CS 4644-DL / 7643-A: LECTURE 13
DANFEI XU

Attention for Sequence Modeling

Attention is (Mostly) All you Need: Transformers

Administrative:

 HW2 due today (Oct 39) 11:59pm + 48hr grace period.

Recurrent Neural Networks: Process Sequences

one to one one to many many to one many to many many to many

RNN hidden state update

We can process a sequence of vectors x by
applying a recurrence formula at every time step: y

he|=|fw|(hi—1hT4)
new state \ old state input vector at T
(vector) (vector) some time step
some function X
with parameters W

Can set initial state hy to all 0’s

RNN: Computational Graph: Many to Many -

y1 1 L1 y2 | L2 Y3
* hy fW " hy fW hs

:|_3

YT

L

Truncated Backpropagation through time

Loss

/1 TN

Vani”a RNN Gradient FIOW Bd?f Itt IIElé_ET gl gt mde IdN cles |\<Nth1394d ent des

Pasc et al, “On the dff Ity of training recurren ral networks”,

Gradients over multiple time steps: o 2013

<
0
}
Y
jé
L]
Bk
i_’%;

hO :—» stack > h1 =——> stack h2 =——> stack h4
A J A 4 A 4 A 4
| | | |
X1 X2 X3 X4
tanh’
Z 8Lt Always < 1
t=1 Vanishing gradients |]\

oL 3L Oh
G = Dhy (Ht o [tanh! Whphi—1 + Wapay)W, o

- - Bengio et al, “Learning long-term dependencies with gradient descent
a n I a ra I e n OW is difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”,
Gradients over multiple time steps:

ICML 2013
Y1 Yo Y3
"

R . R e R .
?Z tanh H W—()= tanh T| W—()= tanh T| W— - tanh H
' T ' T ' ' L
ho <" stack > h1 <" stack > h2 <" stack > h3 - " stack —> h4
[a— N S N — —

What if we assumed no non-linearity?

oL T 0L,
ow thl oW Largest eigen value > 1:
Exploding gradients

6LT 8LT WT_]_ 8h1 -
OW — Ohgp hh | oW Larg-est.elgen vallue <1: — We need ? new
Vanishing gradients RNN architecture!

Long Short Term Memory (LSTM)

Vanilla RNN

LSTM

h; = tanh <W (ht*))
Lt

Q QO .

o
_ o W (ht_1>
o Tt
tanh

cc=f0Oc_1+10g
ht = 0 ® tanh(c;)

Learn to control information flow from previous state to the next state

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997

Long Short Term Memory (LSTM)

Vanilla RNN

LSTM

h; = tanh <W (ht*))
Lt

Q QO .

o
_ o W (ht_1>
o Tt
tanh

cc=f0Oc_1+10g
ht = 0 ® tanh(c;)

Learn to control information flow from previous state to the next state

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997

Long Short Term Memory (LSTM)

Vanilla RNN LSTM

/ _ o 10,74 (ht—1>
B he_1 0 o Tt
) o)

cc=fOc_1+10g
h:; = o ® tanh(c;)

Long-term memory ¢ determines how Two “memory vectors”
much information should go into the hidden
state h (short-term memory)

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997

Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

a I
Ct-1 > (? > 1. > Ct .
— f ¢t = [tOct—1 +1:OF;
— | — ' hy = 0O tanh(c¢)
W— — 0 tanh
ht1 > stack ~ R h 1
- K A —> O L 0 t/
X
Similar input/output as LSTM!

Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

Keep long-term memory cell ¢ in addition

to short term memory h

Ct_1 > O > 4+ — > Ct >
— f
— | — v
W— — O
’g,—p talnh
ht1 > stack R
- K N _’O » O —p htj—>
X .
Similar input/output as LSTM!

¢t = [tOct—1 +1:OF;
h; = 0;,® tanh(c;)

Long Short Term Memory (LSTM): Gradient Flow

[Hochreiter et al., 1997]
Backpropagation from c; to ¢4

only elementwise multiplication
/ \ by f (forget gate), no matrix

Ci1 . > (? -+t Gt g > multiply by W

~ f ¢t = ftOct—1 +1:Og;

— | — ' hy = 0O tanh(c¢)

W— =0

L g_,—> tanh act _,

h . ook l dci_q
> Slac N —
t-1 N T 0 0 —> ht/—>

Long Short Term Memory (LSTM): Gradient Flow
[Hochreiter et al., 1997]

Ci1 |

h.;

a I
> O - > + - > Ct : >
— f
— | — !
W_’?’ g I_,_’O tanh
B |
K =staTck .0 ;@—>htj—>

Backpropagation from c; to ¢4
only elementwise multiplication
by f (forget gate), no matrix
multiply by W

¢t = [tOct—1 +1:OF;
h; = 0;,® tanh(c;)

dc;

3, = f; (forget gate)

Different each step!

When f; is close to 1, it allows
gradient to flow back easily

Long Short Term Memory (LSTM): Gradient Flow
[Hochreiter et al., 1997]

a N
Ct-1 : = (? - B 1—) > Ct : >
— f
W —> | — v
— —
S)i_’ g_,—> talnh
ht_1 K g StaTCk L5 O > O — htj—>
| Oh,
Xt Ohi_1

Backpropagation from c; to ¢4
only elementwise multiplication
by f (forget gate), no matrix
multiply by W

¢t = [tOct—1 +1:OF;
h; = 0;,® tanh(c;)

dc;

3, = f; (forget gate)

Gradient of RNN:

= tanh'(Whh hi1 + thxt)Whh

Same matrix every step, causes vanishing gradient

Long Short Term Memory (LSTM)

[Hochreiter et al.,

1997]
input from tgates”
below (x) Bates
X sigmoid
Ny sigmoid
memory from sigmoid
before (h)

tanh

4h

v

Long Short Term Memory (LSTM)

[Hochreiter et al.,

1997]

input from
below (x)

X

v

hy.q

memory from
before (h)

sigmoid

sigmoid

sigmoid

tanh

4h

g: Gate gate (?), what to write to cell

G
— | f /) o
. f _ o 11,74 (ht—1>
0 0 o Tt
g tanh)
— g .
¢t =fOc-1+i0[g

l ht = 0 ® tanh(c;)

v
O
=

Long Short Term Memory (LSTM)

[Hochreiter et al., 1997] i: Input gate, whether to write to cell
input from tgates” & Gate gate (?), what to write to cell
below (x) 5
X sigmoid | —> | i
heq sigmoid | —> | f 1 o
w fl | o W hi—1
memory from sigmoid | —> | o ol — - Ty
before (h) g tanh
tanh — 1|4 -
ce = fOci—1 +9
4h x 2h 4h | ht = 0 ® tanh(c;)

O
v

O

=

Long Short Term Memory (LSTM)

[Hochreiter et al., 1997] i: Input gate, whether to write to cell
f: Forget gate, whether to erase cell

input from tgates” & Gate gate (?), what to write to cell
below (x) 5
X sigmoid | —> | i
he.q sigmoid | —> | f () o
w fl _|lo W hi—1
memory from sigmoid | —> | o ol — - Ty
before (h) q tanh
tanh — 1|4)
G =lfPc-1+iOg
4h x 2h 4h | he = 0 ® tanh(c;)

O

v
O
=

Long Short Term Memory (LSTM)

[Hochreiter et al., 1997] i: Input gate, whether to write to cell

f: Forget gate, whether to erase cell
o: Output gate, how much to reveal cell

input from tgates” B Gate gate (?), what to write to cell
below (x) 5
X sigmoid | —> | i
heq sigmoid | —> | f 1 o
w fl | o W hi—1
memory from sigmoid | —> | o ol — - Ty
before (h) q tanh
tanh —>|g .
ctc=fOc_1+10g
4h x 2h 4h | he =[0]® tanh(c;)

0
v

O

=

Do LSTMs solve the vanishing gradient
problem?

The LSTM architecture makes it easier for the RNN to preserve information
over many timesteps
- e.g.iff = 1andi = 0, then the information of that cell is preserved
indefinitely. Gradient flow back from cell ¢ easily.
- By contrast, it's harder for vanilla RNN to learn a recurrent weight matrix
Wh that preserves info in hidden state

LSTM doesn’t guarantee that there is no vanishing/exploding gradient, but it
does provide an easier way for the model to learn long-distance dependencies.

