
CS 4644-DL / 7643-A: LECTURE 12
DANFEI XU

Recurrent Neural Networks (RNN)
Long Short-Term Memory (LSTM)

2

second-order Taylor expansion:

Solving for the critical point we obtain the Newton parameter update:

Recap: Second-Order Optimization

Q: Why is this bad for deep learning?

Hessian has O(N^2) elements
Inverting takes O(N^3)
N = Millions

𝑓 𝒙 = 𝑓 𝒂 + 𝑥 − 𝑎 !∇𝑓 +
1
2 (𝑥 − 𝑎)

!𝐻(𝑥 − 𝑎)

𝑥∗ = 𝑎 − 𝐻"# ∇𝑓

3

Regularization: Dropout
In each forward pass, randomly set some neurons to zero
Probability of dropping is a hyperparameter; 0.5 is common

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014

4

Dropout: Test time

Consider a single neuron.

Without dropout:
With dropout we have:

a

x y

w1 w2

At test time, multiply
by dropout probability

Compute the
expectation

5

Regularization: Data Augmentation

Load image
and label

“cat”

CNN

Compute
loss

Transform image

Gradient clipping: prevent large gradient step
Large gradient step will likely destabilize training (gradients are noisy!)
Large gradient update can be caused by many issues, e.g., large weights, large
input, bad loss funcDon / acDvaDon funcDon, …
Should always first try to fix the root cause (normalizaDon, beJer loss /
acDvaDon funcDon, etc.)

But if all things fail … just clip the gradient

𝑔!"# = min 1,
𝜆
𝑔

×𝑔

𝑔: original gradient
𝜆: clipping threshold

Transfer Learning with CNNs

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

1. Train on Imagenet

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-C

2. Small Dataset (C classes)

Freeze these

Reinitialize
this and train

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-C

3. Bigger dataset

Freeze these

Train these

With bigger
dataset, train
more layers

Lower learning rate
when finetuning;
1/10 of original LR
is good starting
point

Donahue et al, “DeCAF: A Deep Convolutional Activation
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “CNN Features Off-the-Shelf: An
Astounding Baseline for Recognition”, CVPR Workshops
2014

7

Transfer learning is pervasive…
(it’s the norm, not an exception)

Generic Language Model Train with Task-specific Labels

https://ruder.io/recent-advances-lm-fine-tuning/

9

Diagnose your training
(without tons of GPUs)

10

Diagnose your training

Step 1: Check initial loss

Turn off weight decay, sanity check loss at initialization
e.g. log(C) for softmax with C classes
Reminder: 𝐿 = − log 𝑝 = − log(1/𝐶) = log(𝐶)

11

Diagnose your training
Step 1: Check initial loss
Step 2: Overfit a small sample

Try to train to 100% training accuracy on a small sample of
training data (~5-10 minibatches); fiddle with architecture,
learning rate, weight initialization

Loss not going down? LR too low, bad initialization, bug in
code or errors in training labels
Loss explodes to Inf or NaN? LR too high, bad initialization,
bug in code

12

Diagnose your training

Step 1: Check initial loss
Step 2: Overfit a small sample
Step 3: Find LR that makes loss go down

Use the architecture from the previous step, use all training
data, turn on small weight decay, find a learning rate that
makes the loss drop significantly within ~100 iterations

Good learning rates to try: 1e-3, 3e-4, 1e-4

13

Diagnose your training

Step 1: Check initial loss
Step 2: Overfit a small sample
Step 3: Find LR that makes loss go down
Step 4: Coarse grid, train for ~1-5 epochs

Choose a few values of learning rate and weight decay around
what worked from Step 3, train a few models for ~1-5 epochs.

