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Topics:
• Deep Learning Hardware and Software
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• Time to work on the project
• Read papers in more details, implement baselines, 

process data, verify hypotheses, etc.
• We will release the milestone guideline soon
• Start on PS3/HW3 if you haven’t

• Coding: If you passed individual testing cases but are failing end-to-
end testing, double check your Multi-Headed Attention. The unit test 
doesn’t catch all errors.

• DO NOT MODIFY YOUR TEST CODE

Administrative
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Today

- Finishing Attention, Transformers
- Deep learning hardware

- CPU, GPU
- Deep learning software

- PyTorch and TensorFlow
- Static and Dynamic computation graphs



Attention Layer
Inputs: 
Query vectors: Q (Shape: NQ x DQ)
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)

Computation:
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NQ x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NQ x NX)
Output vectors: Y = AV (Shape: NQ x DV) Yi = ∑jAi,jVj
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Slide credit: Justin Johnson

Softmax(    )



Attention Layer
Inputs: 
Query vectors: Q (Shape: NQ x DQ)
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)

Computation:
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NQ x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NQ x NX)
Output vectors: Y = AV (Shape: NQ x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Attention seems to be really powerful …
Do we still need RNN?
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RNN is bad at encoding long-range relationships!

Recurrent update can easily “forget” information



Attention Layer
Inputs: 
Query vectors: Q (Shape: NQ x DQ)
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)

Computation:
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NQ x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NQ x NX)
Output vectors: Y = AV (Shape: NQ x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Attention seems to be really powerful …
Do we still need RNN?

Can we use only attention layers to encode 
an entire sequence?



“The Transformer Paper”



Inputs: 
Query vectors: Q (Shape: NQ x DQ)
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

X1 X2 X3

Self-Attention Layer

Slide credit: Justin Johnson

Sequence encode -> use each input element as query!

Still need to somehow represent inter-
token connection in the input sequence.

Goal: encode the input sequence with only 
attention, without a recurrent network.



Inputs: 
Query vectors: Q (Shape: NQ x DQ)
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

X1 X2 X3

Self-Attention Layer

Slide credit: Justin Johnson

Sequence encode -> use each input element as query!

Goal: encode the input sequence with only 
attention, without a recurrent network.

Encoding only -> no external queries
Use each element to query other elements



Q1 Q2 Q3

X1 X2 X3

Self-Attention Layer
Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Sequence encode -> use each input element as query!



Q1 Q2 Q3

K3

K2

K1

X1 X2 X3

Self-Attention Layer
Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Sequence encode -> use each input element as query!



Q1 Q2 Q3
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Self-Attention Layer
Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Sequence encode -> use each input element as query!
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Softmax(↑)
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Self-Attention Layer
Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Sequence encode -> use each input element as query!
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K3

K2

K1

E1,3

E1,2

E1,1

E2,3

E2,2

E2,1

E3,3

E3,2

E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Softmax(↑)
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Self-Attention Layer
Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Sequence encode -> use each input element as query!

Q,K,V are all generated from X!
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Self-Attention Layer
Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Sequence encode -> use each input element as query!

Q,K,V are all generated from X!
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Self-Attention Layer
Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Sequence encode -> use each input element as query!

Q: Can we use self-attention to 
encode an input with specific 
sequential ordering?

Q,K,V are all generated from X!



Product(→),   Sum(↑)

Softmax(↑)

X3 X1 X2

Consider permuting
the input vectors:

Self-Attention Layer
Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson



Self-Attention Layer
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Product(→),   Sum(↑)

Softmax(↑)
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Consider permuting
the input vectors:

Queries and Keys will be 
the same, but permuted

Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value Vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson



Q3 Q1 Q2

K2

K1

K3

E3,2

E3,1

E3,3

E1,2

E1,1

E1,3

E2,2

E2,1

E2,3

Product(→),   Sum(↑)

Softmax(↑)
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Consider permuting
the input vectors:

