmann Machine

- NICE / RealNVP . : .

. Glow Denoising Diffusion Models

Ffjord Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

GANSs: Learning generate samples directly

Denoising x| = X o 7| = |5
e X1 |—=|x5|— Xo| =
Diffusion 0 4 2 T 2 1 L
4 N
Generative JAN
Adversarial
Networks 7| — —| ¥
(GANSs)
_ J

Generative Adversarial Networks Aoversaria Net" NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution. No direct
way to do this!

Solution: Sample from a simple distribution we can easily sample from, e.g. random noise.
Learn transformation to training distribution.

Generative Adversarial Networks

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution. No direct

way to do this!

Solution: Sample from a simple distribution we can easily sample from, e.g. random noise.

Learn transformation to training distribution.

Output: Sample from
training distribution

Input: Random noise

Generator
Network

A

y4

Generative Adversarial Networks Aoversaria Net" NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution. No direct
way to do this!

Solution: Sample from a simple distribution we can easily sample from, e.g. random noise.
Learn transformation to training distribution.

But we don’t know which
sample z maps to which
training image -> can’t
learn by reconstructing
training images

Output: Sample from
training distribution

i

Generator
Network

A

Input: Random noise Z

Generative Adversarial Networks Aoversaria Net" NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution. No direct
way to do this!

Solution: Sample from a simple distribution we can easily sample from, e.g. random noise.
Learn transformation to training distribution.

But we don’t know which
sample z maps to which
training image -> can’t
learn by reconstructing
training images

Output: Sample from
training distribution

Objective: generated images
should look “real”

i

Generator
Network

A

Input: Random noise Z

Generative Adversarial Networks Aoversaria Net" NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution. No direct
way to do this!

Solution: Sample from a simple distribution we can easily sample from, e.g. random noise.
Learn transformation to training distribution.

But we don’t know which
sample z maps to which

Output: Sample from Discriminator | | Real?

o) training distribution Network Fake?
training image -> can’t '
learn by reconstructing t ,
training images Generator gradlent
Solution: Use a discriminator Net\‘/}/ork v
network to tell whether the
generate image is within data Input: Random noise Z

distribution (“real”) or not

lan Goodfellow et al., “Generative

Tralnlng GANS TWO'pIayer game Adversarial Nets”, NIPS 2014

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images

lan Goodfellow et al., “Generative

Tralnlng GANS TWO'pIayer game Adversarial Nets”, NIPS 2014

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images

Fake Images
(from generator)

Real or Fake

Discriminator Network

]

- : Real Images
~ (from training set)

Generator Network

Random noise

A

Z

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.

lan Goodfellow et al., “Generative

Tralnlng GANS TWO'pIayer game Adversarial Nets”, NIPS 2014

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images

Real or Fake Discriminator learning signal
\4 (binary classification)

Generator learning signal
(gradient from dlscrlmlnator) Discriminator Network

Fake Images g
(from generator) | ~

Generator Network

A

Real Images
(from training set)

Random noise z

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.

Trammg GANS TWO-pIayer game lan Goodfellow et al., “Generative

Adversarial Nets”, NIPS 2014

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images

Train jointly in minimax game
Minimax objective function:

min max [Empdata log D, (z) + E,np(z) log(1 — Do, (Gs, (2)))
0 d

/
Generator Discriminat
objective iscriminator

objective

Trammg GANS TWO-pIayer game lan Goodfellow et al., “Generative

Adversarial Nets”, NIPS 2014

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images

Train jointly in minimax game

Discriminator outputs likelihood in (0,1) of real image
Minimax objective function:

d

I I Discriminator output
for real data x

1

Classify all real images
as real

min max [Empdata log Dg, (z) + E,np(z) log(1 — Do, (Gs, (2)))
g —

training data x

Trammg GANS TWO-pIayer game lan Goodfellow et al., “Generative

Adversarial Nets”, NIPS 2014

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images

Train jointly in minimax game

Discriminator outputs likelihood in (0,1) of real image
Minimax objective function:

d

I I Discriminator output I Discriminator output for
. for real data x _ generated fake data G(z)
training data x I noise z

Classify all real images Classify all generated
as real images as fake

Héin I]%I&}C [E:.:wpdam log Dy, (3:) + Ezmp(z) log(l]- — Dy, (Gﬁg (z)).)}

Trammg GANS TWO-pIayer game lan Goodfellow et al., “Generative

Adversarial Nets”, NIPS 2014

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images

Train jointly in minimax game

Discriminator outputs likelihood in (0,1) of real image
Minimax objective function:

in 1025 | EgspertOE D, (2) + Exrep(s) 108(1 — Do, (Go, (2)))
0, 04 —
I Generator: learn to fool

discriminator. Minimize
lOg(l ~ Poy (xgen))

Training GANs: Two-player game Adversarial Nets', NIPS 2014

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images

Train jointly in minimax game

Discriminator outputs likelihood in (0,1) of real image
Minimax objective function:

min max [Emm log D, (z) + E,np(z) log(1 — Do, (Gs, (2)))
0 d

- Discriminator (64) wants to maximize objective such that D(x) is close to 1 (real) and
D(G(z)) is close to 0 (fake)

- Generator (684) wants to minimize objective such that D(G(z)) is close to 1
(discriminator is fooled into thinking generated G(z) is real)

GAN Learning Process

O Real Data
X Generated Data

GAN Learning Process

.DQ O Real Data
X Generated Data

GAN Learning Process

Op©O
o O
OOO R

O

O Real Data
X Generated Data

GAN Learning Process

O Real Data
X Generated Data

lan Goodfellow et al., “Generative

Tralnlng GANS TWO'pIayer game Adversarial Nets”, NIPS 2014

Minimax objective function:
min X |Egrpy,, 108 Doy (7) + Eanp(s) 10g(1 — Do, (Go, (2)))]

9, 64

Alternate between:
1. Gradient ascent on discriminator

max [Emmm log Dy, (%) + Eznp(z) log(1 — D, (G, (2)))

2. Gradient descent on generator
r%in]E'z-rup{z) lﬂg(l - Dﬁd (Gﬁg (Z)))

lan Goodfellow et al., “Generative

Tralnlng GANS TWO'pIayer game Adversarial Nets”, NIPS 2014

Minimax objective function:
min X |Egrpy,, 108 Doy (7) + Eanp(s) 10g(1 — Do, (Go, (2)))]

9, 64

Alternate between:
1. Gradient ascent on discriminator

max [Emmm log Dy, () + E.rp(z) log(1 — Do, (G, (z)))}

2. Gradient descent on generator

. When sample is likely
1’%111 E.p(2) log(1 — D, (Gﬂg (2))) fake, want to learn from |
g it to improve generator .