Good weight decay to try: 1e-4, 1e-5, 0

14

Diagnose your training

Step 1: Check initial loss
Step 2: Overfit a small sample
Step 3: Find LR that makes loss go down
Step 4: Coarse grid, train for ~1-5 epochs
Step 5: Refine grid, train longer

Pick best models from Step 4, train them for longer (~10-20
epochs) without learning rate decay

15

Diagnose your training

Step 1: Check initial loss
Step 2: Overfit a small sample
Step 3: Find LR that makes loss go down
Step 4: Coarse grid, train for ~1-5 epochs
Step 5: Refine grid, train longer
Step 6: Look at loss and accuracy curves

16

Accuracy

time

Train

Accuracy still going up, you
need to train longer

Val

17

Accuracy

time

Train

Huge train / val gap means
overfitting! Increase regularization,
get more data

Val

18

Accuracy

time

Train

No gap between train / val means
underfitting: train longer, use a
bigger model, reduce regularization

Val

19

Losses may be noisy, use a
scatter plot and also plot moving
average to see trends better

Look at learning curves!
Training Loss Train / Val Accuracy

20

Cross-validation

We develop
"command centers"
to visualize all our
models training with
different
hyperparameters

check out weights and
biases

https://wandb.ai/site?gclid=Cj0KCQjw9_mDBhCGARIsAN3PaFOdNLAotsNwzHZDz2szIWhaM-2Pu5hq07RBOuDL9l8TG8UQkdralcwaAvNJEALw_wcB

21

You can plot all your loss curves for different hyperparameters on a single plot

22

Don't look at accuracy or loss curves for too long!

23

Choosing Hyperparameters

Step 1: Check initial loss
Step 2: Overfit a small sample
Step 3: Find LR that makes loss go down
Step 4: Coarse grid, train for ~1-5 epochs
Step 5: Refine grid, train longer
Step 6: Look at loss and accuracy curves
Step 7: GOTO step 5

24

Hyperparameters to play with:
- network architecture
- learning rate, its decay schedule, update type
- regularization (L1/L2/Dropout strength)

This image by Paolo Guereta is licensed under CC-BY 2.0

https://commons.wikimedia.org/wiki/File:Pioneer_DJ_equipment_-_angled_left_-_Expomusic_2014.jpg
https://creativecommons.org/licenses/by/3.0/us/

25

Summary
- Improve your training error:

- Optimizers
- Learning rate schedules

- Improve your test error:
- Regularization
- Choosing Hyperparameters

Summary

26

Training Deep Neural Networks
• Details of the non-linear activation functions
• Data normalization
• Weight Initialization
• Batch Normalization
• Advanced Optimization
• Regularization
• Data Augmentation
• Transfer learning
• Hyperparameter Tuning

27

Sequence Modeling: Recurrent Neural Networks

28

Vanilla Neural Networks

“Vanilla” Neural Network

29

Recurrent Neural Networks: Process Sequences

e.g. Image Captioning
image -> sequence of words

30

Recurrent Neural Networks: Process Sequences

e.g. sentiment analysis
sequence of words -> sentiment label

31

Recurrent Neural Networks: Process Sequences

E.g. Translation, Q&A,
Conversation
Sequence of words ->
sequence of words

32

Recurrent Neural Networks: Process Sequences

e.g. Language entity recognition

Why are existing convnets insufficient?
Variable sequence length inputs and outputs!

33

Krishna, Hata, Ren, Fei-Fei, Niebles. Dense captioning Events in Videos. ICCV 2019

Example task: video captioning

Input video can have variable
number of frames

Output captions can be variable
length.

34

Let's start with a se,ng that takes a variable input
and produces an output at every step

Example: Video ac>vity labeling

Huang et al., 2016

Input: video frame; Output: ac>vity label at each frame
Recognizing an ac>vity requires looking at more than one frame!

Want: a model that can make predic>on for each frame based
on the past frames.
We need a model that can memorize what it has seen so far!

35

Recurrent Neural Network

x

RNN

y

36

Recurrent Neural Network

x

RNN

y
Key idea: RNNs have an
“internal state” that is
updated as a sequence is
processed. You can think
of it as “memory”.