Similarities will be the 
same, but permuted

Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Self-Attention Layer
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Consider permuting
the input vectors:

Attention weights will be 
the same, but permuted

Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Self-Attention Layer
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Consider permuting
the input vectors:

Values will be the 
same, but permuted

Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Self-Attention Layer
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Consider permuting
the input vectors:

Outputs will be the 
same, but permuted

Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Self-Attention Layer
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Consider permuting
the input vectors:

Outputs will be the 
same, but permuted

Self-attention layer is 
Permutation Equivariant
f(s(x)) = s(f(x))

Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Self-Attention Layer
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Self attention doesn’t “know” 
the order of the vectors it is 
processing! Not good for 
sequence encoding.

Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Self-Attention Layer
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In order to make processing 
position-aware, concatenate 
input with positional encoding E

E(i) encodes the position of the 
i-th element in a sequence

E() can be a simple function 
(e.g., linear or sin functions) or a 
learned lookup table.

E(1) E(2) E(3)

Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Self-Attention Layer

0.1 0.2 0.3



Slide credit: Justin Johnson

Aside: Positional Encoding (PE) for Self-Attention
Motivation: Maintain the order of input data since attention mechanisms are 
permutation invariant. PEs are shared across all input sequences.

Linear Positional Encoding: 𝑃𝐸(𝑝𝑜𝑠) = 𝑎 ⋅ 𝑝𝑜𝑠 + 𝑏.
Problem: encoding increases with the sequence length, causing gradient problem for 
long sequences.

Sin/cos Positional Encoding (Default): 

PE for each dimension (i) repeats periodically, combine different waveforms at each 
dimension to get a unique embedding.

Learned Positional Encoding: 𝑃𝐸!(𝑝𝑜𝑠, 𝑖).
Learn the most suitable position embedding for the training set.



Masked Self-Attention Layer

Don’t let vectors “look 
ahead” in the sequence

Used for sequence decoding 
(predict next word)
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Product(→),   Sum(↑)

Softmax(↑)

[START] Big cat

Big cat [END]

Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson
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Y1 Y2 Y3

X1 X2 X3

Q1 Q2 Q3

K3
K2
K1

E1,3
E1,2
E1,1

E2,3
E2,2
E2,1

E3,3
E3,2
E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→),			Sum(↑)

Softmax(↑)

Y1 Y2 Y3

X1 X2 X3

Q1 Q2 Q3

K3
K2
K1

E1,3
E1,2
E1,1

E2,3
E2,2
E2,1

E3,3
E3,2
E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→),			Sum(↑)

Softmax(↑)

Y1 Y2 Y3

X1 X2 X3

Y1 Y2 Y3

X1 X2 X3

distribute

Concat

Use H independent 
“Attention Heads” in 
parallel

Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Multi-headed Self-Attention Layer



Q1 Q2 Q3

K3
K2
K1

E1,3
E1,2
E1,1

E2,3
E2,2
E2,1

E3,3
E3,2
E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→),			Sum(↑)

Softmax(↑)

Y1 Y2 Y3

X1 X2 X3

Q1 Q2 Q3

K3
K2
K1

E1,3
E1,2
E1,1

E2,3
E2,2
E2,1

E3,3
E3,2
E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→),			Sum(↑)

Softmax(↑)

Y1 Y2 Y3

X1 X2 X3

Q1 Q2 Q3

K3
K2
K1

E1,3
E1,2
E1,1

E2,3
E2,2
E2,1

E3,3
E3,2
E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→),			Sum(↑)

Softmax(↑)

Y1 Y2 Y3

X1 X2 X3

Y1 Y2 Y3

X1 X2 X3

distribute

Concat

Use H independent 
“Attention Heads” in 
parallel

Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Multi-headed Self-Attention Layer

Highly parallelizable: Can compute attentions for all 
input element from all head in parallel!