It is possible to mitigate vanishing / exploding gradient by learning the correct f

Long Short Term Memory (LSTM): Gradient Flow
[Hochreiter et al., 1997]

Uninterrupted gradient flow!

A

a N g N g N
C ~o 6 -0t C (s e R e
0 t 1+ t 2 t 3
f f f
e e e
W T g_,_,@ talnh W T g_,_,@ talnh W g_,_,@ talnh

—T > stack —T > stack —T > stack

.t O ey Qe remmhy Uy e Y

Similar to ResNet!

0001 D

Neural Architecture Search for RNN architectures

identity)
elem_mult
elem_mult

tar;?g oid sigmoid tanh

LSTM cell Cell they found

Zoph et Le, “Neural Architecture Search with Reinforcement Learning”, ICLR 2017
Figures copyright Zoph et al, 2017. Reproduced with permission.

Other RNN Variants

GRU [Learning phrase representations using rnn
encoder-decoder for statistical machine translation,
Cho et al. 2014]

Tt = O-(Wa:rxt + Whrhi—1 + br)
2t = U(szxt + thht—l + bz)

ilt = tanh(Wprxt + Whin(r: © he—1) + bp)
hy :Ztth—l‘i‘(l_Zt)@ilt

Simpler than LSTM, but control information
flow without cell state.

[LSTM: A Search Space Odyssey,
Greff et al., 2015]

[An Empirical Exploration of
Recurrent Network Architectures,
Jozefowicz et al., 2015]

MUTI:
z = sigm(Wgxe+b;)
r = sigm(Wex, + Wy he + ;)
hyyy = tanh(Wyy(r © hy) + tanh(z,) + by,) © 2
+ ho(1-2)
MUT2:
z = sigm(Weox, + Wiahe +5,)
r = sigm(x; + Wyh, +b;)
hev1 = tanh(Whn(r © he) + Wznze + bn) © 2
+ hg J (1 p—" 3)
MUT3:
2z = sigm(Wex + Wy, tanh(hy) + b,)
r = sigm(Wexy + Wichy + b)
heyy = tanh(Wyhn(r © he) + Wepze + by) © 2
+ ’“ O (1 o Z)

Recommendations

- If you want to use RNN-like models, try LSTM

- Use variants like GRU if you want faster compute and less
parameters

- New variants of RNNs are still active research topic. Example:
RWKYV (“Transformer-level performance but with RNN”)

Problem with Recurrent-style Models (RNN, LSTM,
GRU, etc.)

Learning to memorize is still hard, especially for ultra-long sequences!

1
f
0
g

o

o

o
tanh

v

ht—1

Lt

ct=fOc1+10g
ht = 0 ® tanh(c;)

)

Essentially trying to tune W such that the memory
cell ¢ can retain important information for arbitrary

future prediction problems.

Example (Q&A):
[... (20-page long transcript)]. Q: What did the CEO

say about their competitor company? ...

[... (same 20-page transcript)]. Q: How many times
did the journalist use the word “interesting”? ...

Very difficult learning problem!

Attention Mechanism
(What memory? Just show me the sequence again)

Attention Mechanism

The
animal
didn’t
Cross
the
street
because
it

was
too
tired

The
animal
didn’t
Cross
the
street
because
it

was

too

wide

The
animal
didn’t
cross
the
street
because
it

was
too
tired

The
animal
didn’t
Cross
the
street
because
it

was

too

wide

Example: Machine Translation

estamos comiendo pan

RNN Encoder » RNN Decoder

we are eating bread

Machine Translation with RNNs

Encoder: h, = fyy(x, hiq)

we are eating bread

Slide credit: Justin Johnson

Machine Translation with RNNs

Encoder: h, = fyy(x, hiq)

we are eating bread

Slide credit: Justin Johnson

Machine Translation with RNNs

Encoder: h, = fyy(x, hiq)

estamos
Decoder: s; = gy(Ys, St1, €)
Y1
A
h ——>» hy —> h, — h; —> h, » So » S1
A A A A A
X1 X, X3 Xa Yo
we are eating bread [START]

Slide credit: Justin Johnson

Machine Translation with RNNs

Encoder: h, = fyy(x, hiq)

. estamos comiendo
Decoder: s; = gy(Ys, St1, €)

Y1 Y2
A A
hp ——» hy —>» h, —> h; —> h, » So > S > S,
A A A A A V' N
X1 X, X3 Xa Yo > Y1
we are eating bread [START] estamos

Slide credit: Justin Johnson

Machine Translation with RNNs

Encoder: h, = fyy(x, hiq)

estamos comiendo pan [STOP]
Decoder: s; = gy(Yt, St.1, €)
Y1 Y2 Y3 \Z!
A A A A
hp ——» hy —>» h, —> h; —> h, » So » S1 > S > S3 » Sq
A A A A A A A A
X1 X, X3 Xy Yo > V1 > Y > V3
we are eating bread [START] estamos comiendo pan

Slide credit: Justin Johnson

Machine Translation with RNNs

Encoder: h, = fyy(X;, hy.q)

Decoder: s; = gy(Y4, St.1, €)

Problem: s; is used to both
(1) encode input sequence

(2) maintain decoder state.

Very difficult!

ho__>h1_»h2_»h3_>h4

A A

\ 4

A\ 4

A\ 4
%]
o

A A

S1

Sy

A 4
wn
w

Sy

X1 X2

X3 Xa

we are

eating bread

Slide credit: Justin Johnson

Machine Translation with RNNs

Encoder: h, = fyy(x;, hy4)
Decoder: s; = gy(yt, St-1, €)
Solution: add a context

vector ¢ = h,and
generate so from h,

I ‘ I ‘ I | I
hp ——» hy —» h, —>» h; — h, » Sg > S > S, > S3 » S,
Sl Sl B el B L S B S G
C
X1 X2 X3 Xy
we are eating bread

Slide credit: Justin Johnson

Machine Translation with RNNs

Encoder: h, = fyy(x;, hy4)
estamos comiendo pan [STOP]
Decoder: s; = gy(Yt, St.1, €)
Solution: add a context
vector c = h,and Y1 Y2 £ Ya
generate sy from h, 7y 7'y 7'y 7'y
h ——>» hy —> h, — h; —> h, So > S > S, > S3 » S,
A A A A A A AA A A AA
c
X1 X X3 Xa Yo > Y gIR'/) > Y3
we are eating bread [START] estamos comiendo pan

Slide credit: Justin Johnson

Machine Translation with RNNs

Encoder: h, = fyy(x, hiq)

Decoder: s; = gy(Y4, St.1, €)

bottleneck

¥

h ——>» hy —> h, — h; —> h,

A A A A

X1 X, X3 Xa

we are eating bread

Problem: Input sequence
bottlenecked through
fixed-sized memory

vector.

Slide credit: Justin Johnson

Machine Translation with RNNs

Encoder: h, = fyy(x, hiq)

Decoder: s; = gy(Y4, St.1, €)

bottleneck

information from the
hy ——> h; —» h, —» h; —> h, > s —)
L input sequence when

A A A A . . .
making prediction?

$ Idea: can we “look up’

)

X1 X, X3 Xa

we are eating bread

Slide credit: Justin Johnson

Machine Translation with RNNs and Attention

Conceptually, Attention is to adaptively extract information from input
sequence based on the current decoding step

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson

Machine Translation with RNNs and Attention

Conceptually, Attention is to adaptively extract information from input
sequence based on the current decoding step

Y1 Y2 Y3 Ya

r 3 a S S
hy > h, > h; > hy > So S1 > S > S3 ™ S4

S a 2 y S a r 3 r 3
I] I I \ 4 v v \ 4
X1 X5 X3 Xa C1 Yo C Y1 C3 Y2 Cq Y3

Goal: Adaptive context related to
each prediction step

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson

Machine Translation with RNNs and Attention

From final hidden state:
Initial decoder state s,

=
firy
A 4
=
N
v
>
w
v
=
~
A 4
w
o

we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson

Machine Translation with RNNs and Attention

Compute affinity scores

From final hidden state:
Initial decoder state s,

=
firy
A 4
=
N
v
>
w
v
=
~

we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

v

So

S fat

,)

(far is an MLP)

Slide credit: Justin Johnson

Machine Translation with RNNs and Attention

Compute affinity scores
e, = fau(c . 1) (far is an MLP)

a; Ay as as
1 1 1 1
softmax Normalize to get
f t * 1 From final hidden state: attention Weights
e; e e3 €4 Initial decoder state s, O<a <1 Ya, =1
A AA A A AL A I~

[.

h; » h, > h; » h, » S

we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson

Machine Translation with RNNs and Attention

Compute affinity scores
Think of how much. information e = fatt(,) (fatt is an MLP)
needed from each input word to
generate the first translated word
Normalize to get

From final hidden state: attention weights
O<ay<1 2ay=T

So

1 1 1 1
softmax
t 1 1 t
e € €3 €4 Initial decoder state s,
A AA A A A A
| .
hy > h, > h; > h, >
X1 X3 X3 Xy
we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson

Machine Translation with RNNs and Attention

x x x x
aAl aAz /33 ay
t 1 1 1
soffmax
t 1 \ t t
€ € (SE! e,
1 y \ AA A A \ AA I
h, \ h, \ h; A h, > Sp

I .