In practice, optimizing this generator objective (m_ove to the right on X ¢ |
axis).
does not work well! : .

4
g [i o a8 1o

lan Goodfellow et al., “Generative

Tralnlng GANS TWO'pIayer game Adversarial Nets”, NIPS 2014

Minimax objective function:
min X |Egrpy,, 108 Doy (7) + Eanp(s) 10g(1 — Do, (Go, (2)))]

9, 64

Alternate between:

1. Gradient ascent on discriminator
Gradient signal

max [E:::Nmam log Dy, () + E,p(z) log(1 — Dy, (G, (z)))} dominated by region
? where sample is
already go\od

2. Gradient descent on generator

] When sample is likely
1’%111 E.p(2) log(1 — D, (Gﬂg (2))) fake, want to learn from |
g it to improve generator .

In practice, optimizing this generator objective ;Tics)\)/e to the right on >S/' |
does not work well! ' : .

But gradient in this T ST —
region is relatively flat!

lan Goodfellow et al., “Generative

Tralnlng GANS TWO'pIayer game Adversarial Nets”, NIPS 2014

Minimax objective function:
min X |Egrpy,, 108 Doy (7) + Eanp(s) 10g(1 — Do, (Go, (2)))]

9, 64

Alternate between:
1. Gradient ascent on discriminator

max [Emmm log Dy, () + E.rp(z) log(1 — Do, (G, (z)))}

2. Instead: Gradient ascent on generator, different

objective
’ maxE, ;) log(Do, (Go, (2)))
a
Instead of minimizing likelihood of discriminator being correct, now High gradient signal
maximize likelihood of discriminator being wrong.
Same objective of fooling discriminator, but now higher gradient
signal for bad samples => works much better! Standard in practice.

S e M W .
I|
|
f
[
I

gk w ney

o o

0.4] T At
Low:gradient signal

lan Goodfellow et al., “Generative

Tralnlng GANS TWO'player game Adversarial Nets”, NIPS 2014

Putting it together: GAN training algorithm

for number of training iterations do
for k steps do

e Sample minibatch of m noise samples {z(*), ..., (™)} from noise prior p,(z).
e Sample minibatch of m examples {z(!),..., (™} from data generating distribution
Pdata ().
e Update the discriminator by ascending its stochastic gradient:
1 T . .
Vourm 2 [1og Dy, (+?) + log(1 — Ds,(Go, (z)))]
end for
e Sample minibatch of m noise samples {z(), ..., z(™)} from noise prior p, ().

e Update the generator by ascending its stochastic gradient (improved objective):

e

Vo, > 10g(Ds, (Ga, (7))

i=1

end for

Training GANs: Two-player game

Putting it together: GAN training algorithm

Some find k=1
more stable,
others use k > 1,
no best rule.

Followup work
(e.g. Wasserstein
GAN, BEGAN)
alleviates this
problem, better
stability!

end for

for number of training iterations do

trl sepshio :
e Sample minibatch of m noise samples {z(*), ..., (™)} from noise prior p,(z).
e Sample minibatch of m examples {z(!),..., (™} from data generating distribution
Pdata ().
e Update the discriminator by ascending its stochastic gradient:
1 T . .
Vourm 2 [1og Dy, (+?) + log(1 — Ds,(Go, (z)))]
end for
e Sample minibatch of m noise samples {z(), ..., z(™)} from noise prior p, (). n

e Update the generator by ascending its stochastic gradient (improved objective):

T

Vo, > 10g(Ds, (Ga, (7))

i=1

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Update

discriminator

Update
generator

lan Goodfellow et al., “Generative

Tralnlng GANS TWO'pIayer game Adversarial Nets”, NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Real or Fake

Discriminator Network

Fake Images
(from generator)

—_
]

Generator Network

Random noise

A

Z

Real Images
(from training set)

After training, use generator network to
generate new images

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Generative Adversarial Nets

Generated samples

Nearest neighbor from training set

Figures copyright lan Goodfellow et al., 2014. Reproduced with permission.

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Generative Adversarial Nets
Generated samples (CIFAR-10)

Nearest neighbor from training set

Figures copyright lan Goodfellow et al., 2014. Reproduced with permission.

Generative Adversarial Nets: Convolutional Architectures

Generator is an upsampling network with fractionally-strided convolutions
Discriminator is a convolutional network

Architecture guidelines for stable Deep Convolutional GANs

Replace any pooling layers with strided convolutions (discriminator) and fractional-strided
convolutions (generator).

Use batchnorm in both the generator and the discriminator.
Remove fully connected hidden layers for deeper architectures.
Use ReLLU activation in generator for all layers except for the output, which uses Tanh.

Use LeakyReL.U activation in the discriminator for all layers.

Radford et al, “

Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016

2019: BigGAN

Brock et al., 2019

GANSs were popular ...