Three Ways of Processing Sequences

x1 x2 x3

y1 y2 y3

x4

y4

Recurrent Neural Network

Works on Ordered Sequences
(+) Natural sequential processing: 
“sees” the input sequence in its 
original ordering
(-) Forgetful: difficult to handle 
long-range dependencies.
(-) Not parallelizable: need to 
compute hidden states sequentially

Slide credit: Justin Johnson



Three Ways of Processing Sequences

y1 y2 y3 y4

x1 x2 x3 x4

y1 y2 y3 y4

Recurrent Neural Network 1D Convolution

Works on Multidimensional Grids
(-) Bad at long sequences: Need to 
stack many conv layers for outputs 
to “see” the whole sequence
(+) Highly parallel: Each output can 
be computed in parallel

x1 x2 x3 x4

Slide credit: Justin Johnson

Works on Ordered Sequences
(+) Natural sequential processing: 
“sees” the input sequence in its 
original ordering
(-) Forgetful: difficult to handle 
long-range dependencies.
(-) Not parallelizable: need to 
compute hidden states sequentially



Three Ways of Processing Sequences

y1 y2 y3 y4 y1 y2 y3 y4

Q1 Q2 Q3

K3
K2
K1

E1,3
E1,2
E1,1

E2,3
E2,2
E2,1

E3,3
E3,2
E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→),			Sum(↑)

Softmax(↑)

Y1 Y2 Y3

X1 X2 X3

Recurrent Neural Network 1D Convolution Self-Attention

Works on Multidimensional Grids
(-) Bad at long sequences: Need to 
stack many conv layers for outputs 
to “see” the whole sequence
(+) Highly parallel: Each output can 
be computed in parallel

Works on Sets of Vectors
(+) Good at long sequences: after 
one self-attention layer, each output 
“sees” all inputs!
(+) Highly parallel: Each output can 
be computed in parallel
(-) Very memory intensive
(-) Requires positional encoding

x1 x2 x3 x4x1 x2 x3 x4

Slide credit: Justin Johnson

Works on Ordered Sequences
(+) Natural sequential processing: 
“sees” the input sequence in its 
original ordering
(-) Forgetful: difficult to handle 
long-range dependencies.
(-) Not parallelizable: need to 
compute hidden states sequentially



The Transformer Block

Vaswani et al, “Attention is all you need”, NeurIPS 2017

x1 x2 x3 x4

Slide credit: Justin Johnson



The Transformer Block

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Self-AttentionAll vectors interact 
with each other

Slide credit: Justin Johnson
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The Transformer Block

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Self-Attention

MLP MLP MLP MLP

All vectors interact 
with each other

MLP independently on 
each vector

Slide credit: Justin Johnson

y1 y2 y3 y4

x1 x2 x3 x4



The Transformer Block

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Self-Attention

MLP MLP MLP MLP

All vectors interact 
with each other

MLP independently on 
each vector

Slide credit: Justin Johnson

y1 y2 y3 y4

+Residual connection

x1 x2 x3 x4



The Transformer Block

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Self-Attention

Layer Normalization

+

All vectors interact 
with each other

Residual connection

Recall Layer Normalization:
Given h1, …, hN (shape: D)
scale: 𝛾 (shape: D)
shift: 𝛽 (shape: D)
𝜇i = (1/D)∑j hi,j (scalar)
𝜎i = (∑j (hi,j - 𝜇i)2)1/2 (scalar)
zi = (hi - 𝜇i) / 𝜎i (shape: D)
yi = 𝛾 * zi + 𝛽 (shape: D)

Applied per element, not 
across the sequence

Slide credit: Justin Johnson

MLP independently on 
each vector

y1 y2 y3 y4

MLP MLP MLP MLP

x1 x2 x3 x4



The Transformer Block

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Self-Attention

Layer Normalization

+

MLP MLP MLP MLP

+

Layer Normalization

y1 y2 y3 y4

All vectors interact 
with each other

Residual connection

MLP independently on 
each vector

Residual connection

Slide credit: Justin Johnson

x1 x2 x3 x4



The Transformer Block

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Self-Attention

Layer Normalization

+

MLP MLP MLP MLP

+

Layer Normalization

y1 y2 y3 y4

Transformer Block:
Input: Set of vectors x 
Output: Set of vectors y

Self-attention is the only 
interaction among vectors!