X1 X2 X3 Xy

we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Compute affinity scores
e, = fau(c . 1) (far is an MLP)

Normalize to get

attention weights
O<ay<1 2ay=T

Set context vector ¢ to a linear
combination of hidden states
Cy = Yy ih

\ 4

C1

“Summarize the input
sequence related to
translating the t-th word”

Slide credit: Justin Johnson

Machine Translation with RNNs and Attention

£ ¥ ¥ ¥ Compute affinity s-cores
4 4 ey = fau(® . 1) (far is an MLP)
a a, S a, .
3 3 3 ¥ estamos

soffmax Normalize to get
t 1 t t Y1 attention weights
e e e e
f \ \ “2“ u?)u \ Af‘lk 1 O < at’i <1 Zat’i =1
i \ i \ hy = h, " So + S1 | Set context vector ¢ to a linear
I I I I t 1 combination of hidden states

Cy = 2ayh;
X1 X2 X3 X4 » C; Yo
we are eating bread
[START]

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson

Machine Translation with RNNs and Attention

x x
A A
0 [/ﬁ ﬁ
1

SO max
1) 1)
(SF] e3 SV

f

we

are

eating

bread

v

So

Intuition: Context vector

attends to the relevant part

of the input sequence
“estamos” = “we are”

\ 4

Compute affinity scores
e = fau(Str,) (far is an MLP)

estamos
Normalize to get
Y1 attention weights
1 O<ay<1 2ay=T
51 Set context vector ¢ to a linear

3

combination of hidden states
= Y@y

C1

Yo

This is all differentiable! Do not
supervise attention weights —
backprop through everything

Slide credit: Justin Johnson

Machine Translation with RNNs and Attention

X X
A A
a, az
F estamos
SO max
t 1 \ t t Vi
e2 e2 e3 e4 v A
S \ A a \ r 3 : +
hl \ hz \ h3 A h4 > SO S]_
X1 X2 X3 X4 Cq1 Yo Cy
we are eating bread
[START]

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Repeat: Use s;
to compute
attention and
get the new
context vector
Co

Slide credit: Justin Johnson

Machine Translation with RNNs and Attention

Repeat: Use s;
to compute
comiendo attention and
get the new
context vector
Co

Y2

X X
A A
[/m B
3 estamos
SO max
t t 1 t Vi
el e2 e3 e4
LI L

A

we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

v
%]
o

si P s,

Use c, to
compute sy, Y,

C1 Yo

C2 Y1

[START]

estamos

Slide credit: Justin Johnson

Machine Translation with RNNs and Attention

Use a different context vector in each timestep of decoder
- Input sequence not bottlenecked through snlgle vect("fr . estamos comiendo pan [STOP]
- At each timestep of decoder, context vector “looks at” different

parts of the input sequence, i.e., attention.
Y1 Y2 Y3 Ya
A A A a
—t—t—t—
h; » h, > h; » h, » Sy S1 > s, > S; > S,
A A a s

X1 X5 X3 Xa C1 Yo C Y1 C3 Y2 Cq Y3
_ 1 t t)
we are eating bread
[START] estamos comiendo pan

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson

Machine Translation with RNNs and Attention

Visualize attention weights ay;

Example: English to French : gg I .
translation vf 25885 88 ¢
ﬁ%%fuﬁuﬂ&;'m.g<a \Y
LI
Input: “The agreement on accz:‘:
the European Economic Area la
was signed in August 1992 . zone
economique
européenne
Output: “L'accord sur la zone ,t"f‘
ete
économique européenne a signé
été signé en aolt 1992.” en

ao(t
1992

<end>

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson

Machine Translation with RNNs and Attention

Visualize attention weights ay;

Example: English to French : gg N .
translation 0 £ 025885 2§ §
I_Eggfu:JuLjEE'GE<H \Y;
LI
|f\[)l]t' “« accord
sur
European Economic Area la
was signed V! , zone
economique
européenne
Output: “ zone 't?
ete
économique européenne a signé
été signé Y en

ao(t
1992

<end>

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson

Machine Translation with RNNs and Attention

Visualize attention weights ay;

Example: English to French : gg N .
translation v 2 _ 258k 28 %
ESsSslnbdsz2scxd Y,
LI
L accord
Input: cur
la
was signed V! , zone
economique
européenne
Output: “ @
ete
d signé
été signé V! en

ao(t
1992

<end>

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson

Attention Layer

estamos comiendo pan [STOP]

HEEE
II I

_Lln Uts' a; a;z a;a a‘24
State vector: s; (Shape: D) T
o 1 T f f
Hidden vectors: 1. (Shape: Ny x Dy) e em| lem lew
. . . . 1 1 t

Similarity function: f, . . .
——Fm
X4 X X3 X4
we are eating bread

Computation:

Similarities: e (Shape: Ny) e; = fau(se.1,)
Attention weights: a = softmax(e) (Shape: Ny)
Output vector: y = >3, (Shape: Dy)

So

I
L dEgad:

[START] estamos comiendo pan

Slide credit: Justin Johnson

Attention Layer

Query vector: g (Shape: Dg)
Input vectors: (Shape: Ny x Dy)

Similarity function: f

estamos comiendo pan [STOP]

Prr

we are eating bread

Computation:

Similarities: e (Shape: Ny) e; =f.:(q,)
Attention weights: a = softmax(e) (Shape: Ny)
Output vector: y = >3, (Shape: Dy)

So

IEVEIE

[START] estamos comiendo pan

Slide credit: Justin Johnson

Inputs:
Query vector: g (Shape: Dg)

Input vectors: (Shape: Ny x Dg)

Similarity function{ dot product

Computation:

Similarities: e (Shape: Ny) lei=q -

Attention weights: a = softmax(e) (Shape:
Output vector: y = >3, (Shape: Dy)

Attention Layer

1 estamos comiendo pan [STOP]

t

[softmax |

- p @ @
——h-, h2 *’ > h4 So

we are eating bread

[START estamos comiendo pan

Nx) Changes:
- Use dot product for similarity

Slide credit: Justin Johnson

Attention Layer

Inputs:
Query vector: g (Shape: Dg)

Input vectors: (Shape: Ny x D)
Similarity function| scaled dot product

Computation:

Similarities: e (Shape: Ny) |ei=q- ./ sqrt(Dg)

Attention weights: a = softmax(e) (Shape: Ny)
Output vector: y = >3, (Shape: Dy)

are

eating bread

estamos comiendo pan [STOP]

Prr

So

IEVEIE

Changes:
Use scaled dot product for similarity

[START] estamos comiendo pan

Slide credit: Justin Johnson

Attention Layer

Inputs:
Query vectors: [) (Shape: Nq x Dq)

Input vectors: ' (Shape: Ny x Dq)

Computation:
Similarities: E = Q)(" / sgrt(Dq) (Shape: Nq x Ny)
Attention matrix: A = softmax(E, dim=1) (Shape: Nq x Ny) Changes:

Output vectors: Y =A (Shape: NQ X Dx) Y, = ZJ'Ai,ij - Use dot product for Slmllarlty

- Multiple query vectors

Slide credit: Justin Johnson

Inputs:
Query vectors:

Input vectors:

ion:

0 (Shape: Nq x D)

(Shape: Ny x Dq)

Attention Layer

Attention matrix (A)

Each row sums up to 1

Similarities: E = Q)(" / sgrt(Dq) (Shape: Nq x Ny)
Attention matrix: A = softmax(E, dim=1) (Shape: Nq x Ny)
Output vectors: Y=A (Shape: NQ X Dx) Y, = ZJ'Ai,ij

Changes:

Use dot product for similarity
Multiple query vectors

Slide credit: Justin Johnson

Attention Layer

Inputs:
Query vectors: Q (Shape: Nq x Dq)

Input vectors: . (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x D)
Value matrix: W, (Shape: Dy x Dy)

Computation:

Key vectors: I = W, (Shape: Ny x Dg)
Value vectors: V = W, (Shape: Nx x Dy)

Similarities: E = QK' (Shape: N X Ny) E;; = Q. - K;/ sqrt(Dg)
Attention weights: A = softmax(E, dim=1) (Shape: Nq x Ny)
Output vectors: Y = AV (Shape: Nq x Dy) Yi = 3A;;V;

Problem: use the same set of input vectors to
compute both affinity and output

Solution: project input to two sets of vectors:
Keys (K) and Values (V).