0.005
=
e
£
T 0.004
3
g
1 p.003 — GAN
a
o
Ky — VAE
‘s 0.002
c
8
S 0.001
j=%
o
a

0
2018 2019 2020 2021 2022 2023 2024

0.03
=
-
a
t
o
2 . .
S 002 Diffusion
.
o
g models
s
§ oo
E
[~
o
(=]
e
(-

0 —
2018 2019 2020 2021 2022 2023 2024

Source: https://paperswithcode.com

Deep Generative Models

VAE

Denoising
Diffusion

Generative

Adversarial

Networks
(GANSs)

=N

=N

Generative Models: Closing Thoughts

e Learn without supervision = ability to leverage large, raw dataset
e Realism: Generate plausible samples given dataset

e Diversity: Generate diverse samples (avoid mode collapse)

e Controllability: Generate based on instruction / conditioning

e Healthy combination of theory and deep learning magic

e Generative Modeling is extremely hot in 2025. More will come ...

Supervised
Learning

Train Input: {X, Y}

Learning output:
f:X =Y, P(ylx)

e.g. classification

Unsupervised
Learning
Input: {X}

Learning
output: P(x)

Example: Clustering,
density estimation,
generative modeling

m|]
I:||:|I:I|:"D] Ol
O |
DE% -
m]
O 7]
o T
-
Em]

Self-Supervised Learning:
Create your own supervision

Reinforcement
Learning

Evaluative
feedback in the
form of reward

No supervision on
the right action

Self-supervised Learning

In short: still supervised learning, with two important distinctions:

1. Learn from labels generated autonomously instead of human annotations.

2. The goalis to learn good representations for other target tasks.

dataset (no labels)

pre-training
model

pretext
task
knowledge
transfer
[- target
task

target model

Source: Noroozi et al., 2018

Self-supervised pretext tasks

Example: learn to predict image transformations / complete corrupted images

. &

image completion rotation prediction “jigsaw puzzle” colorization

1. Solving the pretext tasks allow the model to learn good features.
2. We can automatically generate labels for the pretext tasks.

Generative vs. Self-supervised Learning

g -
ONE @ DOLLAR
L& :e h:ﬁ Q

Left: Drawing of a dollar bill from memory. Right: Drawing subsequently made with a
dollar bill present. Image source: Epstein, 2016

Learning to generate pixel-level details is often unnecessary;
learn abstract features with pretext tasks instead

Source: Anand, 2020

https://aeon.co/essays/your-brain-does-not-process-information-and-it-is-not-a-computer
https://ankeshanand.com/blog/2020/01/26/contrative-self-supervised-learning.html
https://ankeshanand.com/blog/2020/01/26/contrative-self-supervised-learning.html

How to evaluate a self-supervised learning method?

We usually don’t care about the performance of the self-supervised learning

task, e.g., we don’t care if the model learns to predict image rotation
perfectly.

Evaluate the learned feature encoders on downstream target tasks

How to evaluate a self-supervised learning method?

feature

@ I:> self-supervised I:> extractor
learning (e.g., a

convnet)

lots of

unlabeled
data ;\ 90°
—

conv fc

1. Learn good feature extractors from
self-supervised pretext tasks, e.g.,
predicting image rotations

How to evaluate a self-supervised learning method?

feature

I:> self-supervised I:> extractor = supervised :[evaluate on the }

(e.g., a
convnet)

learning learning target task

e.g. classification, detection
lots of

unlabeled
data * 90° 4 bird
smaIIamount of

labeled data on the

conv fc target task Imear
cIaSS|f|er
1. Learn good feature extractors from 2. Attach a shallow network on the
self-supervised pretext tasks, e.g., feature extractor; train the shallow
predicting image rotations network on the target task with small

amount of labeled data

Broader picture

Today’s lecture

computer vision

Doersch et al., 2015

robot / reinforcement learning

Dense Object Net (Florence
and Manuelli et al., 2018)

language modeling

Lamguage Models are Few-Shol Learners

T . Bwwa™ Wi e lamn ik, Ryl s bt
Joreiaplen’ FrofuleDariesl ovied Noddiests Fross Shpas i sy

Amamcls bl Camdinl tgereel drwl Hetees Ve Craies Kreapr T Bedghan
Erwei DB Rllys Bamed il ML Pl LI L =

1 Byt S Selark Chee ri gl ity Dl el s

B Bk Chark Urissaghar Barser
[— —— [RE— [R——
Oprasd
Aledrmcd

Emrst werh b o s s o a1 F ks sl T et 1 b v ey
Y e i = W .
R B, g o A B L ol B B e o Pl 8 W
bl B o s am vl pretem o mw Ly bisi - ety
4 e s o o g e . ey, b s] F s, gty
g b e Hon By e et ek o e Seaih gty T b At
1t

_-_l—nh-r-h'_—.'hh.-—h ol e o i Ly
o pp—

GPT3 (Brown, Mann, Ryder,
Subbiah et al., 2020)

111

speech synthesis

<L B I N N R N
-

] |
odegilesilesd]

LR E-B- R B RN E N RN N RN NN R N

Wavenet (van den Oord et al.,

2016)

Today’s Agenda

Pretext tasks from image transformations

- Rotation, inpainting, rearrangement, coloring
Contrastive representation learning

- Intuition and formulation

- Instance contrastive learning: SImCLR and MOCO
- Sequence contrastive learning: CPC

Today’s Agenda

Pretext tasks from image transformations
- Rotation, inpainting, rearrangement, coloring

Pretext task: predict rotations

|

90° rotation 270° rotation 180° rotation 0° rotation 270° rotation

Hypothesis: a model could recognize the correct rotation of an object only if it
has the “visual commonsense” of what the object should look like
unperturbed.

(Image source: Gidaris et al. 2018)

https://arxiv.org/abs/1803.07728

Pretext task: predict rotations

> g(X.y=0) »
REMOSEEN st mege X Self-supervised
learning by rotating the
o glX,y=1) - > entire input images.
Rotate 90 degrees
Rotated image: X'
The model learns to
ol ol y=2) . i predict which rotation
Rotate 180 degrees is applied (4-way

Rotated image: X°

' i
Rotate 270 degrees

» glX,y=3) -
Rotated image: X'

classification)

(Image source: Gidaris et al. 2018)

https://arxiv.org/abs/1803.07728

Pretext task: predict rotations

> g(Xx.y=0) oi
Rotate 0 degrees
Rotated image: X*
— g(X,y=1) - B
Rotate 90 degrees
Rotated image: X'
Rotate 180 degrees

Rotated image: X°

> glX,y=3)

Rotate 270 degrees L
Rotated image: X

ConvNet
model F(.)