Layer norm and MLP work 
independently per vector

Highly scalable, highly 
parallelizable

Slide credit: Justin Johnson

x1 x2 x3 x4



The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

A Transformer is a sequence 
of transformer blocks

Transformer Block:
Input: Set of vectors x
Output: Set of vectors y

Self-attention is the only 
interaction among vectors!

Layer norm and MLP work 
independently per vector

Highly scalable, highly 
parallelizable

Slide credit: Justin Johnson



Encoder-Decoder

The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017



Visualizing Transformer Attentions

https://github.com/jessevig/bertviz



Can Attention/Transformers be used from 
more than text processing?



Encoding/Decoding Protein Structures (AlphaFold)

https://www.nature.com/articles/s41586-021-03819-2



Predicting Multi-agent Behaviors

Yuan et al., 2021 AgentFormer: Agent-Aware Transformers for Socio-Temporal Multi-Agent Forecasting



ViT: Vision Transformer

An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
(Dosovitskiy et al., 2021)



ViT: Vision Transformer

Generally more expensive to train and execute than ConvNets-based models





Summary
Self-Attention Transformer Model Beyond Language



A Lecture on Large Language Models

Nov 5th by William Held (GT, Stanford)
Fully-remote
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Today

- Finishing Attention, Transformers
- Deep learning hardware

- CPU, GPU
- Deep learning software

- PyTorch and TensorFlow
- Static and Dynamic computation graphs



Deep Learning 
Hardware

53
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Inside a computer
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Spot the CPU!
(central processing unit)

This image is licensed under CC-BY 2.0

https://commons.wikimedia.org/wiki/File:Intel_Core_i7-2600_SR00B_(16339769307).jpg
https://creativecommons.org/licenses/by/2.0/deed.en
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Spot the GPUs!
(graphics processing unit)

This image is licensed under CC-BY 2.0

https://creativecommons.org/licenses/by/2.0/deed.en
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CPU vs GPU
Cores Clock 

Speed
Memory Price Speed (throughput)

CPU
(Intel Core i9-
7900k)

10 4.3 GHz System 
RAM

$385 ~640 GFLOPS FP32

GPU
(NVIDIA
RTX 3090)

10496 1.6 GHz 24 GB 
GDDR6X

$1499 ~35.6 TFLOPS FP32

CPU: Fewer cores, 
but each core is 
much faster and 
much more 
capable; great at 
sequential tasks

GPU: More cores, 
but each core is 
much slower and 
“dumber”; great for 
parallel tasks
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Example: Matrix Multiplication
A x B

B x C
A x C

=

cuBLAS::GEMM (GEneral Matrix-to-matrix Multiply)



CPU vs GPU in practice

Data from https://github.com/jcjohnson/cnn-benchmarks

(CPU performance not well-
optimized, a little unfair)

66x 67x 71x 64x 76x
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CPU vs GPU in practice

Data from https://github.com/jcjohnson/cnn-benchmarks

cuDNN much faster than 
“unoptimized” CUDA

2.8x 3.0x 3.1x 3.4x 2.8x
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62https://en.wikipedia.org/wiki/FLOPS#Hardware_costs

NVIDIA 
GeForce 
RTX4090
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NVIDIA AMDvs
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NVIDIA AMDvs
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CPU vs GPU
Cores Clock 

Speed
Memor
y

Price Speed

CPU
(Intel Core i7-
7700k)

10 4.3 GHz System 
RAM

$385 ~640 GFLOPs FP32

GPU
(NVIDIA
RTX 3090)