Q,K,V attention: Compute attention matrix
using Queries (Q) and Keys (K). Then compute
output using attention and Values (V).

Changes:

- Use dot product for similarity
- Multiple query vectors

- Separate key and value

Slide credit: Justin Johnson

Attention Layer

Inputs:
Query vectors: Q (Shape: Nq x Dq)

Input vectors: (Shape: Ny x Dy)
Key matrix: W, (Shape: Dy x D)
Value matrix: W, (Shape: Dy x Dy)

Computation:

Key vectors: I = W, (Shape: Ny x Dg) X1
Value vectors: V = W, (Shape: Ny x Dy)

Similarities: E = QK" (Shape: Nq x Ny) Ei; = Q; - K;/ sqrt(Dq) X,
Attention weights: A = softmax(E, dim=1) (Shape: Nq x Ny)

Output vectors: Y = AV (Shape: Nq x Dy) Yi = 3A;;V; X3

Slide credit: Justin Johnson

Attention Layer

Inputs:
Query vectors: Q (Shape: Nq x Dq)

Input vectors: (Shape: Ny x Dy)
Key matrix: W, (Shape: Dy x D)
Value matrix: W, (Shape: Dy x Dy)

Computation:

Key vectors: I = W, (Shape: Ny x Dg)

Value vectors: V = W, (Shape: Ny x Dy)

Similarities: E = QK" (Shape: Nq x Ny) Ei; = Q; - K;/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Nq x Ny)
Output vectors: Y = AV (Shape: Nq x Dy) Yi = 3A;;V;

K>

Ks

Slide credit: Justin Johnson

Attention Layer

Inputs:
Query vectors: Q (Shape: Nq x Dq)

Input vectors: (Shape: Ny x Dy)
Key matrix: W, (Shape: Dy x D)
Value matrix: W, (Shape: Dy x Dy)

Computation:

Key vectors: I = W, (Shape: Ny x Dg)

Value vectors: V = W, (Shape: Ny x Dy)

Similarities: E = QK" (Shape: Nq x Ny) Ei; = Q; - K;/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Nq x Ny)
Output vectors: Y = AV (Shape: Nq x Dy) Yi = 3A;;V;

Ky Ei1 s Es1 Ean

Ky Eio P Es> P

Ks Eis Exs Ess Eas
Q Q Q Q
1 2 3 4

Slide credit: Justin Johnson

Attention Layer

Inputs:
Query vectors: Q (Shape: Nq x Dq) A1 A1 Az Ayq
Input vectors: (Shape: Ny x Dy)
Key matrix: W, (Shape: Dy x D) A, A, Az, As)
Value matrix: W,, (Shape: Dy x Dy)

Az Az Asz3 Ay

Sof'tmax(f)

Computation:
Key vectors: I = W, (Shape: Ny x Dg) X, = Ky Eis Essx Ess Ess
Value vectors: V = W, (Shape: Ny x Dy)
Similarities: E = QK" (Shape: Nq x Ny) Ei; = Q; - K;/ sqrt(Dq) X, = K, Ei, Es, Es, Es>
Attention weights: A = softmax(E, dim=1) (Shape: Nq x Ny)
Output vectors: Y = AV (Shape: Nq x Dy) Yi = 3A;;V; X3 = K Eis Eys Ess Ess

Slide credit: Justin Johnson

Attention Layer

Inputs:
Query vectors: Q (Shape: Nq x Dq)

Input vectors: (Shape: Ny x Dy)
Key matrix: W, (Shape: Dy x D)
Value matrix: W, (Shape: Dy x Dy)

Computation:

Key vectors: I = W, (Shape: Ny x Dg)

Value vectors: V = W, (Shape: Ny x Dy)

Similarities: E = QK" (Shape: Nq x Ny) Ei; = Q; - K;/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Nq x Ny)
Output vectors: Y = AV (Shape: Nq x Dy) Yi = 3A;;V;

>\, Aq1 Az Az Ay
» V, A, Az, As, A,
> \/; Az Az Asz3 Ay
Softmax(1)
X1 = K Ei1 Eza Es Es.
X, = K, Eio E,o Es> Es»
X3 = Ks Eis E23 Ess Es3
| t t
Q Q Q Q
1 2 3 4

Slide credit: Justin Johnson

Y, Y, Y, Y,

Attention Layer r 1 1

Product(—=>), Sum(*)
Inputs: f
Query vectors: Q (Shape: Nq x Dq) » V, — | A A1 Az A1
Input vectors: (Shape: Ny x Dy)
Key matrix: W, (Shape: Dy x D) >\, > | A, A, By A,
Value matrix: W,, (Shape: Dy x Dy)
> \/; Az Az Asz3 Ay
Sof'tmax(f)

Computation:
Key vectors: I = W, (Shape: Ny x Dg) - X; = K; Eis Essx Ess Ess
Value vectors: V = W, (Shape: Ny x Dy)
Similarities: E = QK" (Shape: Nq x Ny) Ei; = Q; - K;/ sqrt(Dq) — X, — K, Ei, Es, Es, Es>
Attention weights: A = softmax(E, dim=1) (Shape: Nq x Ny)
Output vectors: Y = AV (Shape: Nq x Dy) Yi = 3A;;V; — X; = K Eis Eys Ess Ess

| t t

Q Q Q3 Q

Slide credit: Justin Johnson

Attention Layer o

a
afm af atn %4 estamos comiendo pan [sTOP]

|61 etsoftma:} : |)T m m @
Inputs: o]] B [01
Query vectors: Q (Shape: N x Dq) N
Input vectors: (Shape: Ny x Dy)
Key matrix: Wy (Shape: Dy x Dq) b 5 h h gﬂﬂﬂh
Value matrix: W,, (Shape: Dy x Dy) we are eating bread

[START] estamos comiendo pan

Attention seems to be really powerful ...

Computation: Do we still need RNN?
Key vectors: I = W, (Shape: Ny x Dg)

Value vectors: V = W, (Shape: Ny x Dy)

Similarities: E = QK" (Shape: Nq x Ny) Ei; = Q; - K;/ sqrt(Dq)

Attention weights: A = softmax(E, dim=1) (Shape: Nq x Ny)

Output vectors: Y = AV (Shape: Nq x Dy) Yi = 3A;;V;

Slide credit: Justin Johnson

RNN is bad at encoding long-range relationships!

Recurrent update can easily “forget” information

Attention Layer o

an 3 A A

1 1 1 t estamos comiendo pan [STOP]
[softmax | —
1 T f f 1 2 3 4
€n €2 €23 €2 ¢ ’y_‘ m y
Inputs: t 1 1 t
Query vectors: Q (Shape: Nq x Dg) he N
Input vectors: (Shape: Ny x Dy)
Key matrix: W, (Shape: Dy x Dq)] [=] [s] [%] o] [10] [[] [os @)|
Value matrix: WV (Shape: DX X Dv) we are eating bread
[START] estamos comiendo pan

Attention seems to be really powerful ...
Computation: Do we still need RNN?
Key vectors: I = W, (Shape: Ny x Dg)
Value vectors: V = W, (Shape: Ny x Dy) .
Similarities: E = QK™ (Shape: Nox Ny) E;; = 0; - K/ sqrt(Dg) ~ Can we use only attention layers to encode
Attention weights: A = softmax(E, dim=1) (Shape: Nq x Ny) an entire Sequence?
Output vectors: Y = AV (Shape: Nq x Dy) Yi = 3A;;V;

Slide credit: Justin Johnson

Self-Attention Layer

Sequence encode -> use each input element as query!

