Fantastic Language Models and
How to Build Them

Guest Lecture — CS 4644/7643 Deep Learning
Georgia Tech || Zoom || Folks 2x-ing the Recording
October 20, 2025

Tech 4
Tec}l@ Siddharth

Karamcheti

On the Importance of “Building”

Today — A practical take on large-scale language models (LLMs).
Whirlwind tour of the full pipeline:

e Model Architecture — Evolution of the Transformer
* Training at Scale — From 124M to 100B+ Parameters

e (Briefly) Fine-tuning & Inference — Tips & Tricks

Please asRr lots of questions! Why is this information useful to <YOU>?

Part |. Evolution of the Transformer

‘Experiment is the mother of knowledge!
— Madeline LEngle, A Wrinkle in Time

Recipe for a Good™ Language Model

Massive amounts of cheap, easy to acquire data..

X

.. a simple, high-throughput way to consume it!

Natural to scale with data.
Composable and "general’

Fast & parallelizable training.
High hardware utilization.

< Let's Rewind >

re

INtMal “asst

|
mptions” on

ationships

netween data?

my

favorite season
N N

Pre-2017 — Historical Context

is

spring

</s>

7 I3 |’ accord sur la zone économique européenne a été signé en ao(t 19¢€
sample sample sample sample Tsample sample 1 1 T T 1 1 1 1 1 1 1" 1
Q(l) ,!)(2) Q(?’) @(4) Q(4) 33(4) B — B —— B — B — B — B — B — B — B — B — B — B
A /\U /\U A iU U
h©) hM| h(%)_ _ h(?:)_ . h(‘f)_ . h(4) h(4)
@ @ O O @ O @
: Wh>: Wh>: Wh>: Wh,: Wh,: Wh,:
RNNS L _’_, _’_, _/._, _/._, _’_, _’_, A<—>A<—>AHAHAHAHAMA<—>AHAMA<—>A
F.l”e We [We [We F._‘f"e | We 1 1 1 1 1 (R 1 T f 1 1
) : e E e s @ s e(4)': @ s the agreement on the European Economic Area was signed in August 1992
o @ @) @) o @)
= T T T = T RNNKeyldeas: Long Context, Attention
<s> my favorite season is spring
I like the cat on a red|matfeos> o
T T T T T T T T T @)«&}é«é} CNN Key |ldeas:
SARARARSS + Layer: Multiple “Filters” (Views)
CNNs _————— — — d§|ojo|0y; » Scaling Depth w/ Residuals
OO0 0| 0¢. .
T4 SEns sy} Parallelizable!
O O O O ol |O O O O O O - el gl el
O O O O O O O @ O O O
o o | [[g [d] [o lo] 18] [o Residual
eSldua
<pad> <pad> <bos> I like the cat on a red|mat | < How do | do better? >
Connection

receptive field

Reference: "Attention and Augmented Recurrent Neural Networks,” Chris Olah and Shan Carter. Distill, 2016.
Reference: "Convolutional Neural Networks for Text,” Lena Voita. ML for NLP @ YSDA

https://lena-voita.github.io/nlp_course/models/convolutional.html

Formulating the Self-Attention Block

al a2 a3 bl b2 b3 cl c2 c3 - NON |

attn attn attn attn attn attn attn attn attn

class Attention(nn.Module):
def __init__(self, embed_dim: int, n_heads: int):
super().__init__()
self.n_heads, self.dk = n_heads, (embed_dim // n_heads)
self.gkv = nn.Linear(embed_dim, 3 * embed_dim)
self.proj = nn.Linear(embed_dim, embed_dim)

a
— . = X

—7 P ‘ — % —

_ = —= = =

"\—"“"
=—=—— —— e ———

._=sgg;gg§i§sgzzgziiéasf%§5§§§§§§§§g§§

binput Cinput

~

def forward(self, x: Tensor[bsz, seq, embed_dim]):

g, k, v = rearrange(
self.gkv(x),
"bsz seq (gkv nh dk) -> gkv bsz nh seq dk",
gkv=3,
nh=self.n_heads, # Different "views" (like CNN filters)!
dk=self.dk,