10496 1.6 GHz 24 GB 
GDDR6
X

$1499 ~35.6 TFLOPs FP32

GPU 
(Data Center)
NVIDIA A100

6912 CUDA,
432 Tensor

1.5 GHz 40/80
GB 
HBM2

$3/hr 
(GCP)

~9.7 TFLOPs FP64
~20 TFLOPs FP32
~312 TFLOPs FP16

TPU
Google Cloud 
TPUv3

2 Matrix Units 
(MXUs) per 
core, 4 cores

? 128 GB 
HBM

$8/hr
(GCP)

~420 TFLOPs (non-
standard FP)

CPU: Fewer cores, 
but each core is 
much faster and 
much more 
capable; great at 
sequential tasks

GPU: More cores, 
but each core is 
much slower and 
“dumber”; great for 
parallel tasks

TPU: Specialized 
hardware for deep 
learning
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Aside: NPUs 
Neural Processing Units (NPUs) are specialized hardware designed for Deep Learning 
applications. Example: GraphCore IPUs
General pros: larger on-device memory, lower power consumption
General cons: specialized computation units (compared to GPU and CPUs). Smaller 
instruction sets. Less supported by popular platforms (PyTorch, TensorFlow)

Graphcore M2000

Apple M1
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Programming GPUs
● CUDA (NVIDIA only)

○ Write C-like code that runs directly on the GPU
○ Optimized APIs: cuBLAS, cuFFT, cuDNN, etc

● OpenCL
○ Similar to CUDA, but runs on anything
○ Usually slower on NVIDIA hardware

● HIP https://github.com/ROCm-Developer-Tools/HIP
○ New project that automatically converts CUDA code to 

something that can run on AMD GPUs
○ CS 8803 – GPU at GaTech

○ Taught by Prof. Hyesoon Kim

https://github.com/ROCm-Developer-Tools/HIP


CPU / GPU Communication

Model 
is here

68Data is here

Data access rate: RAM and the GPU 
over PCIe lanes is about 16 GB/s. 
GPU's internal memory (like GDDR6) 
is about 448 GB/s.



CPU / GPU Communication

Model 
is here

Data is here

If you aren’t careful, training can 
bottleneck on reading data and 
transferring to GPU!

Solutions:
- Read all data into RAM
- Use SSD instead of HDD
- Use multiple CPU threads to 

prefetch data

69

Data access rate: RAM and the GPU 
over PCIe lanes is about 16 GB/s. 
GPU's internal memory (like GDDR6) 
is about 448 GB/s.



Deep Learning 
Software

70



A zoo of frameworks!

Caffe 
(UC Berkeley)

Torch 
(NYU / Facebook)

Theano 
(U Montreal)

TensorFlow 
(Google)

Caffe2 
(Facebook) 
mostly features absorbed 
by PyTorch

PyTorch 
(Facebook)

CNTK 
(Microsoft)

PaddlePaddle
(Baidu)

MXNet 
(Amazon)
Developed by U Washington, CMU, MIT, 
Hong Kong U, etc but main framework of 
choice at AWS

And others...

71

Chainer
(Preferred Networks)
The company has officially migrated its research 
infrastructure to PyTorch 

JAX
(Google)



A zoo of frameworks!

Caffe 
(UC Berkeley)

Torch 
(NYU / Facebook)

Theano 
(U Montreal)

TensorFlow 
(Google)

Caffe2 
(Facebook) 
mostly features absorbed 
by PyTorch

PyTorch 
(Facebook)

CNTK 
(Microsoft)

PaddlePaddle
(Baidu)

MXNet 
(Amazon)
Developed by U Washington, CMU, MIT, 
Hong Kong U, etc but main framework of 
choice at AWS

And others...
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Chainer
(Preferred Networks)
The company has officially migrated its research 
infrastructure to PyTorch 

JAX
(Google)

We’ll focus on these



Recall: Computational Graphs

x

W

hinge 
loss

R

+ L
s (scores)

*
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input image

loss

weights

Figure copyright Alex Krizhevsky, Ilya Sutskever, and 
Geoffrey Hinton, 2012. Reproduced with permission. 