ℎ$

37

Unrolled RNN

x1

RNN

y1

x2

RNN

y2

x3

RNN

y3

...

xt

RNN

yt

h1 h2 h3h0

38

Unrolled RNN

x1

RNN

y1

x2

RNN

y2

x3

RNN

y3

...

xt

RNN

yt

h1 h2 h3h0

The same model!

Update Memory

39

RNN hidden state update

x

RNN

y
We can process a sequence of vectors x by
applying a recurrence formula at every time step:

new state
(vector)

old state
(vector)

input vector at
some time step

some model
with parameters W

Can set ini-al state ℎ5 to all 0’s

40

RNN output generation

x

RNN

y
“Read out” the prediction by passing the hidden
state through a network (e.g., a few FC layers)

new state

another model
with parameters 𝑊67

output

The prediction network is often shared across timestep.

41

(Simple) Recurrent Neural Network

x

RNN

y

The state consists of a single “hidden” vector h:

Sometimes called a “Vanilla RNN” or an
“Elman RNN” after Prof. Jeffrey Elman

42

h0 fW h1

x1

RNN: Computational Graph

43

h0 fW h1 fW h2

x2x1

RNN: Computational Graph

44

h0 fW h1 fW h2 fW h3

x3

…
x2x1

RNN: Computational Graph

hT

45

h0 fW h1 fW h2 fW h3

x3

…
x2x1W

RNN: Computational Graph

Re-use the same weight matrix at every time-step

hT

46

h0 fW h1 fW h2 fW h3

x3

yT

…
x2x1W

RNN: Computational Graph: Many to Many

hT

y3y2y1

47

h0 fW h1 fW h2 fW h3

x3

yT

…
x2x1W

RNN: Computational Graph: Many to Many

hT

y3y2y1 L1 L2 L3 LT

48

h0 fW h1 fW h2 fW h3

x3

yT

…
x2x1W

RNN: Computational Graph: Many to Many

hT

y3y2y1 L1 L2 L3 LT

L

Backprop:

𝜕𝐿
𝜕𝑊%

=:
$&%

' 𝜕𝐿$
𝜕𝑊%

49

h0 fW h1 fW h2 fW h3

x3

y

…
x2x1W

RNN: Computational Graph: Many to One

hT

50

h0 fW h1 fW h2 fW h3

x3

y

…
x2x1W

RNN: Computational Graph: Many to One

hT

Example: sentence classifica>on

51

h0 fW h1 fW h2 fW h3

yT

…
x

W

RNN: Computational Graph: One to Many

hT

y3y2y1

Example: image cap>oning

52

h0 fW h1 fW h2 fW h3

yT

…
x

W

RNN: Computational Graph: One to Many

hT

y3y2y1

x x x

Example: image cap>oning

yT-1

53

h0 fW h1 fW h2 fW h3

yT

…
y0W

RNN: Computational Graph: One to Many

hT

y3y2y1

y1 y2

Example: text generation

54

Sequence to Sequence: Many-to-one + one-to-
many

h0 fW h1 fW h2 fW h3

x3

…

x2x1
W1

h
T

Many to one: Encode input
sequence in a single vector

Sutskever et al, “Sequence to Sequence Learning with Neural Networks”, NIPS 2014

A vector that
“memorizes” the
entire sentence

55

Sequence to Sequence: Many-to-one + one-to-
many

y1 y2

…

Many to one: Encode input
sequence in a single vector

One to many: Produce output
sequence from single input vector

fW h1 fW h2 fW

W2

Sutskever et al, “Sequence to Sequence Learning with Neural Networks”, NIPS 2014

h0 fW h1 fW h2 fW h3

x3

…

x2x1
W1

h
T

A vector that
“memorizes” the
entire sentence

56

Example:
Character-level
Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello” with
one-hot encoding

57

Example:
Character-level
Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello” with
one-hot encoding