).unbind(0)

7 N
/
Pl

o B
| |
cocc [0

Self-Attention: "The" —> query, key, & value

Multi-Headed: Different "views" per layer

Formulating the Self-Attention Block

al a2 a3 bl b2 b3 cl c2 c3 - NON |

attn attn attn attn attn attn attn attn attn

class Attention(nn.Module):
def __init__(self, embed_dim: int, n_heads: int):
super().__init__()

——_ —

i S s

i;gggg5§!j!@555§§§§E%§§§E=§iiiii" 7 self.n_heads, self.dk = n_heads, (embed_dim // n_heads)
R S ’.‘ _ . . .
=\] e _—— ' self.gkv = nn.Linear(embed_dim, 3 * embed_dim)

self.proj = nn.Linear(embed_dim, embed_dim)
binput Cinput
def forward(self, x: Tensor[bsz, seq, embed_dim]):
g, k, v = rearrange(
self.gkv(x),
"bsz seq (gkv nh dk) -> gkv bsz nh seq dk",
gkv=3,
nh=self.n_heads, # Different "views" (like CNN filters)!
dk=self.dk,
).unbind(0)

RNN Attention --> *for each view*

Self-Attention: "The” —> query, key, & value SCOES@; DRSNS SN
1m=-1
Multi-Headed: Different "views" per layer)

return self.proj(
rearrange(scores @ v, "b nh seq dk -> b seq (nh dk)")
)

< Is this actually better? >

Aside — Self-Attention & Parallelization

Recurrent Neural Network 1D Convolution Self-Attention
I \(iroducttzg Sumw\:'3 |
YiI Y2 Ys " Vs Y1 Y, Y4 _: e :j

Y3
’'. Al ’A2,1 Az, |
| Softmfax("l‘) |
f .
— K3 = Ey;5 Ezs Ess |
— Ky | Eqp Exp E;,
Ki = Ej E;q Esy
ot t t
Q Q, Q;
X3 X 4 fl 't t
X, (% | X
| |

X1 X5 X3 X4 X1 X5

Works on Ordered Sequences Works on Multidimensional Grids Works on Sets of Vectors

(+) Good at long sequences: After (-) Bad at long sequences: Need to (+) Good at long sequences: after
one RNN layer, h; “sees” the whole stack many conv layers for outputs one self-attention layer, each output
sequence to “see” the whole sequence “sees” all inputs!

(-) Not parallelizable: need to (+) Highly parallel: Each output can (+) Highly parallel: Each output can
compute hidden states sequentially be computed in parallel be computed in parallel

(-) Very memory intensive

< Great! But... what am | missing? >

Reference: Justin Johnson/Danfel Xu from CS 231N @ Stanford / DL @ Georgia Tech

0 @®

class Attention(nn.Module):

def __init__(self, embed_dim: int, n_heads: int):

def

Formulating the Self-Attention Block

1 2 3 1 2 3 1 2 3
aattn aattn aattn battn battn battn Cattn Cattn Cattn

att att

super().__init__() S
self.n_heads, self.dk = n_heads, (embed_dim // n_heads) \\
self.gkv = nn.Linear(embed_dim, 3 * embed_dim) e qmm

self.proj = nn.Linear(embed_dim, embed_dim) N

/
< L

forward(self, x: Tensor[bsz, seq, embed_dim]):
g, Kk, v = rearrange(

self.qgkv(x),
"bsz seq (gkv
gKkv=3,
nh=self.n_head
dk=self.dk,
).unbind(0)

/_|_\

/
S

nh dk) -> gkv bsz nh seq dk",

s, # Different "views" (like CNN filters)!

