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Generative Models:

PixelCNN / PixelRNN

Variational AutoEncoders (VAEs)



Administrative

• Milestone Report is due EOD 11/3 NO GRACE PERIOD

• HW3 now due EOD 10/22 + 2 late days

• HW4 is out, due 11/11



Reinforcement 

Learning

⬣ Supervision in 

form of reward

⬣ No supervision on 

what action to take

Types of Machine Learning

Unsupervised 

Learning

⬣ Input: 𝑋

⬣ Learning 
output: 𝑃 𝑥

⬣ Example: Clustering, 

density estimation, 

etc.

Supervised 

Learning

⬣ Train Input: 𝑋, 𝑌

⬣ Learning output: 
𝑓 ∶ 𝑋 → 𝑌, 

e.g. 𝑃(𝑦|𝑥)

Very often combined, sometimes within the same model!



Reinforcement 

Learning

⬣ Supervision in 

form of reward

⬣ No supervision on 

what action to take

Types of Machine Learning

Unsupervised 

Learning

⬣ Input: 𝑋

⬣ Learning 
output: 𝑃 𝑥

⬣ Example: Clustering, 

density estimation, 

etc.

Supervised 

Learning

⬣ Train Input: 𝑋, 𝑌

⬣ Learning output: 
𝑓 ∶ 𝑋 → 𝑌, 

e.g. 𝑃(𝑦|𝑥)

Very often combined, sometimes within the same model!



What if all we have are data without label?

We have lots of raw data (e.g., Internet)! 
Can we still learn useful things without labels?



Generative Models



Supervised vs Unsupervised Learning
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Supervised Learning

Data: (x, y)

x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, 

regression, object detection, 

semantic segmentation, image 

captioning, etc.



Supervised vs Unsupervised Learning
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Supervised Learning

Data: (x, y)

x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, 

regression, object detection, 

semantic segmentation, image 

captioning, etc.

Cat

Classification

This image is CC0 public domain

https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Supervised vs Unsupervised Learning
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Supervised Learning

Data: (x, y)

x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, 

regression, object detection, 

semantic segmentation, image 

captioning, etc.

Image captioning

A cat sitting on a suitcase on the floor

Caption generated using neuraltalk2
Image is CC0 Public domain.

https://github.com/karpathy/neuraltalk2
https://pixabay.com/en/luggage-antique-cat-1643010/
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Supervised vs Unsupervised Learning
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Supervised Learning

Data: (x, y)

x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, 

regression, object detection, 

semantic segmentation, image 

captioning, etc.

DOG, DOG, CAT

This image is CC0 public domain

Object Detection

https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Supervised vs Unsupervised Learning
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Supervised Learning

Data: (x, y)

x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, 

regression, object detection, 

semantic segmentation, image 

captioning, etc.
Semantic Segmentation

GRASS, CAT, 

TREE, SKY
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Unsupervised Learning

Data: x

Just data, no labels!

Goal: Learn some underlying 

hidden structure of the data

Examples: Clustering, 

dimensionality reduction, density 

estimation, etc.

Supervised vs Unsupervised Learning
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Unsupervised Learning

Data: x

Just data, no labels!

Goal: Learn some underlying 

hidden structure of the data

Examples: Clustering, 

dimensionality reduction, density 

estimation, etc.

Supervised vs Unsupervised Learning

K-means clustering

This image is CC0 public domain

https://commons.wikimedia.org/wiki/File:ClusterAnalysis_Mouse.svg
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Unsupervised Learning

Data: x

Just data, no labels!

Goal: Learn some underlying 

hidden structure of the data

Examples: Clustering, 

dimensionality reduction, density 

estimation, etc.

Supervised vs Unsupervised Learning

Principal Component Analysis 

(Dimensionality reduction)

This image from Matthias Scholz  
is CC0 public domain

3-d 2-d

http://phdthesis-bioinformatics-maxplanckinstitute-molecularplantphys.matthias-scholz.de/fig_pca_illu3d.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Unsupervised Learning

Data: x

Just data, no labels!