ConvNet
model F(.)

ConvNet
model F(.)

ConvNet
model F(.)

Objectives:
Maximize prob.
F(X°) \
Predict 0 degrees rotation (y=0) S e I f_s u p e rVi se d
learning by rotating the
Maximize prob. H H H
gt entire input images.

Predict 90 degrees rotation (y=1)

The model learns to

»iE - predict which rotation
Predict 180 degrees rotation (y=2) is applled (4_Way
classification)
Maximize prob.
F(x?)

Predict 270 degrees rotation (y=3)

(Image source: Gidaris et al. 2018)

https://arxiv.org/abs/1803.07728

Evaluation on semi-supervised learning

1100

a0

" Self-supervised learning on
CIFAR10 (entire training set).
. 70
% . Freeze convl + conv2
j Learn conv3 + linear layers with
30 subset of labeled CIFAR10 data
0 (classification).
30| Ours - Semi-supervised
—— Supervised
}:éﬂ 1060 4000 1000 S0

Training examples

(Image source: Gidaris et al. 2018)

https://arxiv.org/abs/1803.07728

Transfer learned features to supervised learning

Pretrained with full

ImageNet supervision

“— No pretraining

Self-supervised learning on
ImageNet (entire training
set) with AlexNet.

Finetune on labeled data
from Pascal VOC 2007.

Classification Detection Segmentation
(FomAP) (FemAP) (Femlol)

Trained layers | fc6-8 all all all
ImageNet labels | 789 799 56.8 48.0
Random 533 434 19.8
Random rescaled Krihenbiihl et al. (2015) | 392 56.6 45.6 326
Egomotion (Agrawal et al., 20135) 31.0 34.2 439
Context Encoders (Pathak et al., 2016b) 34.6 56.5 44,5 207
Tracking (Wang & Gupta, 2013) 55.6 63.1 47.4
Context (Doersch et al., 2015) 55.1 65.3 51.1
Colorization (Zhang et al., 2016a) 61.5 656 46.9 56
BIGAN (Donahue et al., 2016} 523 60.1 46.9 349
Jigsaw Puzzles (Noroozi & Favaro, 2016) - 67.6 532 376
NAT (Bojanowski & Joulin, 2017) 56.7 633 49.4
Split-Brain (Zhang et al., 2016b) 63.0 67.1 46.7 36.0
ColorProxy (Larsson et al., 2017) 65.9 384
Counting (Noroozi et al., 2017) - 67.7 514 36.6

[(Ours) RotNet 70.87 7297 54.4 39.1 |

Self-supervised learning with rotation

prediction

source: Gidaris et al. 2018

https://arxiv.org/abs/1803.07728

Visualize learned visual attentions

2

Convl 27 x 27 Conv313x 13 Conv56x6 Convl 27 x 27 Conv3 13 x 13 Conv56 x 6

(a) Attention maps of supervised model (b) Attention maps of our self-supervised model
(Image source: Gidaris et al. 2018)

https://arxiv.org/abs/1803.07728

Pretext task: predict relative patch locations

Example:

(Image source: Doersch et al., 2015)

https://arxiv.org/abs/1505.05192

Pretext task: solving “jigsaw puzzles”

shuffled

2
3

4

(¥,

é
Permutation Set

index permutation Reorder patches accordingto

i
=
the selected permutation e
64

9,4.683251.7 2
9

J» ARNEAmS! "
e T e

xi

]

A -G -
L4 & f—
’-1-- e
' o
- de e .
. o
-"‘- - -
53
. ’-'2- ——f L fors f oo / i
" -‘hi“’:- — ./_ 7 fc8 softmax
o
55256 D84 TAABL 225 cé

(Image source: Noroozi & Favaro, 2016)

https://arxiv.org/abs/1603.09246

Transfer learned features to supervised learning

Table 1: Results on PASCAL VOC 2007 Detection and Classification. The results
of the other methods are taken from Pathak et al. [30].

Method Pretraining time Supervision Classification Detection Segmentation
Krizhevskyet al. [25] 3 days 1000 class labels 78.2% 56.8% 48.0%
Wang and Gupta[39] 1 week motion 58.4% 44.0% -
Doersch et al. [10] 4 weeks context 55.3% 46.6% -
Pathak et al. [30] 14 hours context 56.5% 44.5% 29.7%
Ours 2.5 days context 67.6% 53.2% 37.6%

“Ours” is feature learned from solving image Jigsaw puzzles (Noroozi & Favaro,
2016). Doersch et al. is the method with relative patch location

(source: Noroozi & Favaro, 2016)

https://arxiv.org/abs/1603.09246

Pretext task: image coloring

:‘ 3
Grayscale image: L channel Color information: ab channels
X ¢ RHxWx1 ?ERHxsz

T

Source: Richard Zhang / Phillip
Isola

Pretext task: image coloring

At

Grayscale image: L channel

X e IR/HX"‘/XI

L

Concatenate (L,ab) channels

(X,Y)

ab

Source: Richard Zhang / Phillip
Isola

Transfer learned features to supervised learning

- Flaces-labels @-@ Pathak et al.
50 BB ImageNet-labels @@ Zhang et al.
8@ Krachenbuehl et al, 0-0 Owens et al,
>0 bosrs 6 Spit-Brain At Self-supervised learning on
@-@ Doersch et al, -4 Split-Brain Autolcl,cl) -
45 @@ Wang & Gupta — —4

+=
L=

, ImageNet (entire training set).
supervised

£ 35| - Use concatenated features
<l —— %y~ this paper from F;and F,
E T——1

25 Labeled data is from the

Places (Zhou 2016).