RNN Attention --> *for each view*

scores = torch. sof tmax(< Where's my nonlinearity? >

g @ (k.transpo
dim=-1

)

return self.proj(
rearrange(scor

)

se(-2, -1)),

es @ v, "b nh seq dk -=> b seq (nh dk)")

10

Expressivity through Nonlinearity

0O

class ExpressiveTransformerBlock(nn.Module):
def __init__(self, embed_dim: int, n_heads: int, up: int =

super().__init__()
self.attn = Attention(embed_dim, n_heads)

Project *up* to high-dimension, nonlinear, compress!

self.mlp = nn.Sequential(

nn.Linear(embed_dim, up * embed_dim),

nn.ReLU(),

nn.Linear(up * embed_dim, embed_dim)
)

def forward(self, x: T[bsz, seq, embed_dim]):
X = x + self.attn(x)

X = x + self.mlp(x)
return x

Residual + MLP —> "Sharpen’ + "Forget”

4):

ML 101 —> SVMs & "Implicit Lifting”

Decision surface

< New Problem — Activations Blow Up! >

11

Going Deeper —> Activation Instability

@O0 ®
class NormalizedTransformerBlock(nn.Module): 1 Bateh with 3 samples
def __init__(self, embed_dim: int, n_heads: int, up: int = 4):
super().__1init__()
self.attn = Attention(embed_dim, n_heads) KS
self.mlp = nn.Sequential(%
nn.Linear (embed_dim, up * embed_dim), fg
nn.ReLU(), G?
nn.Linear(up * embed_dim, embed_dim)
)
Add Normalization Layers :1?2:;1@\/ :_33 ?J.T,S igg
self.attn_norm = nn.LayerNorm(embed_dim) '
self.mlp_norm = nn.LayerNorm(embed_dim)

Norwalization across ‘Pea‘tures,

bed_dim]): .
- = self.attn_norm(x + self.attn(x)) mde,penden‘tlt/ for each SO\MPle

= self.mlp_norm(x + self.mlp(x))
return Layer Normalization

def forward(self, x: TlLbsz, seq, embed_dinm

< And... we're done? >

Reference: "Build Better DL Models with Batch and [ayer Normalization,” Priya Bala — pinecone.io 12

https://www.pinecone.io/learn/batch-layer-normalization/
http://pinecone.io

Well, Shucks —> Emergent Optimization Problems

10 - - N A g
0.8 - % w A J
Typical LR Decay 06 w , *

[ML 101, Lecture 10] 0.4

0.2 - .
Normalized *
0.0 A

; T @ 100 Transformer

1.00 -
0.75 -
Transformer Pretraining LR Schedule oeo
Linear Warmup (5% of Training) then Decay.. —
0.00 -

0 200 400 600 800 1000

Learning Rate Warmup —> Breaks conventional machine learning wisdom?

< Ok but... why? >

Reference: "The Annotated Transformer,” Sasha Rush. Harvard NLP (2018)

3 Years Later.

3.1. Problem in Transformer Optimization

In this section we demonstrate that the requirement for
warmup comes from a combined effect of high variance
in the Adam optimizer and backpropagation through layer
normalization. Liu et al. (2020) showed that at the begin-

10

50

lteration
lteration

90

-20 =19 -16 =18 =10

Log gradient magnitude Log Adam update magnitude
e wermee of the input. Specifically, the gradient has the following
b) d) property:
OLN d
Oz x|

where x is the input to layer normalization and d is the
embedding dimension. If input norm ||z|| is larger than
v/ d then backpropagation through layer normalization has
a down scaling effect that reduces gradient magnitude for

50

lteration
lteration

90

L - L 0 lower layers. Compounding across multiple layers this can
Log gradient magnitude Log Adam update magnitude . . . 4 .
M —— emaine quickly lead to gradient vanishing.

< Ok, now we're done...? >

Reference: "Transformers lll Training; Tricks for Training Transformers,” Borealis Al — 8/6/2021.
Reference: ‘Improving Transformer Optimization through Better Initialization,” Huang et. al., ICML 2020.