Goal: Learn some underlying 

hidden structure of the data

Examples: Clustering, 

dimensionality reduction, density 

estimation, etc.

Supervised vs Unsupervised Learning

2-d density estimation

2-d density images lef t and right 
are CC0 public domain

1-d density estimation

Figure copyright Ian Goodfellow, 2016. Reproduced with permiss ion. 

Modeling p(x)

https://commons.wikimedia.org/wiki/File:Bivariate_example.png
https://www.flickr.com/photos/omegatron/8533520357
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Unsupervised Learning

Data: x

Just data, no labels!

Goal: Learn some underlying 

hidden structure of the data

Examples: Clustering, 

dimensionality reduction, density 

estimation, etc.
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Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)

x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, 

regression, object detection, 

semantic segmentation, image 

captioning, etc.



Generative Modeling
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Training data ~ pdata(x)

Given training data, generate new samples from same distribution

learning

𝑝𝜃(𝑥)

sampling

Objectives:

1. Learn 𝑝𝜃(𝑥) that approximates an unknown 𝑝data(𝑥) 

2. Sampling new x from pmodel(x)



Generative Modeling
Gaussian Mixture Model (GMM) as a generative model

Objectives:

1. Learn 𝑝𝜃(𝑥) that approximates an unknown 𝑝data(𝑥) 

2. Sampling new x from pmodel(x)

Training Data from 𝑝data(𝑥) 

Learn

Learned “generative model” 𝑝𝜃(𝑥), 

where 𝑝𝜃 𝑥 = σ𝑖=1
𝐾 𝜙𝑖𝑁(𝑥|𝜇𝑖, 𝜎𝑖)



Generative Modeling
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Training data ~ pdata(x)

Given training data, generate new samples from same distribution

learning

𝑝𝜃(𝑥)

sampling

Formulate as density estimation problems: 

- Explicit density estimation: explicitly define and solve for 𝑝𝜃(𝑥), e.g., a 

high-dimensional Gaussian Mixture Model (GMM)

- Implicit density estimation: learn model that can sample from 𝑝𝜃(𝑥) 

without explicitly defining it. 



Deep Generative Models
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Training data ~ pdata(x)

Given training data, generate new samples from same distribution

learning

𝑝𝜃(𝑥)

sampling

Use deep neural networks to represent 𝒑𝜽(𝒙)! 

Example: a DNN with 
GMM output

𝐷𝑁𝑁 {𝜙𝑖, 𝜇𝑖, 𝜎𝑖}𝑖
𝐾



Taxonomy of Generative Models
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Generative models

Explicit density Implicit density

Direct

Tractable density Approximate density
Markov Chain

Variational Markov Chain

Variational Autoencoder

Denoising Diffusion Models

Boltzmann Machine

GSN

GAN

Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Fully Visible Belief Nets

- NADE

- MADE

- PixelRNN/CNN

- NICE / RealNVP

- Glow 

- Ffjord
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Generative models

Explicit density Implicit density

Direct

Tractable density Approximate density
Markov Chain

Variational Markov Chain

Variational Autoencoder

Denoising Diffusion Models

Boltzmann Machine

GSN

GAN

Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Today and the next lecture: 

discuss 4 most popular types 

of generative models

Fully Visible Belief Nets

- NADE

- MADE

- PixelRNN/CNN

- NICE / RealNVP

- Glow 

- Ffjord
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PixelRNN and PixelCNN
(Autoregressive Generative Model)
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Fully visible belief network (FVBN)

Likelihood of 

image x

Explicit density model

Joint likelihood of 
each pixel in the 

image
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Fully visible belief network (FVBN)

Use probability chain rule to decompose likelihood of an image x into product of 

1-d distributions:

Explicit density model

Likelihood of 

image x
Probability of i’th pixel value 

given all previous pixels

Then maximize likelihood of training data



Then maximize likelihood of training data
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Fully visible belief network (FVBN)

Use probability chain rule to decompose likelihood of an image x into product of 

1-d distributions:

Explicit density model

Likelihood of 

image x
Probability of i’th pixel value 

given all previous pixels

Complex distribution over pixel 

values => Express using a neural 

network!