Inputs: _ _
Input vectors: (Shape: Ny x Dy) Goal: encode the input sequence with only
Key matrix: Wy (Shape: Dy x Dq) attention, without a recurrent network.

Value matrix: W,, (Shape: Dy x Dy)
Query matrix: W, (Shape: Dx x Dq)

Computation:

Query vectors: Q = XWq

Key vectors: I = W, (Shape: Ny x Dg)

Value vectors: V = W, (Shape: Ny x Dy)

Similarities: E = QK" (Shape: Nx x Ny) Ei; = Q; - K;/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Nx x Dy) Y; = 3;A;}V,

Slide credit: Justin Johnson

Self-Attention Layer

Sequence encode -> use each input element as query!

Inputs: _ _
Input vectors: (Shape: Ny x Dy) Goal: encode the input sequence with only
Key matrix: Wy (Shape: Dy x Dq) attention, without a recurrent network.

Query matrix: W, (Shape: Dx x Dq)

Encoding only -> no external queries

Use each element to query other elements
Computation:

Query vectors: Q = XWq

Key vectors: I = W, (Shape: Ny x Dg)

Value vectors: V = W, (Shape: Ny x Dy)

Similarities: E = QK" (Shape: Nx x Ny) Ei; = Q; - K;/ sqrt(Dq)

Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)

Output vectors: Y = AV (Shape: Nx x Dy) Y; = 3;A;}V,

Slide credit: Justin Johnson

Self-Attention Layer

Sequence encode -> use each input element as query!

Inputs:
Input vectors: ' (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x Dg)
Value matrix: W,, (Shape: Dy x Dy)
Query matrix: W, (Shape: Dx x Dq)

Computation:

Query vectors: Q = XWq

Key vectors: I = W, (Shape: Ny x Dg)

Value vectors: V = W, (Shape: Ny x Dy)

Similarities: E = QK" (Shape: Nx x Ny) Ei; = Q; - K;/ sqrt(Dq)

Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) Q Q, Qs
Output vectors: Y = AV (Shape: Ny x Dy) Y; = A}V, L) L} L}
X1 X5 X3

Slide credit: Justin Johnson

Self-Attention Layer

Sequence encode -> use each input element as query!

Inputs:
Input vectors: ' (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x Dg)
Value matrix: W,, (Shape: Dy x Dy)
Query matrix: W, (Shape: Dx x Dq)

Computation:

Query vectors: Q = XWq

Key vectors: I = W, (Shape: Ny x Dg)

Value vectors: V = W, (Shape: Ny x Dy)

Similarities: E = QK" (Shape: Nx x Ny) Ei; = Q; - K;/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Nx x Dy) Y; = 3;A;}V,

\ 4

Q, Q, Qs
4 4 4
X1 X, X3

Slide credit: Justin Johnson

Self-Attention Layer

Sequence encode -> use each input element as query!

Inputs:
Input vectors: ' (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x Dg)
Value matrix: W,, (Shape: Dy x Dy)
Query matrix: W, (Shape: Dx x Dq)

Computation:

Query vectors: Q = XWq

Key vectors: I = W, (Shape: Ny x Dg)

Value vectors: V = W, (Shape: Ny x Dy)

Similarities: E = QK" (Shape: Nx x Ny) Ei; = Q; - K;/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Nx x Dy) Y; = 3;A;}V,

" K3 | ([Eus E2s Es;s
= Ky |=*|| Ei2 E» Es»
> Ky =] Eix Ex1 Es1
4 4 4
Q Q Q
4 4 4
X1 X, X3

Slide credit: Justin Johnson

Self-Attention Layer

Sequence encode -> use each input element as query!

Inputs:
Input vectors: ' (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x Dg)
Value matrix: W,, (Shape: Dy x Dy)
Query matrix: W, (Shape: Dx x Dq)

Computation:

Query vectors: Q = XWq

Key vectors: I = W, (Shape: Ny x Dg)

Value vectors: V = W, (Shape: Ny x Dy)

Similarities: E = QK" (Shape: Nx x Ny) Ei; = Q; - K;/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Nx x Dy) Y; = 3;A;}V,

A1,3 A2,3 A3,3
Al,Z AZ,Z A3,2
A1 A, Asq
[}
Softmax(T) |
4
> K3 ||| Eq3 Ess Ess
= Ky |=*|| E12 Eso Es»
> Ky =] Eix Ex1 Es1
4 4 4
Q Q, Q
4 4 4
X1 X, X3

Slide credit: Justin Johnson

Self-Attention Layer

Sequence encode -> use each input element as query!

Inputs:
Input vectors: ' (Shape: Ny x Dy)

Key matrix: W (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x Dy)
Query matrix: W, (Shape: Dx x Dq)

Computation:

Query vectors: Q = XWq

Key vectors: I = W, (Shape: Ny x Dg)

Value vectors: V = W, (Shape: Ny x Dy)

Similarities: E = QK" (Shape: Nx x Ny) Ei; = Q; - K;/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Nx x Dy) Y; = 3;A;}V,

" Vs || A Az As;
Vo [AL A, Az,
» V; |=> A1 A, Asq
[}
Softmax(T) |
4
» K3 ||| E13 Ess Ess
> Ky ||| Ei2 Ez. Esa
> Ky =] Eix Ex1 Es1
4 4 4
Q Q, Qs
4 4 4
X, X, Xs
]

Slide credit: Justin Johnson

Self-Attention Layer

Sequence encode -> use each input element as query!

Inputs:
Input vectors: ' (Shape: Ny x Dy)

Key matrix: W (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x Dy)
Query matrix: W, (Shape: Dx x Dq)

Computation:

Query vectors: Q = XWq

Key vectors: I = W, (Shape: Ny x Dg)

Value vectors: V = W, (Shape: Ny x Dy)

Similarities: E = QK" (Shape: Nx x Ny) Ei; = Q; - K;/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Nx x Dy) Y; = 3;A;}V,

Y1

Yz

Y3

4

4

4

Product(->), Sum(1")
[}

" Vs || A Az As;
» V, |7 A, A, Az,
» V; |=> A1 A, Asq
[}
| Softmax(1T") |
4
» Ks [=*|]| Ei3 Ess Ess
= Ky ||| E12 E» Es»
> Ky =] Eix Ex1 Es1
4 4 4
Q Q, Qs
4 4 4
X, X, Xs
- |

Slide credit: Justin Johnson

Self-Attention Layer

Sequence encode -> use each input element as query!

Inputs: Q: Can we use self-attention to
Input vectors: ' (Shape: Nx x Dx) encode an input with specific
Key matrix: Wy (Shape: Dy x Dq) sequential ordering?

Value matrix: W,, (Shape: Dy x Dy)

Query matrix: W, (Shape: Dx x Dq)

Computation:

Query vectors: Q = XWq

Key vectors: I = W, (Shape: Ny x Dg)

Value vectors: V = W, (Shape: Ny x Dy)

Similarities: E = QK" (Shape: Nx x Ny) Ei; = Q; - K;/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Nx x Dy) Y; = 3;A;}V,

Y1

\f

Y3

4

4

4

Product(->), Sum(1")
[}

> V3 [Az Az As;
» V, |7 A, A, As,
> Vl g A1,1 A2,1 A3,1
[}
| Softmax(1T") |
4
» Ks [=*|]| Ei3 Ess Ess
Ky ||| E12 Eso Es»
> Ky =] Eix Ex1 Es1
4 4 4
Q; Q, Q3
4 4 4
X1 X, X3

Slide credit: Justin Johnson

Self-Attention Layer ‘pmduct(ez, smit)]

Consider permuting > -
Inputs: the input vectors:
Input vectors: * (Shape: Ny x Dy) b -
Key matrix: W (Shape: Dy x D)
Value matrix: Wy, (Shape: Dy x Dy) > -
Query matrix: W, (Shape: Dx x Dq) L)
Softmax(T)
)
> —p
Computation:
Query vectors: Q = XWq — -
Key vectors: I = W, (Shape: Ny x Dg)
Value vectors: V = W, (Shape: Ny x Dy) I g
Similarities: E = QK" (Shape: Nx x Ny) Ei; = Q; - K;/ sqrt(Dq) 4 4 1
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x Dy) Y; = A}V, ¢ 4 ‘—l
X3 X1 X,
]