14

00

The “Modern” Transformer (Mid-2023)

class ModernTransformerBlock(nn.Module):

def

def

__init__(self, embed_dim: int, n_heads: int, up: int

super().__init__()

4):

self.attn = Attention(embed_dim, n_heads, gk _bias=False)

self.mlp = nn.Sequential(
SwishGLU(embed _dim, up * embed_dim),
nn.Linear(up * embed_dim, embed_dim)

)

Post-Norm --> *Pre-Norm*

self.pre_attn_norm = RMSNorm(embed_dim)
self.pre_mlp_norm = RMSNorm(embed_dim)

forward(self, x: TLbsz, seq, embed_dim]):
X = X + self.attn(self.pre_attn_norm(x))
X = x + self.mlp(self.pre_mlp_norm(x))

return x

< The End? >

0O

SwishGLU -- A Gated Linear Unit (GLU) with Swish Activation
class SwishGLU(nn.Module):
def __init__(self, in_dim: int, out_dim: int):
super().__init__()
self.swish = nn.SiLU()
self.project = nn.Linear(in_dim, 2 * out_dim)

def forward(self, x: T[bsz, seq, embed_dim]):
projected, gate = self.project(x).tensor_split(2, dim=-1)
return projected * self.swish(gate)

RMSNorm -- Simple Alternative to LayerNorm
class RMSNorm(nn.Module):
def __init__(self, dim: int, eps:
super().__init__()
self.scale, self.eps = dim**-0.5, eps
self.g = nn.Parameter(torch.ones(dim))

float = 1e-8):

def forward(self, x: T[bsz, seq, embed_dim]):
norm = torch.norm(x, dim=-1, keepdim=True) * self.scale
return x / norm.clamp(min=self.eps) * self.g

15

Part ll. Training at Scale

‘Nothing In life is to be feared. It is only to be understood!
— Marie Curie

16

Short Story — My Deep Learning Trajectory

2E+07
1E+07
OE+006
-
A

OE+00
2018 (MNIST - 100K) 2019 (NLP - 1M) 2020 (Summarization - 10M) Jan 2021 (VQA - 18M)

Parameters

"‘Standard Pipeline”: Train on 1 GPU (e.g., on Colab) —> ~max of a few hours.

et's train a GPT-2 Small (124M)!
* Problem: Batch > 4 goes OOM on a decent GPU = > 12 GB of GPU RAM
o Simple Trick —> Gradient Accumulation!
« But.. 99.63 Days to train on Single GPU (400K Steps)

GPT-2 Training Clock

TN 9003 D
17

Shortening the Clock —> The Scaling Toolbox

GPT-2 Training Clock
T 993 D

Goal: 100 Days on 1 GPU —> ~4 Days on 16 GPUs

» Data Parallelism — Scaling across GPUs & Nodes
» Mixed Precision — Bits, Bytes, and TensorCores

 ZeRO Redundancy — Minimizing Memory Footprint

Later.. Model Parallelism — Hardware Limitations — Software Optimization

Even if youre not training big models.. understanding breeds innovation!

13

Data Parallelism — A Toy Example

GPT-2 Training Clock
T g9.o3 D

0O

ldea —> Parallelize?

BATCH_SIZE = 128

class MLP(nn.Module):
def __init__(
self, n_classes: int = 10, mnist_dim: int = 784, hidden: int = 128 SlMD
):
super().__init__() : : :
self.mlp = nn.Sequential(Single Instruction, Multiple Data
nn.Linear(mnist_dim, hidden),
nn.ReLU(),
nn.Linear(hidden, hidden),
nn.ReLU(),
nn.Linear(hidden, n_classes)

)

def forward(self, x: T[bsz, mnist_dim]):

return self.mlp(x) SPMD

Main Code

dataloader = Dataloader(dataset=torchvision.datasets(...), batch_size=BATCH_SIZE) Slﬂgle Program, MUI.Uple Data
model = MLP()

Train Loop
criterion, opt = nn.CrossEntropyLoss(), optim.AdamW(model.parameters())
for (inputs, labels) in dataloader:

loss = criterion(model(inputs), labels) < SeemS hard? >

loss.backward(); opt.step(); opt.zero_grad()

19

(Distributed) Data Parallelism — Implementation

GPT-2 Training Clock
- |gele}ekcED
72 D — 16 GPUs w/ Data Parallelism (DDP)

@00

from torch.nn.parallel import DistributedDataParallel as DDP

from torch.utils.data.distributed import DistributedSampler AutO— Dart|t|0ns Data aACross PFOC@SS@S