Recall: Computational Graphs
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Recall: Computational Graphs

Figure reproduced with permission from a Twitter post by Andrej Karpathy.

input image

loss
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https://twitter.com/karpathy/status/597631909930242048?lang=en
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The point of deep learning frameworks

(1)Quick to develop and test new ideas
(2)Automatically compute gradients
(3)Run it all efficiently on GPU (wrap cuDNN, cuBLAS, 

OpenCL, etc)
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Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy
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Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy
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Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy

Bad: 
- Have to compute 

our own gradients
- Can’t run on GPU

Good: 
Clean API, easy to 
write numeric code
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Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy PyTorch

Looks exactly like numpy!
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Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy PyTorch

PyTorch handles gradients for us!



82

Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy PyTorch

Trivial to run on GPU - just construct 
arrays on a different device!
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PyTorch
(More details)
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PyTorch: Fundamental Concepts

torch.Tensor: Like a numpy array, but can run on GPU

torch.nn.Module: A neural network layer; may store state 
or learnable weights

torch.autograd: Package for building computational graphs 
out of Tensors, and automatically computing gradients
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PyTorch: Versions

For this class we are using PyTorch version >= 2.0.0
(newest is v2.1.0)

Major API change in release 1.0

Be careful if you are looking at older PyTorch code (<1.0)!
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PyTorch: Tensors

Running example: Train 
a two-layer ReLU 
network on random data 
with L2 loss
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PyTorch: Tensors
Create random tensors 
for data and weights
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PyTorch: Tensors

Forward pass: compute 
predictions and loss
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PyTorch: Tensors

Backward pass: 
manually compute 
gradients
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PyTorch: Tensors

Gradient descent 
step on weights
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PyTorch: Tensors

To run on GPU, just use a 
different device!
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PyTorch: Autograd
x w1 w2 y

mm

clamp

mm

y_pred

-

pow sum loss
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PyTorch: Autograd

Make gradient step on weights, then zero 
them. Torch.no_grad means “don’t build a 
computational graph for this part”



94

PyTorch: Autograd

PyTorch methods that end in underscore 
modify the Tensor in-place; methods that 
don’t return a new Tensor
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PyTorch: New Autograd Functions
Define your own autograd
functions by writing forward 
and backward functions for 
Tensors

Use ctx object to “cache” values 
for the backward pass
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PyTorch: New Autograd Functions
Define your own autograd
functions by writing forward 
and backward functions for 
Tensors

Use ctx object to “cache” values 
for the backward pass

Define a helper function to make it 
easy to use the new function
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PyTorch: New Autograd Functions

Can use our new autograd 
function in the forward pass
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PyTorch: New Autograd Functions

In practice you almost never need 
to define new autograd functions! 
Only do it when you need custom 
backward. In this case we can just 
use a normal PyTorch function



PyTorch: Computational Graphs

Figure reproduced with permission from a Twitter post by Andrej Karpathy.

input image

loss
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https://twitter.com/karpathy/status/597631909930242048?lang=en
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PyTorch: Dynamic Computation Graphs
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PyTorch: Dynamic Computation Graphs
x w1 w2 y

Create Tensor objects
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PyTorch: Dynamic Computation Graphs
x w1 w2 y

mm

clamp

mm

y_pred

Build graph data structure AND 
perform computation
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PyTorch: Dynamic Computation Graphs
x w1 w2 y

mm

clamp

mm

y_pred

-

pow sum loss
Build graph data structure AND 
perform computation
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PyTorch: Dynamic Computation Graphs
x w1 w2 y

mm

clamp

mm

y_pred

-

pow sum loss
Search for path between loss and w1, w2 
(for backprop) AND perform computation
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PyTorch: Dynamic Computation Graphs
x w1 w2 y

Throw away the graph, backprop path, and 
rebuild it from scratch on every iteration
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PyTorch: Dynamic Computation Graphs
x w1 w2 y

mm

clamp

mm

y_pred

Build graph data structure AND 
perform computation
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PyTorch: Dynamic Computation Graphs
x w1 w2 y

mm

clamp

mm

y_pred

-

pow sum loss
Build graph data structure AND 
perform computation
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PyTorch: Dynamic Computation Graphs
x w1 w2 y

mm

clamp

mm

y_pred

-

pow sum loss
Search for path between loss and w1, w2 
(for backprop) AND perform computation



109

PyTorch: Dynamic Computation Graphs

Building the graph and 
computing the graph happen at 
the same time.