Slide credit: Justin Johnson

Self-Attention Layer ‘pmduct(ez, smit)]

Consider permuting) -
Inputs: the input vectors:
Input vectors: * (Shape: Ny x Dy) b -
Key matrix: W (Shape: Dy x Dq) Queries and Keys will be
ix: . > —->
Query matrix: W, (Shape: Dx x Dq) L}
| Softmax(T)
)
Computation: T
Query vectors: Q = “Wq + K P
Key vectors: I = W, (Shape: Ny x Dg)
Value Vectors: VV = XW, (Shape: Ny x Dy) I K T
Similarities: E = QK" (Shape: Nx x Ny) Ei; = Q; - K;/ sqrt(Dq) 4 4 4
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) Qs Q Q
Output vectors: Y = AV (Shape: Ny x Dy) Y; = A}V, 4 4 4
X3 X1 X5
T | |

Slide credit: Justin Johnson

Self-Attention Layer ‘pmduct(ez, somt)]

Consider permuting > -

Inputs: the input vectors:

Input vectors: * (Shape: Ny x Dy) b -

Key matrix: Wy (Shape: Dy x Dq) Similarities will be the .

Value matrix: Wy, (Shape: Dx x Dy) same, but permuted ; g

Query matrix: W, (Shape: Dy x Dq) | Soﬂmfa e |

Computation: LK Es» E1s E2,

Query vectors: Q = ¥Wg - K, Esq Ey1 Ezs

Key vectors: I = W, (Shape: Ny x Dg)

Value vectors: V = W, (Shape: Ny x Dy) L Ks Ess Ei3 E23

Similarities: E = QK" (Shape: Nx x Ny) Ei; = Q; - K;/ sqrt(Dq) ¥ ¥ i)

Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) Qs Q Q

Output vectors: Y = AV (Shape: Ny x Dy) Y; = A}V, L) L} L}
X3 X1 X5
I | |

Slide credit: Justin Johnson

Self-Attention Layer e

Product(->), Sum(1")
4

Consider permuting > =+ A A A
Inputs: the input vectors: >2 - 22
Input vectors: * (Shape: Ny x Dy) b -+ | Ay A, A,
Key matrix: W, (Shape: Dx x Do) Attention weights will be _
Value matrix: W,, (Shape: Dy x Dy) the same, but permuted g T Ass Az Az
Query matrix: W, (Shape: Dy x Dq) ¥
| Softmax(T) |
)
Computation: "L K2 |™|[Bs2 S¥! B2z
Query vectors: Q = “Wq = K; [=*|| E34 E11 E,
Key vectors: I = W, (Shape: Ny x Dg)
Value vectors: V = W, (Shape: Ny x Dy) "L K ™| Ess Eis E2s
Similarities: E = QK" (Shape: Nx x Ny) Ei; = Q; - K;/ sqrt(Dq) L) t 1
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) Qs Q Q
Output vectors: Y = AV (Shape: Ny x Dy) Y; = A}V, L) L} L}
7X3 X1 X5
I | |

Slide credit: Justin Johnson

Self-Attention Layer e

Product(->), Sum(1")
[}

Consider permuting >

Inputs: the input vectors: e ack e Aoz

Input vectors: * (Shape: Ny x Dy) >V, As 1 Ars A,

Key matrix: W (Shape: Dy x D) Values will be the .

Value matrix: W, (Shape: Dy x Dy) same, but permuted " Vs As3 A3 A3

Query matrix: W, (Shape: Dy x Dq) | — 4 o |

O m:x

Computation: "L K2 |™|[Bs2 S¥! B2z

Query vectors: Q = “Wq — K, [=|| Ess E11 Ess

Key vectors: I = W, (Shape: Ny x Dg)

Value vectors: V = W, (Shape: Ny x Dy) "L K ™| Ess Eis Ez

Similarities: E = QK" (Shape: Nx x Ny) Ei; = Q; - K;/ sqrt(Dq) L) t 1

Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) Qs Q Q

Output vectors: Y = AV (Shape: Ny x Dy) Y; = A}V, L) L} L}
X3 X1 X5
I | |

Slide credit: Justin Johnson

Self-Attention Layer

Consider permuting

Inputs: the input vectors:
Input vectors: ' (Shape: Ny x Dy)

Key matrix: W (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x Dy)
Query matrix: W, (Shape: Dx x Dq)

Outputs will be the
same, but permuted

Computation:

Query vectors: Q = XWq

Key vectors: I = W, (Shape: Ny x Dg)

Value vectors: V = W, (Shape: Ny x Dy)

Similarities: E = QK" (Shape: Nx x Ny) Ei; = Q; - K;/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Nx x Dy) Y; = 3;A;}V,

Y3

Y1 Y2

2
ol

3

Product(->), Sum(’]‘;‘ |
[}

> Vo [Ass Aq, A,
> Vi ||| Asy A, A4
> V3 - A3,3 Al,3 A2,3
[}
| Softmax(T) |
4
» K, ||| E32 Eio Ezo
> Ky ||| E3a Ei1 Ez1
> K3 [=|]| Es3 Eis Exs
4 4 4
Q Q Q
4 4 4
X5 X, X,
|

Slide credit: Justin Johnson

Self-Attention Layer

Inputs:
Input vectors: ' (Shape: Ny x Dy)

Key matrix: W (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x Dy)
Query matrix: W, (Shape: Dx x Dq)

Computation:

Query vectors: Q = XWq

Key vectors: I = W, (Shape: Ny x Dg)
Value vectors: V = W, (Shape: Ny x Dy)

Consider permuting
the input vectors:

Outputs will be the
same, but permuted

Self-attention layer is
Permutation Equivariant

f(s(x)) = s(f(x))

Similarities: E = QK" (Shape: Nx x Ny) Ei; = Q; - K;/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Nx x Dy) Y; = 3;A;}V,

Y3

Y1 Y2

2
ol

3

Product(->), Sum(’]‘;‘ |
[}

> Vo [Ass Aq, A,
> Vi ||| Asy A, A4
> V3 - A3,3 Al,3 A2,3
[}
| Softmax(T) |
4
» K, ||| E32 Eio Ezo
> Ky ||| E3a Ei1 Ez1
> K3 [=|]| Es3 Eis Exs
4 4 4
Q Q Q
4 4 4
X5 X, X,
|

Slide credit: Justin Johnson

Self-Attention Layer

Inputs:
Input vectors: ' (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x Dg)
Value matrix: W,, (Shape: Dy x Dy)
Query matrix: W, (Shape: Dx x Dq)

Computation:

Query vectors: Q = XWq

Key vectors: I = W, (Shape: Ny x Dg)
Value vectors: V = W, (Shape: Ny x Dy)

)

Self attention doesn’t “know’
the order of the vectors it is
processing! Not good for
sequence encoding.

Similarities: E = QK" (Shape: Nx x Ny) Ei; = Q; - K;/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Nx x Dy) Y; = 3;A;}V,

Y1

Yz

Y3

4

4

4

Product(->), Sum(1")
[}

Vi =] Az Az As;
Vo ||| A A, Az,
Vi = A1 A, Asq
[}
| Softmax(1T") |
4
Ks |=*|| Ei3 Ess Ess
Ky |=*|| Eiz E» Es»
Ky |=>|] Eqn Ex1 Es1
4 4 4
Q Q, Qs
4 4 4
X1 X2 X3

Slide credit: Justin Johnson

Y1 Y3 Y;

Self-Attention Layer e

Product(->), Sum()
[}

Inbuts: In order to make processing Vi |=>|| A o P
')) position-aware, concatenate

Input vectors: * (Shape: Ny x Dy) inout with positional encoding E Vo (=] A, A, As,

Key matrix: W, (Shape: Dy x Dg) Input with positional encoding y

Value matrix: W, (Shape: Dy x D _ . 1 ™| Aws Aza As

Y (Shap X) E(i) encodes the position of the
Query matrix: W, (Shape: Dx x Dq) . _ 4
i-th elementin a sequence | Softmax(1) |
)
Computation: E() can be a simple function Ks |=>| Ei3 Ess Ess
Query vectors: Q = XWq, (e.g., linear or sin functions) or a o |=[E, E,, E.,
o . learned lookup table. 2

Key vectors: I = W, (Shape: Ny x Dg)

Value vectors: V = W, (Shape: Ny x Dy) Ki |=| Exn Exn Es

Similarities: E = QK" (Shape: Nx x Ny) Ei; = Q; - K;/ sqrt(Dq) L) t 1

Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) Q Q, Qs

Output vectors: Y = AV (Shape: Ny x Dy) Y; = A}V, L) L} L}
Xy X2 X3
E(1) E(2) E@B)
0.1 0.2 0.3

Slide credit: Justin Johnson

Aside: Positional Encoding (PE) for Self-Attention

Motivation: Maintain the order of input data since attention mechanisms are
permutation invariant. PEs are shared across all input sequences.