E.g. softmax over 0-255
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Recurrent Neural Network

x1

RNN

x2

x2

RNN

x3

x3

RNN

x4

...

xn-1

RNN

xn

h1 h2 h3h0



PixelRNN
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Generate image pixels starting from corner

Dependency on previous pixels modeled 

using an RNN (LSTM)

 

[van der Oord et al. 2016]
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[van der Oord et al. 2016]



PixelRNN
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Generate image pixels starting from corner

Dependency on previous pixels modeled 

using an RNN (LSTM)

 

[van der Oord et al. 2016]



PixelRNN
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Generate image pixels starting from corner

Dependency on previous pixels modeled 

using an RNN (LSTM)

 

[van der Oord et al. 2016]

Drawback: sequential generation is slow 

in both training and inference!



PixelCNN
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[van der Oord et al. 2016]

Still generate image pixels starting from 

corner

Dependency on previous pixels now 

modeled using a CNN over context region
(masked convolution)

 

Figure copyright van der Oord et al., 2016. Reproduced with permission. 



PixelCNN
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[van der Oord et al. 2016]

Still generate image pixels starting from 

corner

Dependency on previous pixels now 

modeled using a CNN over context region
(masked convolution)

 

Figure copyright van der Oord et al., 2016. Reproduced with permission. 

Training is faster than PixelRNN

(can parallelize convolutions since context region 

values known from training images)

Generation is still slow:

For a 32x32 image, we need to do forward passes of 

the network 1024 times for a single image



Generation Samples
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Figures copyright Aaron van der Oord et al., 2016. Reproduced with permission. 

32x32 CIFAR-10 32x32 ImageNet
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PixelRNN and PixelCNN

Improving PixelCNN performance

- Gated convolutional layers

- Short-cut connections

- Discretized logistic loss

- Multi-scale
- Training tricks

- Etc…

See

- Van der Oord et al. NIPS 2016
- Salimans et al. 2017 

(PixelCNN++)

Pros:

- Can explicitly compute 

likelihood p(x)

- Easy to optimize
- Good samples

Con:

- Sequential generation => slow

P(x) = 0.12

P(x) = 0.00003



Aside: Why are LLMs “Generative”?

Language models, especially built on RNN or Transformers with proper causal 

masking, can be thought of as autoregressive generative models (predict 

future based on the past), similar to PixelRNN and PixelCNN. 

Sample an entire sentence by taking sequence of word samples following the 
probability chain rule decomposition.

Transformer/RNN



Taxonomy of Generative Models
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Generative models

Explicit density Implicit density

Direct

Tractable density Approximate density
Markov Chain

Variational Markov Chain

Variational Autoencoder

Denoising Diffusion Models

Boltzmann Machine

GSN

GAN

Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Fully Visible Belief Nets

- NADE

- MADE

- PixelRNN/CNN

- NICE / RealNVP

- Glow 

- Ffjord
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Variational 

Autoencoders (VAE)
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PixelR/CNNs define tractable density function, optimize likelihood of training data:

So far...



So far...
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PixelR/CNNs define tractable density function, optimize likelihood of training data:

Variational Autoencoders (VAEs) define intractable density function with latent z:  

No dependencies among pixels, can generate all pixels at the same time!
Latent variable z that captures important factors of variations in dataset



So far...
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PixelR/CNNs define tractable density function, optimize likelihood of training data:

Variational Autoencoders (VAEs) define intractable density function with latent z:  

Cannot optimize (maximum likelihood estimation) directly, derive and optimize 
lower bound on likelihood instead

No dependencies among pixels, can generate all pixels at the same time!
Latent variable z that captures important factors of variations in dataset
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Cannot optimize (maximum likelihood estimation) directly, derive and optimize 
lower bound on likelihood instead