BATCH_SIZE, WORLD_SIZE = 128, 8 # World Size == # of GPUs
class MLP(nn.Module):
def __init__(
self, n_classes: int = 10, mnist_dim: int = 784, hidden: int = 128

):

super().__init__()

self.mlp = nn.Sequential(
nn.Linear(mnist_dim, hidden),
nn.ReLU(),
nn.Linear(hidden, hidden),
nn.ReLU(),
nn.Linear (hidden, n_classes)

Simple Wrapper around nn.Module()

)

def forward(self, x: T[bsz, mnist_dim]):
return self.mlp(x)

Train Loop

criterion, opt = nn.CrossEntropylLoss(), optim.AdamW(model.parameters())
for (inputs, labels) in dataloader:

loss = criterion(model(inputs), labels)

Main Code loss.backward(); opt.step(); opt.zero_grad()

train_set = torchvision.dataset(...)
dist_sampler = DistributedSampler(dataset=train_set)
dataloader = Dataloader(

train_set, sampler=dist_sampler, batch_size=BATCH E // WORLD_SIZE

Run: ‘torchrun --nnodes 1 —--nproc_per_node=8 main.py'

)

model = DDP(
MLP(),
device_ids=[os.environ["LOCAL_RANK" 1],
output_device=os.environ["LOCAL_RANK"]

)

Nifty Utility —> Spawns Processes

Important — Memory Footprint of Training?

Standard (Float 32) Memory Footprint Training Implications
[Excludes Activations + Temporary Buffers] . 1B Parameters —> 18 GB (~31 GBw/ BSZ = 1)
é) g W\ . .
22b Parameters [32b Parameter Copies + 175B Parameters —> 3 TB (w/o activations!)
f b Gradient) ——(32b Momentum1 : :
_ sebradents -Adam| > < Facts about Floating Points
Model ~| 32bVariance . Float32 — Standard defined in IEEE-754
_ . : — : :
— - Sign (1) — Exponent (8) — Significand (23)
Optimizer - Wide Range —> up to 1e33

Lower Bound on “Static” Memory (w/ Adam):
- # Parameters * 20 Bytes

Activation Memory >> Static Memory

< Do we need *all® 32 bits? »

Reference: "ZeR0O: Memory Optimizations Toward Training Trillion Parameter Models,” Rajbhandari, Rasley, Ruwase, and He. SC 2020. 21

Mixed Precision Training
GPT-2 Training Clock
. Nele}okb
7.2 D — 16 GPUs w/ Data Parallelism (DDP)
6.01 D — 16 GPUs w/ DDP, FP16

Mixed Precision (FP16) Memory Footprint Hmm... Optimizer Memory?
[Excludes Activations + Temporary Buffers]

FP16 does not mean “everything® is FP16.

4)

N
[16b Parameters J [32b Parameter Copies Real Gain: NVIDIA Tensor Core Speedup!
[)
[16b Gradients] —| 32b Momentum
~Adam > < TENSOR CORES
Model —| 32b Variance
- - JJ
Optimizer

Lower Bound on "Static” Memory (w/ Adam).
- # Parameters " 16 Bytes

Activation Memory —> halved!

Reference: "ZeRO: Memory Optimizations Toward Training Trillion Parameter Models,” Rajbhandari, Rasley, Ruwase, and He. SC 2020. 22

FP32

FP16

BF16

(Aside) Brain Float 16 (BF16) — A New Standard

Sign Exponent (8 bits) Fraction (23 bits)

ﬁ | 1 |
! NiNIRNRENNNNARENNENEREED

31 30 23 22 O

Sign Exponent (5 bits) Fraction (10 bits)

| l
‘ [] [;DID:D:ED IEEE FP16 — High Precision, Limited Range
T |

Sign Exponent (8 bits) Fraction (7 bits) BF16 — Same Range as FP32!

Precision doesnt matter if you cant

I
‘ | rJ EJID:Dj epresent a number
|
7 6 0

15 14 Newer GPUs —> native support!