58

Example:
Character-level
Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello” with
one-hot encoding

59

Example: Character-
level
Language Model
Sampling

Vocabulary:
[h,e,l,o]

At test-time sample
characters one at a time,
feed back to model

.03

.84

.00

.13

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02

.08

.79
Softmax

“e” “l” “l” “o”
Sample

60

.03

.84

.00

.13

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02

.08

.79
Softmax

“e” “l” “l” “o”
SampleExample: Character-

level
Language Model
Sampling

Vocabulary:
[h,e,l,o]

At test-time sample
characters one at a time,
feed back to model

61

.03

.84

.00

.13

.25

.20

.50

.05

.11

.17

.68

.03

.11

.02

.08

.79
Softmax

“e” “l” “l” “o”
SampleExample: Character-

level
Language Model
Sampling

Vocabulary:
[h,e,l,o]

At test-time sample
characters one at a time,
feed back to model

62

.03

.84

.00

.13

.25

.20

.50

.05

.11

.17

.68

.03

.11

.02

.08

.79
Softmax

“e” “l” “l” “o”
SampleExample: Character-

level
Language Model
Sampling

Vocabulary:
[h,e,l,o]

At test-time sample
characters one at a time,
feed back to model

63

Backpropagation through time
Loss

Forward through entire sequence to
compute loss, then backward through
entire sequence to compute gradient

64

Backpropagation through time
Loss

Forward through entire sequence to
compute loss, then backward through
entire sequence to compute gradient

A single forward pass of the RNN model. T passes create a huge computa>on graph!

65

Truncated Backpropagation through time
Loss

Run forward and backward
through chunks (length k) of
the sequence instead of
whole sequence, do
parameter update, clear
gradient cache

Save the last hidden state!

66

Truncated Backpropagation through time
Loss

Carry hidden states
forward in time for k
steps, backprop,
update parameter,
clear gradient …

67

Truncated Backpropagation through time
Loss

68

Truncated Backpropagation through time

69

time

depth

Multilayer RNNs

70

time

depth

Multilayer RNNs

Each RNN layer takes as input (1)
previous hidden state from the same
layer and (2) the output of the
previous layer at the same >mestep
(or the input).

71

x

RNN

y

72

train more

train more

train more

at first:

73

74

The Stacks Project: open source algebraic geometry textbook

Latex source http://stacks.math.columbia.edu/
The stacks project is licensed under the GNU Free Documentation License

http://stacks.math.columbia.edu/
https://github.com/stacks/stacks-project/blob/master/COPYING

75

76

77

78

Generated
C code

79

80

81

Explain Images with Multimodal Recurrent Neural Networks, Mao et al.
Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy and Fei-Fei
Show and Tell: A Neural Image Caption Generator, Vinyals et al.
Long-term Recurrent Convolutional Networks for Visual Recognition and Description, Donahue et al.
Learning a Recurrent Visual Representation for Image Caption Generation, Chen and Zitnick

Image Captioning

Figure from Karpathy et a, “Deep Visual-
Semantic Alignments for Generating Image
Descriptions”, CVPR 2015; figure copyright
IEEE, 2015.
Reproduced for educational purposes.

82

Convolutional Neural Network

Recurrent Neural Network

test image

This image is CC0 public domain

https://pixabay.com/en/straw-hat-man-sea-sunlight-sunset-70696/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

test image

test image

X

test image

x0
<START>

h0

y0

test image

before:
h = tanh(Wxh * x + Whh * h)

now:
h = tanh(Wxh * x + Whh * h + Wih * v)

v

Wih

x0
<START>

h0

y0

test image

straw

sample!

x0
<START>

h0

y0

test image

straw

h1

y1

x0
<START>

h0

y0

test image

straw

h1

y1

hat

sample!

x0
<START>

h0

y0

test image

straw

h1

y1

hat

h2

y2

x0
<START>

h0

y0

test image

straw

h1

y1

hat

h2

y2

sample
<END> token
=> finish.