—
15 .
o ‘?“d\

Source: Zhang et al., 2017

https://arxiv.org/abs/1611.09842

Pretext task: video coloring

Idea: model the temporal coherence of colors in videos

reference frame how should | color these frames?

Source: Vondrick et al.,

2018

https://arxiv.org/abs/1806.09594
https://arxiv.org/abs/1806.09594

Pretext task: video coloring

Idea: model the temporal coherence of colors in videos

reference frame how should | color these frames?

Hypothesis: learning to color video frames should allow model to learn to

track regions or objects without labels!
Source: Vondrick et al.,

2018

https://arxiv.org/abs/1806.09594
https://arxiv.org/abs/1806.09594

Learning to color videos

Reference Frame Input Frame

Learning objective:

Establish mappings
between reference and
target frames in a learned
feature space.

0 P T YN
“!--- »

Use the mapping as
“pointers” to copy the
correct color (LAB).

a®

Reference Colors Target Colors

Source: Vondrick et al.,
2018

https://arxiv.org/abs/1806.09594
https://arxiv.org/abs/1806.09594

Learning to color videos

Grayscale Video Embeddings
Reference A Af: AS | peference
Frame O ® 1 [Colors

.1I‘

Target

Predicted
Frame | © A

® ‘fj L ‘é’; Colors

attention map on the reference
frame

L en(fT)
Y Zkexp (fff;)

Source: Vondrick et al.,
2018

https://arxiv.org/abs/1806.09594
https://arxiv.org/abs/1806.09594

Learning to color videos

Grayscale Video Embeddings
Reference ‘ ‘ f t
Frame ® I
1
Target 4
Frame © A L AW \ 'fj

attention map on the reference predicted color = weighted
frame sum of the reference color

exp (£ ;) _
A = = Aijci
S (7T5) ; g

Aci Reference
® Colors

o : Predicted
‘yj Colors

Source: Vondrick et al.,
2018

https://arxiv.org/abs/1806.09594
https://arxiv.org/abs/1806.09594

Learning to color videos

Grayscale Video Embeddings

Reference ‘ ‘ f £
Frame ® I
1
Target 4
Frame © A ® A fj

predicted color = weighted
sum of the reference color

Yi = Z Aije
0

attention map on the reference
frame

L en(fT)
Y Zkexl} (fff;)

Aci Reference

® Colors
o ? gr?dmted
yj olors

loss between predicted color
and ground truth color

m&nZﬁ(yj,cj)
J

Source: Vondrick et al.,
2018

https://arxiv.org/abs/1806.09594
https://arxiv.org/abs/1806.09594

Colorizing videos (qualitative)

reference frame target frames (gray) predicted color

Source: Google Al blog
post

https://ai.googleblog.com/2018/06/self-supervised-tracking-via-video.html
https://ai.googleblog.com/2018/06/self-supervised-tracking-via-video.html

Colorizing videos (qualitative)

reference frame target frames (gray) predicted color

Source: Google Al blog
post

https://ai.googleblog.com/2018/06/self-supervised-tracking-via-video.html
https://ai.googleblog.com/2018/06/self-supervised-tracking-via-video.html

Tracking emerges from colorization

Propagate segmentation masks using learned attention

Source: Google Al blog
post

https://ai.googleblog.com/2018/06/self-supervised-tracking-via-video.html
https://ai.googleblog.com/2018/06/self-supervised-tracking-via-video.html

Tracking emerges from colorization

Propagate pose keypoints using learned attention

T —
p—
— —
—
—
— —
——
—_—
*_
—_—
——
———
——
==
o
.

Source: Google Al blog
post

https://ai.googleblog.com/2018/06/self-supervised-tracking-via-video.html
https://ai.googleblog.com/2018/06/self-supervised-tracking-via-video.html

Summary: pretext tasks from image transformations

® Pretext tasks focus on “visual common sense”, e.g., predict rotations,
inpainting, rearrangement, and colorization.

e The models are forced learn good features about natural images, e.g.,
semantic representation of an object category, in order to solve the pretext
tasks.

e \We don’t care about the performance of these pretext tasks, but rather how
useful the learned features are for downstream tasks (classification, detection,

segmentation).

Summary: pretext tasks from image transformations

® Pretext tasks focus on “visual common sense”, e.g., predict rotations,
inpainting, rearrangement, and colorization.

e The models are forced learn good features about natural images, e.g.,
semantic representation of an object category, in order to solve the pretext
tasks.

e \We don’t care about the performance of these pretext tasks, but rather how
useful the learned features are for downstream tasks (classification, detection,
segmentation).

® Problems: 1) coming up with individual pretext tasks is tedious, and 2) the
learned representations may not be general.

Pretext tasks from image transformations

m € o

image rotation “jigsaw puzzle” colorization
completion prediction

Learned representations may be tied to a specific pretext task!
Can we come up with a more general pretext task?

A more general pretext task?

same object

A more general pretext task?

e
\

same object

Contrastive Representation Learning

e
\

attract

Today’s Agenda

Contrastive representation learning

- Intuition and formulation

- Instance contrastive learning: SImCLR and MOCO
- Sequence contrastive learning: CPC

Contrastive Representation Learning

e
\

attract

Contrastive Representation Learning
|

£

L reference
+

L positive

T negative

Contrastive Representation Learning

213+

~. /

L reference
xt positive
I negative

|

L
2
“This image”

“Any other image”

A formulation of contrastive learning

What we want:

score(f(x), f(xT)) >> score(f(z), f(z7))

x: reference sample; x* positive sample; x” negative sample

Given a chosen score function, we aim to learn an encoder

function f that yields high score for positive pairs (x, x*) and low
scores for negative pairs (x, x).