23

Eliminate Redundancies —> ZeRO

GPT-2 Training Clock
- |gele}ekcED
7.2 D — 16 GPUs w/ Data Parallelism (DDP)
6.01 D — 16 GPUs w/ DDP, FP16

Bl 337D — 16 GPUs w/ DDP, FP16, ZeRO Punchline: "Shards” Memory by # of GPUSs!

Standard Data Parallelism ZeRO Data Parallelism (ZeRO-2)
"Replicate everything but the datal” "Replicate only what you need”
~ N\ ™) ~ N\)
2V Bytes [Model j [Model J [Model J [Model] 2V Bytes
Gradients Gradients Gradients Gradients
[Entire Modell [Entire Modell
4) () ~) é)
Optimizer States Optimizer States Opt. States Opt. States
12"/ Bytes [Entire Modell [Entire Modell [Layers 1-6] [Layers 7-12] (12 /W) Bytes
Lk JJ LL JJ Lk JJ Lk JJ
GPU 1 GPU 2 GPU 1 GPU 2 W = # of GPUs

Y - # of Parameters

Reference: "ZeRO: Memory Optimizations Toward Training Trillion Parameter Models,” Rajbhandari, Rasley, Ruwase, and He. SC 2020. 24

Alas — Hitting a (Communication) Wall

Problem — At some point, communication cost between nodes is too much!

Answers:

||||||||||

||||||||||

v (2,5) w (5,8)

—xploit Matrix Multiplication..

|||||||||||||||
llllllllll

out (4,8)

FFFFFFFFFFFFFFF
IIIIIIIIII

x1 (2,5) w (5,8) out, (2,8)

Device 1
Device 2
: Device 3
Schedule Backwards Pass Wisely.. Device 4
Time Devices idle
B Forward Pass Backward Pass

< Harder to implement, model-specific... miles to go? >

Reference: "PipeDream: Generalized Pipeline Parallelism for DNN Training,” Narayanan et. al. SOSP 2019.
Reference: "Efficient Large-Scale LM Training on GPU Clusters using Megatron-LLM,” Narayanan et. al. SC 2021,

25

2024/2025 Update — Fully-Sharded Data Parallel (FSDP)

ZeRO-2 Data Parallelism

"Replicate only what you need’

[Model] [Model] 2'¥ Bytes
Gradients Gradients
&) [)
Opt. States Opt. States
[Layers 1-6] [Layers 7-12] (12¥ /W) Bytes
. S) IR e J)
GPU 1 GPU > Y = # of Parameters

W = # of GPUs

2024/2025 Update — Fully-Sharded Data Parallel (FSDP)

ZeRO-2 Data Parallelism As of PyTorch 2.2 (Stable)
Replicate only what you need
0O
[Model J [Model J
from torch.distributed.fsdp import fully_shard
Gradients Gradients # "LIM" = [Blockl -> Block2 -> ... BlockN]
model = LLM()
Shard the Model
Opt. States Opt. States (12 / W) Bytes for m in model.modules():
[Layers 1-6] [Layers 7-12] # Group each Block Together!
5) 5) 1f isinstance(m, TransformerBlock):
Y = # of Parameters fully_shard(m)
GPU 1 GPU 2

W = # of GPUs # Group remaining parameters. . .
fully_shard(model)

ZeRO-3 /7 FSDP — Shard model weights too!

Same Dataloader Setup as DDP...

AddS Latency — ﬂeed tO “gathel’" pel’ GPUI # Run: “torchrun ... main.py‘
But — can be smart about "grouping” parameters!

2/

Part lll. Fine-Tuning and Inference

‘It's such a happiness, when good people get together’
— Jane Austen, Emma

23

Tools for Training —> Tools for Fine-Tuning

Silver Lining — Learning to scale training —> informs fine-tuning & inference!

ZeRO Parallelism Mixed Precision (BF16)

! !