No dependencies among pixels, can generate all pixels at the same time!
Latent variable z that captures important factors of variations in dataset



Some background first: Autoencoders
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Unsupervised approach for learning a lower-dimensional feature representation 

from unlabeled training data

Encoder

Input data

Features

Decoder



Some background first: Autoencoders
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Input data

Features

Unsupervised approach for learning a lower-dimensional feature representation 

from unlabeled training data

z usually smaller than x

(dimensionality reduction)

Q: Why dimensionality 

reduction? Decoder

Encoder



Some background first: Autoencoders
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Input data

Features

Unsupervised approach for learning a lower-dimensional feature representation 

from unlabeled training data

z usually smaller than x

(dimensionality reduction)

Decoder

Encoder

Q: Why dimensionality 

reduction?

A: Want features to 

capture the “essence” 
of the dataset. Think of 

compression.



Some background first: Autoencoders
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Encoder

Input data

Features

How to learn this feature 

representation?

Train such that features 

can be used to 

reconstruct original data

“Autoencoding” - 

encoding input itself

Decoder

Reconstructed 

input data

Reconstructed data

Encoder: 4-layer conv

Decoder: 4-layer upconv

Input data



Some background first: Autoencoders
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Encoder

Input data

Features

Decoder

Reconstructed data

Input data

Encoder: 4-layer conv

Decoder: 4-layer upconv

L2 Loss function: 
Train such that features 

can be used to 

reconstruct original data

Doesn’t use labels!



Some background first: Autoencoders
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Encoder

Input data

Features

Decoder

Reconstructed 

input data

After training, 

throw away decoder



Some background first: Autoencoders
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Encoder

Input data

Features

Classifier

Predicted Label

Fine-tune

encoder

jointly with

classifier

Loss function 

(Softmax, etc)

Encoder can be 

used to initialize a 

supervised model

plane

dog deer

bird

truck

Train for final task 

(sometimes with 

small data)

Transfer from large, unlabeled 

dataset to small, labeled dataset.



Some background first: Autoencoders
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Encoder

Input data

Features

Decoder

Reconstructed 

input data

Autoencoders can reconstruct 

data, and can learn features to 

initialize a supervised model

Features capture factors of 

variation in training data. 

Ideally, knowing the space of Z is 

sufficient to recover the entire 

training set through the decoder.  



Some background first: Autoencoders
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Encoder

Input data

Features

Decoder

Reconstructed 

input data

VAE: Model data distribution p(x) 

through a probabilistic latent 

space p(z) and a probabilistic 

decoder p(x|z). 

Autoencoders can reconstruct 

data, and can learn features to 

initialize a supervised model

Features capture factors of 

variation in training data. 

Ideally, knowing the space of Z is 

sufficient to recover the entire 

training set through the decoder.  
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Variational Autoencoders

Probabilistic spin on autoencoders - will let us sample from the model to generate data!
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Sample from

true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Assume training data                  is generated from the distribution of unobserved (latent) 

representation z

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Sample from 

true conditional
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Sample from

true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Assume training data                  is generated from the distribution of unobserved (latent) 

representation z

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Sample from 

true conditional

Intuition (remember from autoencoders!): 

x is an image, z is latent code used to 

generate x. 
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Sample from

true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Sample from 

true conditional

Goal of Variational Autoencoder: 

We want to estimate the true parameters 𝜃∗

of this generative model given training data x. 

𝜃∗ includes both the decoder neural network 

parameters and the prior distribution
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Sample from

true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Sample from 

true conditional

We want to estimate the true parameters 

of this generative model given training data x.

How should we represent this model?
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Sample from

true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Sample from 

true conditional

We want to estimate the true parameters 

of this generative model given training data x.

How should we represent this model?

Assume p(z) is known and simple, e.g. 

isotropic Gaussian. Reasonable for latent 

attributes, e.g. pose, how much smile.
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Sample from

true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Sample from 

true conditional

We want to estimate the true parameters 

of this generative model given training data x.