x0
<START

>

93

A cat sitting on a
suitcase on the floor

A cat is sitting on a tree
branch

A dog is running in the
grass with a frisbee

A white teddy bear sitting in
the grass

Two people walking on
the beach with surfboards

Two giraffes standing in a
grassy field

A man riding a dirt bike on
a dirt track

Image Captioning: Example Results

A tennis player in action
on the court

Captions generated using
neuraltalk2
All images are CC0 Public domain:
cat suitcase, cat tree, dog, bear,
surfers, tennis, giraffe, motorcycle

https://github.com/karpathy/neuraltalk2
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/luggage-antique-cat-1643010/
https://pixabay.com/en/cat-kitten-tree-green-summer-1647775/
https://pixabay.com/en/adorable-animal-canine-cute-dog-1849992/
https://pixabay.com/en/teddy-plush-bears-cute-teddy-bear-1623436/
https://pixabay.com/en/beach-beach-sports-blur-blurry-1853903/
https://pixabay.com/en/tennis-head-ramos-vinolas-clay-934841/
https://pixabay.com/en/giraffe-animals-wildlife-africa-2064520/
https://pixabay.com/en/moto-cross-motorbike-sports-jump-214928/

94

Image Captioning: Failure Cases

A woman is holding a
cat in her hand

A woman standing on a
beach holding a surfboard

A person holding a
computer mouse on a desk

A bird is perched on
a tree branch

A man in a
baseball uniform
throwing a ball

Captions generated using neuraltalk2
All images are CC0 Public domain: fur
coat, handstand, spider web, baseball

https://github.com/karpathy/neuraltalk2
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/woman-female-model-portrait-adult-983967/
https://pixabay.com/en/handstand-lake-meditation-496008/
https://pixabay.com/en/spider-web-tree-branches-pattern-617769/
https://pixabay.com/en/baseball-player-shortstop-infield-1045263/

95

Visual Question Answering (VQA)

Agrawal et al, “VQA: Visual Question Answering”, ICCV 2015
Zhu et al, “Visual 7W: Grounded Question Answering in Images”, CVPR 2016
Figure from Zhu et al, copyright IEEE 2016. Reproduced for educational purposes.

96

Das et al, “Visual Dialog”, CVPR 2017
Figures from Das et al, copyright IEEE 2017. Reproduced with permission.

Visual Dialog: Conversations about images

Agent encodes instructions in
language and uses an RNN to
generate a series of movements as
the visual input changes after each
move.

97

Wang et al, “Reinforced Cross-Modal Matching and Self-Supervised
Imitation Learning for Vision-Language Navigation”, CVPR 2018
Figures from Wang et al, copyright IEEE 2017. Reproduced with permission.

Visual Language Navigation: Go to the living room

RNN tradeoffs

RNN Advantages:
- Can process any length input
- Computation for step t can (in theory) use information from many steps

back
- Model size doesn’t increase for longer input
- Same weights applied on every timestep, so there is symmetry in how

inputs are processed.
RNN Disadvantages:
- Recurrent computation is slow
- In practice, difficult to access information from many steps back
- Vanishing gradient / gradient explosion

98

99

ht-1

xt

W

stack

tanh

ht

Vanilla RNN Gradient Flow Bengio et al, “Learning long-term dependencies with gradient descent
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

yt

100

ht-1

xt

W

stack

tanh

ht

Vanilla RNN Gradient Flow
Backpropagation from ht
to ht-1 multiplies by W
(actually Whh

T)

Bengio et al, “Learning long-term dependencies with gradient descent
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

yt

101

ht-1

xt

W

stack

tanh

ht

Vanilla RNN Gradient Flow
Backpropagation from ht
to ht-1 multiplies by W
(actually Whh

T)