Seems inefficient, especially if we 
are building the same graph over 
and over again...
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Static Computation Graphs

Alternative: Static graphs

Step 1: Build computational graph 
describing our computation 
(including finding paths for 
backprop)

Step 2: Reuse the same graph on 
every iteration
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TensorFlow
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TensorFlow Versions

Default static graph, 
optionally dynamic 
graph (eager mode).

Pre-2.0 (1.14 latest) 2.0+
Default dynamic graph, 
optionally static graph.
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TensorFlow: 
Neural Net
(Pre-2.0)

(Assume imports at the 
top of each snippet)
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TensorFlow: 
Neural Net
(Pre-2.0)

First define
computational graph

Then run the graph 
many times
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TensorFlow: 2.0+ vs. pre-2.0

Tensorflow 2.0+:
“Eager” Mode by default
assert(tf.executing_eagerly())

Tensorflow 1.13
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TensorFlow: 2.0+ vs. pre-2.0

Tensorflow 1.13

Tensorflow 2.0+:
“Eager” Mode by default
assert(tf.executing_eagerly())
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TensorFlow: 2.0+ vs. pre-2.0

Tensorflow 1.13

Tensorflow 2.0+:
“Eager” Mode by default
assert(tf.executing_eagerly())



118

TensorFlow: 
Neural Net

Convert input numpy 
arrays to TF tensors.
Create weights as 
tf.Variable  
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TensorFlow: 
Neural Net

Use tf.GradientTape() 
context to build 
dynamic computation 
graph.
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TensorFlow: 
Neural Net

All forward-pass 
operations in the 
contexts (including 
function calls) gets 
traced for computing 
gradient later.
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TensorFlow: 
Neural Net

Forward pass
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TensorFlow: 
Neural Net

tape.gradient() uses the 
traced computation 
graph to compute 
gradient for the weights
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TensorFlow: 
Neural Net

Backward pass
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TensorFlow: 
Neural Net

Train the network: Run 
the training step over 
and over, use gradient 
to update weights
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TensorFlow: 
Neural Net

Train the network: Run 
the training step over 
and over, use gradient 
to update weights
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TensorFlow: 
Optimizer

Can use an optimizer to 
compute gradients and 
update weights
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@tf.function: 
compile static 
graph

tf.function decorator 
(implicitly) compiles 
python functions to 
static graph for better 
performance
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@tf.function: 
compile static 
graph

Here we compare the 
forward-pass time of 
the same model under 
dynamic graph mode 
and static graph mode

Ran on Google Colab, April 2020
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@tf.function: 
compile static 
graph

Static graph is in theory
faster than dynamic graph, 
but the performance gain 
depends on the type of 
model / layer / computation 
graph. 

Ran on Google Colab, April 2020
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@tf.function: 
compile static 
graph

Static graph is in theory
faster than dynamic graph, 
but the performance gain 
depends on the type of 
model / layer / computation 
graph.

Ran on Google Colab, April 2020



Static vs Dynamic: Optimization
With static graphs, 
framework can 
optimize the 
graph for you 
before it runs!