ZeRO Infinity —> CPU/NVMe Offloading Quantization (8-Bit, 4-Bit)

InfiniBand Network

. Forward E (1) Find vector-wise constants: Cw& Cx (2) Quantize (4) Dequantize E
Backward ; X * (127/C,) = X !
® Update E X e Cw Fl: . y OUt'; (CX®CW) = QOut E
- I 20 s (127/Cw) = Wi 127%127 Fi6 |
: 3[of3]2 0]-2 i
E 1[-1]-1]0 -1]2 oy (3) Int8 Matmul E
. All-gather of parameters 2 [45]-1117)-1 110 : T e W X W = Out i
X 0 |12]3 |63 2 2°W C 18 18 132
—_— 1[37]-1}83/ 0 0]2 X
@ Compute activations : I e L ol L b h L L L PP PP PP PR
1|2
FR16 16-bit Decomposition
L_) E (1) Decompose outliers ~ (2) FP16 Matmul E
i 25117 \zN - XF16 WF16= OUtFlﬁ : OUtme
[] Regular values ; X ;322 32 E
[] Outliers E F16 Fie :
Layer 0 Activation . . '
Layer 1 Parameter P l l d
ayer1 owers llama.cpp’ and more!
ayer

Reference: "ZeRO-Infinity: Breaking the GPU Memory Wall for Extreme Scale Deep Learning’ Rajbhandari et. al. SC 2021.
Reference: "LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale,” Dettmers, Lewis, Belkada, and Zettlemoyer. NeurlPS 2022, 29

(Briefly) Parameter-Efficient Fine-Tuning

(Quantized) LoRA

Prefix Tuning (Low-Rank Adaptation)

Fine-tuning

Transformer (Translation)
HE B B = = == = =
|j‘ Transformer (Summarization)

N . N N O N O e

Transformer (Table-to-text)
Pretrained
— name Starbucks type coffee shop [SEP] Starbucks serves coffee .
(Trrl:‘ﬁﬂt’l(on)w Input (table-to-text) Output (table-to-text) We | g htS
[1 . .
Prefix Prefix-tuning
(Summarization) dXd
| I
| - WeR
L mg,','}f,'_’{m) Transformer (Pretrained)
—
\ y

name Starbucks type coffee shop [SEP] Starbucks serves coffee
Input (table-to-text) Output (table-to-text)

and many more!

Reference: https./github.com/huggingface/peft
Reference: Prefix-Tuning: Optimizing Continuous Prompts for Generation, Li and Liang, ACL 2021.

https://github.com/huggingface/peft

Optimizing LLM Inference (Beyond the KV Cache)

Kernel Fusion (Simplified) (Latency) Speculative Decoding

Idea: "Draft” LLM to generate candidates ("guess”).
Pass 1: Matrix Multiplication “Actual” M Verlﬁes Iﬂ paral.l.el. (“CheCk”).

for 1 in range(B):
for j in range(M):

accumulate = 0 g g X
for K in range(K): , s B e
accumulate += X[1][k] * W[K][j] - R B S gt A A A
t | Draft | Draft | Draft T
: ~ I arget model
Pass 2: Add Bias Todel |mfd_e.l _ﬁ"l?fji'”:i,,m@d | 9
for i1 in range(B): £ 3 1 B A \&
for _] 'Ln range(M): ‘Oncei "»UPOH “» a “» time T T f T

upon a time there

H{1][j] = H[1I[j] + bias[j]

Pass 3: RelLlU
ror L A Other Resources
for j in range(M):
HE1I[j] = max(0, H[1][j])

Google’s Scaling Book:

VS, https://jax-mLgithub.io/scaling-book/
Fuse Operations 7 = =
for 1 in range(B): Sasha Rush’'s GPU Puzzles (+ LLM Training Puzzles)
for J tn range(M): https://qithub.com/srush/gpu-puzzles
accumulate = 0 ; = =+ -
for k in range(K): .
accumulate += X[1][k] * W[k][j] Modded NanoGPT:
accumulate = accunulate + biasj] https.//github.com/KellerJordan/modded-nanogpt

H[1][j] = max(0, accumulate)

31

https://jax-ml.github.io/scaling-book/
https://github.com/srush/gpu-puzzles
https://github.com/KellerJordan/modded-nanogpt

Coda. Curiosities & Lamentations

‘In a world of diminishing mystery, the unknown persists.’
— Jhumpa Lahiri, The Lowland

32

Lamenting the Stability of Transformer Training

Reproducibility — what does reliability mean for LLM training (FP16 + ZeRO)?