Bengio et al, “Learning long-term dependencies with gradient descent
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

yt

102

Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Bengio et al, “Learning long-term dependencies with gradient descent
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

y1 y2 y3 y4

103

Vanilla RNN Gradient Flow
Gradients over multiple time steps:

h0 h1 h2 h3 h4

x1 x2 x3 x4

Bengio et al, “Learning long-term dependencies with gradient descent
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

y1 y2 y3 y4

104

Vanilla RNN Gradient Flow
Gradients over multiple time steps:

h0 h1 h2 h3 h4

x1 x2 x3 x4

Bengio et al, “Learning long-term dependencies with gradient descent
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

y1 y2 y3 y4

105

Vanilla RNN Gradient Flow
Gradients over multiple time steps:

h0 h1 h2 h3 h4

x1 x2 x3 x4

Bengio et al, “Learning long-term dependencies with gradient descent
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

y1 y2 y3 y4

106

Vanilla RNN Gradient Flow
Gradients over multiple time steps:

h0 h1 h2 h3 h4

x1 x2 x3 x4

Bengio et al, “Learning long-term dependencies with gradient descent
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

y1 y2 y3 y4

Always < 1
Vanishing gradients

107

Vanilla RNN Gradient Flow
Gradients over multiple time steps:

h0 h1 h2 h3 h4

x1 x2 x3 x4

Bengio et al, “Learning long-term dependencies with gradient descent
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

y1 y2 y3 y4

What if we assumed no non-linearity?

108

Vanilla RNN Gradient Flow
Gradients over multiple time steps:

h0 h1 h2 h3 h4

x1 x2 x3 x4

Bengio et al, “Learning long-term dependencies with gradient descent
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

y1 y2 y3 y4

What if we assumed no non-linearity?

Largest eigen value > 1:
Exploding gradients

Largest eigen value < 1:
Vanishing gradients

109

Vanilla RNN Gradient Flow
Gradients over multiple time steps:

h0 h1 h2 h3 h4

x1 x2 x3 x4

Bengio et al, “Learning long-term dependencies with gradient descent
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

y1 y2 y3 y4

What if we assumed no non-linearity?

Largest eigen value > 1:
Exploding gradients

Largest eigen value < 1:
Vanishing gradients

Gradient clipping:
Scale gradient if its
norm is too big

110

Vanilla RNN Gradient Flow
Gradients over multiple time steps:

h0 h1 h2 h3 h4

x1 x2 x3 x4

Bengio et al, “Learning long-term dependencies with gradient descent
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

y1 y2 y3 y4

What if we assumed no non-linearity?

Largest eigen value > 1:
Exploding gradients

Largest eigen value < 1:
Vanishing gradients

We need a new
RNN architecture!

111

Long Short Term Memory (LSTM)

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997

Vanilla RNN LSTM

Learn to control information flow from previous state to the next state

112

Long Short Term Memory (LSTM)

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997

Vanilla RNN LSTM

Two “memory vectors”Long-term memory c determines how
much information should go into the hidden
state h (short-term memory)

☉

113

ct-1

ht-1

xt

f
i
g

o

W ☉

+ ct

tanh

☉ ht

Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

stack

Similar input/output as LSTM!

𝑐! = 𝑓!⨀𝑐!"# + 𝑖!⨀𝑔!
ℎ! = 𝑜!⨀tanh(𝑐!)

☉

114

ct-1

ht-1

xt

f
i
g

o

W ☉

+ ct

tanh

☉ ht

Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

stack

Similar input/output as LSTM!

Keep long-term memory cell 𝑐 in addition
to short term memory ℎ

𝑐! = 𝑓!⨀𝑐!"# + 𝑖!⨀𝑔!
ℎ! = 𝑜!⨀tanh(𝑐!)

☉

115

ct-1

ht-1

xt

f
i
g

o

W ☉

+ ct

tanh

☉ ht

Long Short Term Memory (LSTM): Gradient Flow
[Hochreiter et al., 1997]

stack

Backpropagation from ct to ct-1
only elementwise multiplication
by f (forget gate), no matrix
multiply by W

𝜕𝑐$
𝜕𝑐$()

= ?