How should we represent this model?

Assume p(z) is known and simple, e.g. 

isotropic Gaussian. Reasonable for latent 

attributes, e.g. pose, how much smile.

Conditional p(x|z) is complex (generates 

image) => represent with neural network

 

Decoder 

network
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Sample from

true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Sample from 

true conditional

We want to estimate the true parameters 

of this generative model given training data x.

How to train the model?

Decoder 

network
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Sample from

true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Sample from 

true conditional

We want to estimate the true parameters 

of this generative model given training data x.

How to train the model?

Learn model parameters to maximize likelihood 

of training dataDecoder 

network
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Sample from

true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Sample from 

true conditional

We want to estimate the true parameters 

of this generative model given training data x.

How to train the model?

Learn model parameters to maximize likelihood 

of training data

Q: What is the problem with this?

Intractable!

Decoder 

network
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Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Intractability

Data likelihood:
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Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Intractability

Data likelihood:

Simple Gaussian prior
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Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Intractability

Data likelihood:

Decoder neural network
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Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Intractability

Data likelihood:

Intractable to compute p(x|z) for every z!
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Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Intractability

Data likelihood:

Intractable to compute p(x|z) for every z!
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Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Intractability

Data likelihood:

Can we do Monte Carlo sampling?
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Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Intractability

Data likelihood:

Can we do Monte Carlo sampling?

We don’t know which z 

corresponds to a sample (x)! 

Most z’s will be sampled from 

where p(x|z) is zero.
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Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Intractability

Data likelihood:

Can we do Monte Carlo sampling?

Can we estimate posterior density?
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Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Intractability

Data likelihood:

Can we do Monte Carlo sampling?

Can we estimate posterior density? Not quite, but …

Intractable data likelihood
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Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Intractability

Data likelihood:

Can we do Monte Carlo sampling?

Can we estimate posterior density? Not quite, but …

VAE: We can use an approximate posterior 𝑞𝜃(𝑧|𝑥) (variational distribution) to 

form a tractable lower bound of the data likelihood p(x).
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Variational Autoencoders
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Variational Autoencoders

Let’s assume we can sample from some 

approximate posterior for now …
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Variational Autoencoders
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Variational Autoencoders
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Variational Autoencoders
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Variational Autoencoders

Recall: 
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Variational Autoencoders

pθ(z|x) intractable (saw 

earlier), can’t compute this KL 
term :(  But we know KL 
divergence always  >= 0.
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Variational Autoencoders

pθ(z|x) intractable (saw 

earlier), can’t compute this KL 
term :(  But we know KL 
divergence always  >= 0.

ELBO: Evidence Lower Bound
Variational inference: Optimize q(z|x) to 
approximate log[p(x)] by raising ELBO.
Higher ELBO -> lower KL(q(z|x)|p(z|x))
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Variational Autoencoders

Minimize KL -> Make the approximate posterior 

more like the prior! 
Use NN to model the approximate posterior.

Maximize the likelihood of the sample 

𝑥(𝑖) (e.g., an image) given a latent prior 
sample. 
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Variational Autoencoders

This KL term (between 

Gaussians for encoder and z 
prior) has nice closed-form 
solution!

Maximize the likelihood of the sample 

𝑥(𝑖) (e.g., an image) given a latent prior 
sample. Can be thought of a decoder 
model
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Variational Autoencoders

We want to 

maximize the 
data 
likelihood
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Variational Autoencoders

We want to 

maximize the 
data 
likelihood

Tractable lower bound which we can take 

gradient of and optimize! (pθ(x|z) differentiable, 
KL term differentiable)
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Variational Autoencoders

Tractable lower bound which we can take 

gradient of and optimize! (pθ(x|z) differentiable, 
KL term differentiable)

Decoder:
reconstruct
the input data

Encoder: 
make approximate 
posterior distribution 
close to prior

Sample z from the 
learned posterior 
(encoder) to train 
the decoder to 
reconstruct!