A formulation of contrastive learning

Loss function given 1 positive sample and N - 1 negative samples:

L=-Ex

exp(s(f(z), f(z™))

log N—1 —
exp(s(f(z), f(zT)) + 25—, exp(s(f(z), f(z;))

A formulation of contrastive learning

Loss function given 1 positive sample and N - 1 negative samples:

L=—-Ex |log exP(S(f(m;;fl(m+))
exp(s(f(z), f(=*)) + 2=, exp(s(f(2), f(z5))

A formulation of contrastive learning

Loss function given 1 positive sample and N - 1 negative samples:

L=-Ex

log

exp(s(f(z), f(z™))

N-—-1 —
exp(s(f(x), f(z*)) + 20" exp(s(f (@), f(]))
score for the positive score for the N-1 negative
pair pairs

This seems familiar ...

A formulation of contrastive learning

Loss function given 1 positive sample and N - 1 negative samples:

L=-Ex

log

exp(s(f(z), f(z™))

N-—-1 —
exp(s(f(x), f(z+)) + L0, exp(s(f (@), £ (z7))
score for the positive score for the N-1 negative
pair pairs

This seems familiar ...
Cross entropy loss for a N-way softmax classifier!
l.e., learn to find the positive sample from the N samples

A formulation of contrastive learning
Loss functic_)n given 1 positive sample and N - 1 negative samples:
+
L= _Ey |log exp(s(f (-’Ei; _fl(-’r) _
exp(s(f(z), f(zT1)) + Zj:l exp(s(f(z), f(-’ﬂj)

Commonly known as the InfoNCE loss (van den Oord et al., 2018)
A lower bound on the mutual information between f(x) and f(x*)

MI[f(z), f(z*)] — log(N) > —L

The larger the negative sample size (N), the tighter the bound

Detailed derivation: Poole et al., 2019

https://arxiv.org/abs/1807.03748
https://arxiv.org/pdf/1905.06922.pdf

SImCLR: A Simple Framework for Contrastive Learning

Cosine similarity as the score function:

- HT'U
s(u,v) = i

Use a projection network h(:) to project
features to a space where contrastive learning

is applied

Generate positive samples through data

augmentation:
® random cropping, random color
distortion, and random blur.

Maximize agreement

Zi - zj
90| o()
h; +— Representation — h;
Q) f()

’
> A

Source: Chen et al.,
2020

https://arxiv.org/pdf/2002.05709.pdf
https://arxiv.org/pdf/2002.05709.pdf

SImCLR: generating positive samples from data
augmentation

(b) Crop and resize (c) Crop, resize (and flip) (d) Color distort. (drop) (e) Color distort. (jitter)

(f) Rotate {90°, 180°,270°} (g) Cutout (h) Gaussian noise (1) Gaussian blur (j) Sobel filtering

Source: Chen et al.,

2020

https://arxiv.org/pdf/2002.05709.pdf
https://arxiv.org/pdf/2002.05709.pdf

Training linear classifier on SImCLR features

% Supervised #SimCLR (4x)
— 5 - .
S *SimCLR (2x) Train feature encoder on ImageNet
%‘ -0 oCPCv2-L (entire training set) using SimCLR.
5 *SimCLR oCMC JMGGD,MXJ
0 ePIRL-c2x . .
< ; o oMoCo (2x) AMDIM Freeze feature encoder, train a linear
a ° qCPCv2 PIRL-ens. classifier on top with labeled data.
L PIRL SHiaRi
— BigBiGAN
3 60} *MGCG
5 LA
o
E 55} eRotation
25 e|nstDisc
T 25 50 100 200 400 626

Number of Parameters (Millions)

Source: Chen et al.,
2020

https://arxiv.org/pdf/2002.05709.pdf
https://arxiv.org/pdf/2002.05709.pdf

Semi-supervised learning on SImMCLR features

Label fraction
Method Architecture 1% 10%
Top 5

Supervised baseline ResNet-30 484 B04
Methods using other label-propagation:

Pseudo-label ResNet-50 516 824
VAT+Entropy Min. ResNet-50 470 834
UDA (w. RandAug) ResNet-50 - 88.5
FixMatch (w. RandAug) ResNet-50 - 89.1
S4L (Rot+VAT+En. M.) ResNet-50 (4x) - 01.2
Methods using representation learning only:

InstDisc ResNMet-50 392 77.4
BigBiGAN RevNet-50 (4x) 552 788
PIRL ResNet-50 57.2 838
CPC v2 ResNet-161(*) 779 912
SimCLR (ours) ResNet-50 75.5 87.8
SimCLR (ours) ResNet-30(2x) 83.0 91.2
SimCLR (ours) ResNet-50 (4x) 85.8 92.6

Table 7. ImageNet accuracy of models trained with few labels.

Train feature encoder on ImageNet
(entire training set) using SimCLR.

Finetune the encoder with 1% / 10%
of labeled data on ImageNet.

Source: Chen et al.,
2020

https://arxiv.org/pdf/2002.05709.pdf
https://arxiv.org/pdf/2002.05709.pdf

SimCLR design choices: projection head

60 I II II Linear / non-linear projection heads improve
250 | Projection representation learning.
= = Linear
40 | mmm Non-linear . .
— Nﬂnel A possible explanation:
30 -]
Dt 'i:]h%

” ® contrastive learning objective may discard
useful information for downstream tasks
® representation space z is trained to be

F'rojecl:m n uutput dlrn & nslunahty

Ty T—— invariant to data transformation.
;I ‘J . . .
[o0 et] ® by leveraging the projection head g(:), more
hi — Representation— h, information can be preserved in the h
I{-]‘ /Jff-} representation space
T P
I\%:.# e ,.--""-fif’l
P 5(, ~— #:{
__f’

Source: Chen et al.,

2020

https://arxiv.org/pdf/2002.05709.pdf
https://arxiv.org/pdf/2002.05709.pdf

SimCLR design choices: large batch size

Large training batch size is crucial for

SimCLR!
| Large batch size causes large memory

Batm L footprint during backpropagation:

:ig requires distributed training on TPUs

1024 (ImageNet experiments)

(]
|
. 2048
.
]

[¥]

o

LA

L¥]

=]

L

70.0

67.