Conv
ReLU
Conv
ReLU
Conv
ReLU

The graph you wrote

Conv+ReLU

Equivalent graph with 
fused operations

Conv+ReLU
Conv+ReLU
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Static PyTorch: TorchScript
graph(%self.1 : 
__torch__.torch.nn.modules.module.___torch_mangl
e_4.Module,

%input : Float(3, 4),
%h : Float(3, 4)):

%19 : 
__torch__.torch.nn.modules.module.___torch_mangl
e_3.Module = 
prim::GetAttr[name="linear"](%self.1)
%21 : Tensor = 

prim::CallMethod[name="forward"](%19, %input)
%12 : int = prim::Constant[value=1]() # 

<ipython-input-40-26946221023e>:7:0
%13 : Float(3, 4) = aten::add(%21, %h, %12) # 

<ipython-input-40-26946221023e>:7:0
%14 : Float(3, 4) = aten::tanh(%13) # 

<ipython-input-40-26946221023e>:7:0
%15 : (Float(3, 4), Float(3, 4)) = 

prim::TupleConstruct(%14, %14)
return (%15)

Build static graph with torch.jit.trace
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Static PyTorch: torch.compile()
Applies a suite of kernel optimization 
techniques by analyzing your computation 
graph. Optimizations include CUDA graphs, 
kernel fusion, and pattern matching (e.g., 
flash attention).

Curious? Read more here:
https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html
https://pytorch.org/blog/accelerating-pytorch-with-cuda-graphs/

https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html
https://pytorch.org/blog/accelerating-pytorch-with-cuda-graphs/


PyTorch vs TensorFlow, Static vs Dynamic

PyTorch
Dynamic Graphs

Static: TorchScript, 
torch.compile()

134

TensorFlow
Dynamic Graphs

Static: @tf.function



Static vs Dynamic: Serialization

Once graph is built, can 
serialize it and run it 
without the code that 
built the graph!

Graph building and execution 
are intertwined, so always 
need to keep code around

Static Dynamic
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Dynamic Graph Applications

Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for Generating 
Image Descriptions”, CVPR 2015
Figure copyright IEEE, 2015. Reproduced for educational purposes. 
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- Recurrent networks



Dynamic Graph Applications

The cat ate a big rat
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- Recurrent networks
- Recursive networks



Dynamic Graph Applications

- Recurrent networks
- Recursive networks
- Modular networks

Andreas et al, “Neural Module Networks”, CVPR 2016
Andreas et al, “Learning to Compose Neural Networks for Question Answering”, NAACL 2016
Johnson et al, “Inferring and Executing Programs for Visual Reasoning”, ICCV 2017
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Figure copyright Justin Johnson, 2017. Reproduced with permission.



Dynamic Graph Applications

- Recurrent networks
- Recursive networks
- Modular Networks
- (Your creative idea here)
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Model Parallel vs. Data Parallel

Model Parallel minibatch

Data Parallel

Model parallelism: 
split computation 
graph into parts & 
distribute to GPUs/ 
nodes

Data parallelism: split 
minibatch into chunks & 
distribute to GPUs/ nodes
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PyTorch: Data Parallel
nn.DataParallel
Pro: Easy to use (just wrap the model and run training script as normal)
Con: Single process & single node. Can be bottlenecked by CPU with large number 
of GPUs (8+).

nn.DistributedDataParallel
Pro: Multi-nodes & multi-process training
Con: Need to hand-designate device and manually launch training script for each 
process / nodes.

Horovod (https://github.com/horovod/horovod): Supports both PyTorch and 
TensorFlow 

https://pytorch.org/docs/stable/nn.html#dataparallel-layers-multi-gpu-distributed

https://github.com/horovod/horovod
https://pytorch.org/docs/stable/nn.html
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PyTorch vs. TensorFlow



My Advice:
PyTorch is my personal favorite. Clean API, native dynamic graphs 
make it very easy to develop and debug. Can build model using the 
default API then compile static graph using JIT. Almost all academic 
research uses PyTorch

TensorFlow’s syntax became a lot more intuitive after 2.0. Not 
perfect but still has a wide industry usage. Can use same 
framework for research and production. 

Explore other frameworks such as JAX if you are curious!
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