Linear Positional Encoding: PE (pos) = a - pos + b.
Problem: encoding increases with the sequence length, causing gradient problem for
long sequences.

PE s 2i) = sin(pos/10000%/ et)

Sin/cos Positional Encoding (Default): .
/ 8) PE (o5 9i+1) = cos(pos/10000%/ ot)

PE for each dimension (i) repeats periodically, combine different waveforms at each
dimension to get a unique embedding.
Learned Positional Encoding: PE, (pos, i).

Learn the most suitable position embedding for the training set.

Slide credit: Justin Johnson

Masked Self-Attention Layer

Inputs:
Input vectors: ' (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x Dg)
Value matrix: W,, (Shape: Dy x Dy)
Query matrix: W, (Shape: Dx x Dq)

Computation:

Query vectors: Q = XWq

Key vectors: I = W, (Shape: Ny x Dg)
Value vectors: V = W, (Shape: Ny x Dy)

Similarities: E = QK" (Shape: Nx x Ny) Ei; = Q; - K;/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Nx x Dy) Y; = 3;A;}V, L

Don’t let vectors “look
ahead” in the sequence

Used for sequence decoding
(predict next word)

Big cat [END]
4 4 4
Product(->), Sum(1") |
[
V; |= 0 0 Ass
Vo, =] o A, Az,
Vl - A1,1 A2,1 A3,1
4
Softmax(T) |
4
Ks [=*]| -°° -o° Ess
Ky ||| -°° Es» Es»
Ky |=>|] Eqn Ex1 Es1
4 4 4
Q Q, Qs
4) 4
[START] Big cat

Slide credit: Justin Johnson

Multi-headed Self-Attention Layer T

Inputs: Concat
Input vectors: ' (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x Dg) " =B o o
Value matrix: W, (Shape: Dx x Dy) —
Query matrix: W, (Shape: Dx x Dq)

Use H independent
“Attention Heads” in
parallel

Computation:
Query vectors: Q = XWq
Key vectors: I = W, (Shape: Ny x Dg)

Value vectors: V = XW,, (Shape: Ny x Dy) distribute
Similarities: E = QK" (Shape: Nx x Ny) Ei; = Q; - K;/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Nx x Dy) Y; = 3;A;}V,
X1 X2 X3

Slide credit: Justin Johnson

Multi-headed Self-Attention Layer T

Inputs: Concat
Input vectors: ' (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x Dg) " =B o o
Value matrix: W, (Shape: Dx x Dy)
Query matrix: W, (Shape: Dx x Dq)

Use H independent
“Attention Heads” in
parallel

Computation:
Query vectors: Q = XWq
Key vectors: I = W, (Shape: Ny x Dg)

Value vectors: V = XW,, (Shape: Ny x Dy) distribute
Similarities: E = QK" (Shape: Nx x Ny) Ei; = Q; - K;/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Nx x Dy) Y; = 3;A;}V,
X1 X2 X3

Highly parallelizable: Can compute attentions for all
input element from all head in parallel!

Slide credit: Justin Johnson

Three Ways of Processing Sequences

Recurrent Neural Network

Y1 " Y2 gRE > Ya
X1 X2 X3 Xa

Works on Ordered Sequences

(+) Natural sequential processing:
“sees” the input sequence in its
original ordering

(-) Forgetful: difficult to handle long-
range dependencies.

(-) Not parallelizable: need to
compute hidden states sequentially

Slide credit: Justin Johnson

Three Ways of Processing Sequences

Recurrent Neural Network

Y1 > Y2 > V3 > Va4
X1 X2 X3 Xa

Works on Ordered Sequences

(+) Natural sequential processing:
“sees” the input sequence in its
original ordering

() Forgetful: difficult to handle long-
range dependencies.

(-) Not parallelizable: need to
compute hidden states sequentially

1D Convolution

Y1 Y, Y3 Vs

Works on Multidimensional Grids
(-) Bad at long sequences: Need to
stack many conv layers for outputs
to “see” the whole sequence

(+) Highly parallel: Each output can
be computed in parallel

Slide credit: Justin Johnson

Three Ways of Processing Sequences

Recurrent Neural Network

Y1 ™ Y2 4dBE ™ Ya
X1 X2 X3 Xa

Works on Ordered Sequences

(+) Natural sequential processing:
“sees” the input sequence in its
original ordering

() Forgetful: difficult to handle long-
range dependencies.

(-) Not parallelizable: need to
compute hidden states sequentially

1D Convolution

Y1 Y, Y3 Vs

Works on Multidimensional Grids
(-) Bad at long sequences: Need to
stack many conv layers for outputs
to “see” the whole sequence

(+) Highly parallel: Each output can
be computed in parallel

Self-Attention

Works on Sets of Vectors

(+) Good at long sequences: after
one self-attention layer, each output
“sees” all inputs!

(+) Highly parallel: Each output can
be computed in parallel

(-) Very memory intensive

(-) Requires positional encoding

Slide credit: Justin Johnson

Three Ways of Processing Sequences

Recurrent Neural Network

1D Convolution

Self-Attention

Attention is all you need

Vaswani et al, NeurlPS 2017

Works on Ordered Sequences

(+) Natural sequential processing:
“sees” the input sequence in its
original ordering

() Forgetful: difficult to handle long-
range dependencies.

(-) Not parallelizable: need to
compute hidden states sequentially

Works on Multidimensional Grids
(-) Bad at long sequences: Need to
stack many conv layers for outputs
to “see” the whole sequence

(+) Highly parallel: Each output can
be computed in parallel

Works on Sets of Vectors

(+) Good at long sequences: after
one self-attention layer, each output
“sees” all inputs!

(+) Highly parallel: Each output can
be computed in parallel

(-) Very memory intensive

(-) Requires positional encoding

Slide credit: Justin Johnson

The Transformer Block

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Slide credit: Justin Johnson

The Transformer Block

4
All vectors interact Self-Attention
with each other 1 1 4)
t t t t
Xq X5 X3 X4

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Slide credit: Justin Johnson

The Transformer Block

Vaswani et al, “Attention is all you need”, NeurIPS 2017

MLP independently on
each vector

All vectors interact
with each other

Y1 \%) Y3 Ya
) t))
4 4 4 4

MLP MLP MLP MLP
)) 4)
4
Self-Attention
4 4 4 4
t t t t
Xq X5 X3 X4

Slide credit: Justin Johnson

The Transformer Block

Vaswani et al, “Attention is all you need”, NeurIPS 2017

MLP independently on
each vector

Residual connection

All vectors interact
with each other

Y1 \%) Y3 Ya
) t))
4 4 4 4

MLP MLP MLP MLP
)) 4)
5
Self-Attention
4 4 4 4
t t t t
Xq X5 X3 Xy

Slide credit: Justin Johnson

The Transformer Block

Recall Layer Normalization:
Given hy, ..., hy (shape: D)

scale: y (shape: D)
shift: 8 (shape: D)
ui = (1/D)3; h;; (scalar)
;= (35 (hi; - w)?)Y? (scalar)
z=(h;-) / o (shape: D)
vi=y*z,+pf (shape: D)

Applied per element, not
across the sequence

Vaswani et al, “Attention is all you need”, NeurIPS 2017

MLP independently on
each vector

Residual connection

All vectors interact
with each other

Y1 \%) Y3 Ya

MLP MLP MLP MLP

t 1|11

Layer Normalization

:é

Self-Attention
4 4 4 4
t t t t
Xq X5 X3 Xy

Slide credit: Justin Johnson

The Transformer Block

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Residual connection

MLP independently on
each vector

Residual connection

All vectors interact
with each other

Y1 Y2 Y3 Ya
| | | |
Layer Normalization
5
| | | |
MLP MLP MLP MLP
1t
|
Layer Normalization

:é
Self-Attention
t t t t
t t t t
Xq X5 X3 Xy

Slide credit: Justin Johnson

The Transformer Block vf vf ; y?