85

Variational Autoencoders

Putting it all together: maximizing the 

likelihood lower bound
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Input Data

Variational Autoencoders

Putting it all together: maximizing the 

likelihood lower bound

Let’s look at computing the KL 

divergence between the estimated 

posterior and the prior given some data



87

Encoder network

Input Data

Variational Autoencoders

Putting it all together: maximizing the 

likelihood lower bound
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Encoder network

Input Data

Variational Autoencoders

Putting it all together: maximizing the 

likelihood lower bound

Make approximate 

posterior distribution 
close to prior

Have analytical solution
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Encoder network

Sample z from

Input Data

Variational Autoencoders

Putting it all together: maximizing the 

likelihood lower bound

Make approximate 

posterior distribution 
close to prior

Not part of the computation graph!
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Encoder network

Sample z from

Input Data

Variational Autoencoders

Putting it all together: maximizing the 

likelihood lower bound

Reparameterization trick to make 

sampling differentiable:

Sample 
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Encoder network

Sample z from

Input Data

Variational Autoencoders

Putting it all together: maximizing the 

likelihood lower bound

Reparameterization trick to make 

sampling differentiable:

Sample 

Part of computation graph

Input to 

the graph
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Encoder network

Decoder network

Sample z from

Input Data

Variational Autoencoders

Putting it all together: maximizing the 

likelihood lower bound
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Encoder network

Decoder network

Sample z from

Input Data

Variational Autoencoders

Putting it all together: maximizing the 

likelihood lower bound

Maximize likelihood of original 

input being reconstructed
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Encoder network

Decoder network

Sample z from

Input Data

Variational Autoencoders

Putting it all together: maximizing the 

likelihood lower bound

Hyperparameter to weigh the strength of 

the prior matching objective
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Encoder network

Decoder network

Sample z from

Input Data

Variational Autoencoders

Putting it all together: maximizing the 

likelihood lower bound

For every minibatch of input 

data: compute this forward 

pass, and then backprop!
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Variational Autoencoders: Generating Data!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Sample from

true prior

Sample from 

true conditional

Decoder 

network

Our assumption about data generation 

process
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Variational Autoencoders: Generating Data!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Sample from

true prior

Sample from 

true conditional

Decoder 

network

Our assumption about data generation 

process

Decoder network

Sample z from

Sample x|z from

Now given a trained VAE: 

use decoder network & sample z from prior!
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Decoder network

Sample z from

Sample x|z from

Variational Autoencoders: Generating Data!

Use decoder network.  Now sample z from prior!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Decoder network

Sample z from

Sample x|z from

Variational Autoencoders: Generating Data!

Use decoder network.  Now sample z from prior! Data manifold for 2-d z

Vary z1

Vary z2Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Generating Data!

Vary z1

Vary z2

Degree of smile

Head pose

Diagonal prior on z 

=> independent 

latent variables

Different 

dimensions of z 

encode 

interpretable factors 

of variation

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Generating Data!

Vary z1

Vary z2

Degree of smile

Head pose

Diagonal prior on z 

=> independent 

latent variables

Different 

dimensions of z 

encode 

interpretable factors 

of variation

Also good feature representation that 

can be computed using qɸ(z|x)! 

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Generating Data!

32x32 CIFAR-10
Labeled Faces in the Wild

Figures copyright (L) Dirk Kingma et al. 2016; (R) Anders Larsen et al. 2017. Reproduced with permission. 



Variational Autoencoders
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Probabilistic spin to traditional autoencoders => allows generating data

Defines an intractable density => derive and optimize a (variational) lower bound

Pros:

- Principled approach to generative models

- Latent space z is interpretable and may be useful for other downstream tasks.

Cons:

- Samples are blurry

- KL weights are hard to tune

- Latent distributions are aggressive representation bottlenecks that may limit the 

expressiveness of the model.

Can be made more powerful by making VAE hierarchical (multiple layers of latents).

Diffusion model (denoising diffusion) can be thought of a type of hierarchical VAE!



Next Time: Denoising Diffusion
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