&)
o

WikiText-103 Validation PPL

&

N
&)

S
o

&

W
o

N
&)

N
O

WikiText-103 Validation Perplexity 0 WikiText-103 Validation Perplexity
— Alias (GPT-2 Small) — Alias (GPT-2 Small)
= 45 Battlestar (GPT-2 Small)
% —— Caprica (GPT-2 Small)
%40 b [— Darkmatter (GPT-2 Small)
O .| —— Expanse (GPT-2 Small)
= 3D
>
£
8 2.
<
“©1 2/5 Runs Crashed — just different random seeds!
oK 50K 100K 150K 200K 250K 300K 350K 400K O 0K 50K 100K 150K 200K 250K 300K 350K 400K
Training Step Training Step
What's going on?

33

Zooming In — Order of Operations in Self-Attention

)

OK"
Va

Recall: Scaled Dot-Product Attention ——, softmax(

Implementations...
60000 -
def attn(query, key):
d k = query.size(-1) _ 50000
nuwerator = torch.matmut(query, k.7) ————e——— ——eoboo o i
denominator = math.sqgrt(d_k) g 40000 - Model
return numerator / denominator < | FP16 Threshold
x
S 30000{ —— GPT-2 Small [Unstable]
o GPT-2 Small [Stable]
)
= 20000 -
-
10000 -
def attn_stable(query, key):
d k = query.size(-1) 01 | ‘ ' | | | |
key stable = k.T / math.sqrt(d_k) 153000 154000 155000 156000 157000 158000 159000

return torch.matmul(query, key stable) Step

On "Folk Knowledge” & Implementation Details

L EleutherAl / gpt-neo Analysis of Run 12.02 [Susan]

An implementation of model & data parallel GPT3-like models using
the mesh-tensorflow library.

mesh / mesh_tensorflow / transformer / attention.py /

@
@
@)
@)
@
[
@)
@
(@)

def attention(q,
K,

) © © ®© O @ ©

~
O

if float32_logits:

k -— mt f - C a S t (k I t f - f 1- 0 a t 3 2) e Loss of ppl starting to oscillat moreeavily, potentially indicating that LR is too high.
e CUDA error crashed the run after 2008 updates.
q = mtf.cast(q, tf.float32)

2021-11-11 11pm [Susan]: Run 12.02

e Relaunched with node 7 put back, same nodelist as 11.10.
dro pou t_ rate=0.0 ’ e This worked! Expect roughly 2 minutes between “Start iterating over samples” and the first log line:

dropout_broadcast_dims=None, == | e —
extra_logit=None,
context=None,
float32_logits=True,

z_loss_coeff=None):

[1] "GPT-Neo Codebase” EleutherAl, 2021 (https.//github.com/EleutherAl/gpt-neo).
[2] "OPT Logbook for OPT-175B," Meta Al 2022 (https.//github.com/facebookresearch/metaseq/tree/main/projects/OPT/chronicles)

35

https://github.com/EleutherAI/gpt-neo

2025 —> Detalls STILL Matter!

transformers / src / transformers / models / llama / modeling_llama.py

Code

199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
<+ 218
219
220
221
222
223
224

Blame 532 lines (444 loc) - 21.3 KB

v def eager_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optionall[torch.Tensor],
scaling: float,
dropout: float = 0.0,
xkkwargs: Unpack[TransformerskKwargs],

key_states = repeat_kv(key, module.num_key_value_groups)
value_states = repeat_kv(value, module.num_key_value_groups)

attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if attention_mask is not None:
causal_mask = attention_maskl[:, :, :, : key_states.shapel[-2]]
attn_weights = attn_weights + causal_mask

attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value_states)

attn_output = attn_output.transpose(1l, 2).contiguous()

return attn_output, attn_weights

That's all Folks!

“This wind, It Is not an ending.
— Robert Jordan, A Memory of Light

37/