65,

62,

—

2.60.0

|_

57,

55,

52, 4096
8192

sn HiEEOIN NIEES

100 200 300 400 500 600 700 800 900 1000

Training epochs

o

Figure 9. Linear evaluation models (ResNet-50) trained with differ-
ent batch size and epochs. Each bar is a single run from scratch.'”
Source: Chen et al.,

2020

https://arxiv.org/pdf/2002.05709.pdf
https://arxiv.org/pdf/2002.05709.pdf

Momentum Contrastive Learning (MoCo)

Key differences to SimCLR:

-::cuntras.t..|\.re loss no_grad
similarity < / e Keep arunning queue of keys (negative
samples).
q kﬁ kl k? e Compute gradients and update the
: queue encoder only through the queries.
e Decouple min-batch size with the number
encoder m::";gt:rm of keys: can support a large number of
negative samples.
ke ke ke
pauery Ty Xy° Ty ..

Source: He et al., 2020

https://arxiv.org/abs/1911.05722

Momentum Contrastive Learning (MoCo)

-::-:untrashue loss no_g rad

similarity /

q ko k1 ko ...

queue
encoder momentum
encoder
ke ke ke
pauery Ty Xy° Ty ..

Key differences to SimCLR:

Keep a running queue of keys (negative
samples).

Compute gradients and update the
encoder only through the queries.

Decouple min-batch size with the number
of keys: can support a large number of
negative samples.

The key encoder is slowly progressing through
the momentum update rules:

9].; “— mgk + (1 — m)Gq

Source: He et al., 2020

https://arxiv.org/abs/1911.05722

“MoCo V2~

Improved Baselines with Momentum Contrastive Learning

Xinlei Chen Haogi Fan Ross Girshick Kaiming He
Facebook Al Research (FAIR)

A hybrid of ideas from SimCLR and MoCo:
e From SimCLR: non-linear projection head and strong data
augmentation.
e From MoCo: momentum-updated queues that allow training on a
large number of negative samples (no TPU required!).

Source: Chen et al.,
2020

https://arxiv.org/pdf/2002.05709.pdf
https://arxiv.org/pdf/2002.05709.pdf

MoCo vs. SImCLR vs. MoCo V2

unsup. pre-train ImageMet VOC detection

case MLP aug+ cos epochs ace. APsy AP AP4s
supervised 76.5 81.3 53.5 58.8
MaoCo vl 200 60.6 BL.S 559 626
(a) v 200 66.2 820 564 62.6

ib) e 200 63.4 82.2 568 63.2

(c) v v 200 67.3 825 572 639

(d) v v o 200 67.5 824 570 63.6

(e) v . s 00 71.1 825 574 64.0

Table 1. Ablation of MoCo baselines, evaluated by ResNet-50 for
(i) ImageNet linear classification, and (ii) fine-tuning VOC object
detection (mean of 5 trials). “MLP": with an MLP head; “aug+":
with extra blur augmentation; “cos™: cosine learning rate schedule.

Key takeaways:

Non-linear projection head and strong
data augmentation are crucial for
contrastive learning.

Source: Chen et al.,
2020

https://arxiv.org/pdf/2002.05709.pdf
https://arxiv.org/pdf/2002.05709.pdf

MoCo vs. SImCLR vs. MoCo V2

unsup. pre-train ImageNet

case MLF aug+ cos epochs batch ace.
MoCo vl [6] 200 256 60.6
SimCLR [2] v v v 200 256 61.9
SimCLR [2] v v v 200 8192 66.6
MoCo v2 v v v 200 2536 67.5
results of longer unsupervised training follow:

SimCLR [2] v v v 1000 4096 69.3
MoCo v2 v v v 800 256 71.1

Table 2. MoCo vs. SimCLR: ImageNet linear classifier accuracy
(ResNet-50, 1-crop 224 < 224), trained on features from unsuper-
vised pre-training. “aug+" in SimCLR includes blur and stronger
color distortion. SimCLR ablations are from Fig. 9 in [2] (we
thank the authors for providing the numerical results).

Key takeaways:

® Non-linear projection head and strong
data augmentation are crucial for
contrastive learning.

e Decoupling mini-batch size with negative
sample size allows MoCo-V2 to
outperform SimCLR with smaller batch
size (256 vs. 8192).

Source: Chen et al.,
2020

https://arxiv.org/pdf/2002.05709.pdf
https://arxiv.org/pdf/2002.05709.pdf

MoCo vs. SImCLR vs. MoCo V2

mechanism batch memory / GPU time / 200-ep.

MoCo 256 5.0G 53 hrs
end-to-end 256 7.4G 63 hrs
end-to-end 4096 93.0GT nfa

Table 3. Memory and time cost in 8 V100 16G GPUs, imple-
mented in PyTorch. ': based on our estimation.

Key takeaways:

Non-linear projection head and strong
data augmentation are crucial for
contrastive learning.

Decoupling mini-batch size with negative
sample size allows MoCo-V2 to
outperform SimCLR with smaller batch
size (256 vs. 8192).

... all with much smaller memory
footprint! (“end-to-end” means SimCLR
here)

Source: Chen et al.,
2020

https://arxiv.org/pdf/2002.05709.pdf
https://arxiv.org/pdf/2002.05709.pdf

Other examples

Contrastive learning between image and natural language sentences

1. Contrastive pre-training 2, Create dataset classifier from label text
plane
papper tha Taxt
aussle pup —_— Encoder & photo of Taxt
l l]] a {object). E nacoeier
b 1
T, T Ty Ty
o= Il II i'l Iy r, II J'J I'i| IH
— I, T, IpTy, IpTg I3 Ty 3. Use for zero-shot prediction
- - i
il I - T, T T, = Ty
| L
_3- | — e 1 g e e | Fe I-T,
#
I o
; ; ; ; ; = EI_":;gm . - I, LN LT LT - LTy,
—_— Iy Ty Ty Iyl IN'TJ Ty Ty l

a phats of
a dog.