Layer Normalization

Transformer Block: G
Input: Set of vectors x
Output: Set of vectors y I I I |
MLP MLP MLP MLP
Self-attention is the only t 1 . 1 1
interaction among vectors! e
Layer Normalization
Layer norm and MLP work :é
independently per vector
Self-Attention

Highly scalable, highly ¢ t L})
parallelizable | 4 4 4

Xq X5 X3 X4

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Slide credit: Justin Johnson

The Transformer ool

®
] [

Layer Normalization

Transformer Block: :

Input: Set of vectors x [seltatentn

Output: Set of vectors y N —

Layer Normalization

3 on | A Transformer is a sequence ?
§e|f attgntnon is the only q
interaction among vectors! of transformer blocks

Layer Normalization

Layer norm and MLP work s
independently per vector . ——

Layer Normalization

®
Highly scalable, highly
parallelizable II

Layer Normalization

‘ Self-Attention

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Slide credit: Justin Johnson

Output
Probabilities

The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Add & Norm

Feed
Forward

| Add & Norm ﬁ

e I N\
g) Mult-Head
Feed Attention
Forward D) Nx
N
Nix Add & Norm
f_>| Add & Norm | Ve
Multi-Head Multi-Head
Attention Attention
AN - AT —))

e J _ | e—
Positional o) @ Positional
Encoding Encoding

Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Encoder-Decoder

Visualizing Transformer Attentions
Layer: . Attention: is@tence A-> Sentence B -] Layer: . Attention: A" v

[CLS]
should
a

robot
obey
orders
from
humans
2

[SEP]

https://github.com/jessevig/bertviz

a
robot
must
obey
the
orders
given
it

by
human
beings
[SEP]

In

2016

the
Young
Mens
Christian
Association
(

Y.

M

CA

)

was
very
active

» IN

2016

the
Young
Mens
Christian
Association
(

Y

M

CA

)

was
very
active

MODEL COMPLETION (MACHINE-WRITTEN, 10 TRIES)
The scientist named the population, after their distinctive horn, Ovid’s

Unicorn. These four-horned, silver-white unicorns were previously unknown to
science.

Now, after almost two centuries, the mystery of what sparked this odd
phenomenon is finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and
several companions, were exploring the Andes Mountains when they found a small
valley, with no other animals or humans. Pérez noticed that the wvalley had

what appeared to be a natural fountain, surrounded by two peaks of rock and
silver snow.

Pérez and the others then ventured further into the valley. “By the time we
reached the top of one peak, the water looked blue, with some crystals on
top,” said Pérez.

Source: OpenAl, “Better Language Models and Their Implications”
https://openai.com/blog/better-language-models/

Can Attention/Transformers be used from
more than text processing?

Encoding/Decoding Protein Structures (AlphaFold)

a b c
4 N termlnus /
— i (N)
Dg/ 7,
7 y
o 37 S A
: i, \S
8 2
c
Ko}
kel
s
1 -
0= NT ZOABNAIVIBINQC AlphaFold Experiment AlphaFold Experiment AlphaFold Experiment
3% R LR R R R r.m.s.d.q5 = 0.8 A; TM-score = 0.93 r.m.s.d. = 0.59 A within 8 A of Zn r.m.s.d.g5 = 2.2 A; TM-score = 0.96
s
<

@ —— (@t —— - High
confidence

Q? IR XY g g ingle repr. c] —>
—(+)—> representatlon —> Low
Y database > ®T? trt A % (s.ne) % confidence
search @T *Te
MSA 7
~¢
Grevees _< Evoformer Structlfre /
(48 blocks) moduls) L3)
Input sequence (8 blocks) ,/S) [0
U
Tey . (5
: | TR
3 Pair Pair
sas /:+ *lrep " {8 entation] — 3D structure
(r.rc) (rre)
k »-| Structure
database
search
Templates

< Recycling (three times)

https://www.nature.com/articles/s41586-021-03819-2

Predicting Multi-agent Behaviors

Agent 3

A t=1 t=2 t=3 t=4 t=5

e |;| |;| Soc::ial

Agenz_ - WEESS)
Agent 1 - - - - - R
T Time
Multi-Agent Trajectories Trajectory Features Trajectory Features in 2D

Agent-Aware Transformer

(Joint Social & Temporal Modeling +
Preserve Time & Agent Information)

T
I I

t=1 t=2 t=3 t=4 t=5

Yuan et al., 2021 AgentFormer: Agent-Aware Transformers for Socio-Temporal Multi-Agent Forecasting

ViT: Vision Transformer

Vision Transformer (ViT)

MLP
Head \
Transformer Encoder ‘
itz - 00 0) €D @) GDED B) @ @15

Extra learnable

[class] embedding [Lmear Projection of Flattened Patches
SN N I O LI
m&u—»&.lﬂ@%ﬂﬂﬂ

An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
(Dosovitskiy et al., 2021)

TOP 1 ACCURACY

ViT: Vision Transformer

100 =

Meta Pseudo Labels (EfﬁcientNet-LZ)ViT'IG/14 CoCa.(ﬁ.netuned)

90 . ..
ResNeXt-101 32x48d NoisyStudent (EfficientNet-B7)
PNASNet:=5
ResNeXt-101 64x4—@——0— *
80 Inception V3— @
VGM
MSRA
70 X s
Five Base + Five"HiRes
AlexNet
60
50
2013 2014 2015 2016 2017 2018 2019 2020 2071 202¢

Other models -e- State-of-the-art models

Generally more expensive to train and execute than ConvNets-based models

0 DeepMind

19 July 2022

Formal Algorithms for Transformers

Mary Phuong! and Marcus Hutter!
1DeepMind

This document aims to be a self-contained, mathematically precise overview of transformer architec-
tures and algorithms (not results). It covers what transformers are, how they are trained, what they are
used for, their key architectural components, and a preview of the most prominent models. The reader
is assumed to be familiar with basic ML terminology and simpler neural network architectures such as
MLPs.

Keywords: formal algorithms, pseudocode, transformers, attention, encoder, decoder, BERT, GPT, Gopher,
tokenization, training, inference.

Contents plete, precise and compact overview of trans-
1 Introduction 1 former architectures and formal algorithms (but
2 Motivation 1 notresults). It covers what Transformers are (Sec-
3 Transformers and Typical Tasks 3 tion 6), how they are trained (Section 7), what
4 Tokenization: How Text is Represented 4 they're used for (Section 3), their key architec-
g !T\:;lr:lstff)cr'trlrllzarl :r(?}rllilt):cnt?ll:';ss ; tural components (Section 5), tokenization (Sec-
7 Transformer Training and Inference g tion 4), and a preview of practical considerations
8 Practical Considerations 9 (Section 8) and the most prominent models.
11; {{‘ieslie;(ferll\;::tsaﬁon 12 The essentially complete pseudocode is about

50 lines, compared to thousands of lines of ac-
tual real source code. We believe these formal

A famous colleague once sent an actually very
well-written paper he was quite proud of to a fa-
mous complexity theorist. His answer: “I can’t find

SO, SR 2T -, SRURNNURSIUR. .. SNSRI . SESR W0, % A

algorithms will be useful for theoreticians who
require compact, complete, and precise formu-
lations, experimental researchers interested in

lemamlacmncntican A Tunwafrnvinnaw funcn nnvwasalh A a

Summary

Self-Attention

Y. Y, Y,
Product(—), Sum(1)

(Vo |~ (A | [Aga] (s
[V = Ay | [As2] [Ag
_' Aiq Az Ass

Transformer Model

Qutput
Probabilities

[(Add & Norm]
Feed
Forward
J

/_(_\ ((Add & Norm J<~

e BN Mult-Head
Attention
Nx
Nx Add & Norm
Add & Norm Masked
Multi-Head Multi-Head
Attention Attention
A ==
- J \. =
Positional ® @_® Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Beyond Language

Vision Transformer (ViT)

‘ Transformer Encoder

* Extra learnable

[class] embedding Linear Projection of Flattened Patches

!

J

SRR N
ﬁﬁg—»l%%&ﬁﬁﬂ