CLIP (Contrastive Language—Image Pre-training) Radford et al., 2021

Other examples

Contrastive learning on pixel-wise feature descriptors

(c) Background Randomization (d) Cross Object Loss (f) Synthetic Multi Object

| ™
(2

Dense Object Net, Florence et al., 2018

Other examples

Dense Object Net, Florence et al., 2018

	Slide 1: CS 4644/7643: Lecture 18 Danfei Xu
	Slide 2: Administrative
	Slide 3: Denoising Diffusion: Image to Noise and Back
	Slide 4: The Denoising Diffusion Process
	Slide 5: Connection to VAEs
	Slide 6: The Diffusion (Encoding) Process
	Slide 7: The Denoising (Decoding) Process
	Slide 8: The Denoising (Decoding) Process
	Slide 9: The Denoising (Decoding) Process
	Slide 10
	Slide 11: Learning the Denoising Process
	Slide 12: Learning the Denoising Process
	Slide 13: The Denoising Diffusion Algorithm
	Slide 14: The Denoising Diffusion Algorithm
	Slide 15: Conditional Diffusion Models
	Slide 16: Classifier-free Guided Diffusion
	Slide 17: Latent-space Diffusion
	Slide 18: Hot off arXiv!
	Slide 19: Summary
	Slide 20: Taxonomy of Generative Models
	Slide 21: GANs: Learning generate samples directly
	Slide 22: Generative Adversarial Networks
	Slide 23: Generative Adversarial Networks
	Slide 24: Generative Adversarial Networks
	Slide 25: Generative Adversarial Networks
	Slide 26: Generative Adversarial Networks
	Slide 27: Training GANs: Two-player game
	Slide 28: Training GANs: Two-player game
	Slide 29: Training GANs: Two-player game
	Slide 30: Training GANs: Two-player game
	Slide 31: Training GANs: Two-player game
	Slide 32: Training GANs: Two-player game
	Slide 33: Training GANs: Two-player game
	Slide 34: Training GANs: Two-player game
	Slide 35
	Slide 36: GAN Learning Process
	Slide 37
	Slide 38
	Slide 39: Training GANs: Two-player game
	Slide 40: Training GANs: Two-player game
	Slide 41: Training GANs: Two-player game
	Slide 42: Training GANs: Two-player game
	Slide 43: Training GANs: Two-player game
	Slide 44: Training GANs: Two-player game
	Slide 45: Training GANs: Two-player game
	Slide 46: Generative Adversarial Nets
	Slide 47: Generative Adversarial Nets
	Slide 48: Generative Adversarial Nets: Convolutional Architectures
	Slide 49: 2019: BigGAN
	Slide 50: GANs were popular …
	Slide 51: Deep Generative Models
	Slide 52: Generative Models: Closing Thoughts
	Slide 53
	Slide 54: Self-supervised Learning
	Slide 55: Self-supervised pretext tasks
	Slide 56: Generative vs. Self-supervised Learning
	Slide 57: How to evaluate a self-supervised learning method?
	Slide 58: How to evaluate a self-supervised learning method?
	Slide 59: How to evaluate a self-supervised learning method?
	Slide 60: Broader picture
	Slide 61: Today’s Agenda
	Slide 62: Today’s Agenda
	Slide 63: Pretext task: predict rotations
	Slide 64: Pretext task: predict rotations
	Slide 65: Pretext task: predict rotations
	Slide 66: Evaluation on semi-supervised learning
	Slide 67: Transfer learned features to supervised learning
	Slide 68: Visualize learned visual attentions
	Slide 69: Pretext task: predict relative patch locations
	Slide 70: Pretext task: solving “jigsaw puzzles”
	Slide 71: Transfer learned features to supervised learning
	Slide 72: Pretext task: image coloring
	Slide 73: Pretext task: image coloring
	Slide 74: Transfer learned features to supervised learning
	Slide 75: Pretext task: video coloring
	Slide 76: Pretext task: video coloring
	Slide 77: Learning to color videos
	Slide 78: Learning to color videos
	Slide 79: Learning to color videos
	Slide 80: Learning to color videos
	Slide 81: Colorizing videos (qualitative)
	Slide 82: Colorizing videos (qualitative)
	Slide 83: Tracking emerges from colorization
	Slide 84: Tracking emerges from colorization
	Slide 85: Summary: pretext tasks from image transformations
	Slide 86: Summary: pretext tasks from image transformations
	Slide 87: Pretext tasks from image transformations
	Slide 88: A more general pretext task?
	Slide 89: A more general pretext task?
	Slide 90: Contrastive Representation Learning
	Slide 91: Today’s Agenda
	Slide 92: Contrastive Representation Learning
	Slide 93: Contrastive Representation Learning
	Slide 94: Contrastive Representation Learning
	Slide 95: A formulation of contrastive learning
	Slide 96: A formulation of contrastive learning
	Slide 97: A formulation of contrastive learning
	Slide 98: A formulation of contrastive learning
	Slide 99: A formulation of contrastive learning
	Slide 100: A formulation of contrastive learning
	Slide 101: SimCLR: A Simple Framework for Contrastive Learning
	Slide 102: SimCLR: generating positive samples from data augmentation
	Slide 106: Training linear classifier on SimCLR features
	Slide 107: Semi-supervised learning on SimCLR features
	Slide 108: SimCLR design choices: projection head
	Slide 109: SimCLR design choices: large batch size
	Slide 110: Momentum Contrastive Learning (MoCo)
	Slide 111: Momentum Contrastive Learning (MoCo)
	Slide 113: “MoCo V2”
	Slide 114: MoCo vs. SimCLR vs. MoCo V2
	Slide 115: MoCo vs. SimCLR vs. MoCo V2
	Slide 116: MoCo vs. SimCLR vs. MoCo V2
	Slide 130: Other examples
	Slide 131: Other examples
	Slide 132: Other examples