𝑐! = 𝑓!⨀𝑐!"# + 𝑖!⨀𝑔!
ℎ! = 𝑜!⨀tanh(𝑐!)

☉

116

ct-1

ht-1

xt

f
i
g

o

W ☉

+ ct

tanh

☉ ht

Long Short Term Memory (LSTM): Gradient Flow
[Hochreiter et al., 1997]

stack

Backpropagation from ct to ct-1
only elementwise multiplication
by f (forget gate), no matrix
multiply by W

𝜕𝑐$
𝜕𝑐$()

= 𝑓$

𝑐! = 𝑓!⨀𝑐!"# + 𝑖!⨀𝑔!
ℎ! = 𝑜!⨀tanh(𝑐!)

Different each step!
When 𝑓$ is close to 1, it allows
gradient to flow back easily

(forget gate)

☉

117

ct-1

ht-1

xt

f
i
g

o

W ☉

+ ct

tanh

☉ ht

Long Short Term Memory (LSTM): Gradient Flow
[Hochreiter et al., 1997]

stack

Backpropagation from ct to ct-1
only elementwise multiplication
by f (forget gate), no matrix
multiply by W

𝜕𝑐$
𝜕𝑐$()

= 𝑓$

𝑐! = 𝑓!⨀𝑐!"# + 𝑖!⨀𝑔!
ℎ! = 𝑜!⨀tanh(𝑐!)

Gradient of RNN:

Same matrix every step, causes vanishing gradient

(forget gate)

118

Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

x

h

memory from
before (h)

W

i

f

o

g

input from
below (x)

sigmoid

sigmoid

tanh

sigmoid

4h x 2h 4h

“gates”

x

ht-1

ct-1 ct ht

119

Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

x

h
W

i

f

o

g

sigmoid

sigmoid

tanh

sigmoid

4h x 2h 4h

i: Input gate, whether to write to cell
f: Forget gate, Whether to erase cell
o: Output gate, How much to reveal cell
g: Gate gate (?), what to write to cell

memory from
before (h)

input from
below (x)

x

ht-1

ct-1 ct ht

i: Input gate, whether to write to cell
f: Forget gate, Whether to erase cell
o: Output gate, How much to reveal cell
g: Gate gate (?), what to write to cell

120

Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

x

h
W

i

f

o

g

sigmoid

sigmoid

tanh

sigmoid

4h x 2h 4h

memory from
before (h)

input from
below (x) “gates”

x

ht-1

ct-1 ct ht

121

Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

x

h
W

i

f

o

g

sigmoid

sigmoid

tanh

sigmoid

4h x 2h 4h

i: Input gate, whether to write to cell
f: Forget gate, whether to erase cell
o: Output gate, How much to reveal cell
g: Gate gate (?), what to write to cell

memory from
before (h)

input from
below (x) “gates”

x

ht-1

ct-1 ct ht

122

Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

x

ht-1
W

i

f

o

g

sigmoid

sigmoid

tanh

sigmoid

4h x 2h 4h

i: Input gate, whether to write to cell
f: Forget gate, whether to erase cell
o: Output gate, how much to reveal cell
g: Gate gate (?), what to write to cell

memory from
before (h)

input from
below (x) “gates”

ct-1 ct ht

Do LSTMs solve the vanishing gradient
problem?
The LSTM architecture makes it easier for the RNN to preserve information
over many timesteps
- e.g. if 𝒇 = 𝟏 and 𝒊 = 𝟎, then the information of that cell is preserved

indefinitely. Gradient flow back from cell 𝑐 easily.
- By contrast, it’s harder for vanilla RNN to learn a recurrent weight matrix

Wh that preserves info in hidden state

LSTM doesn’t guarantee that there is no vanishing/exploding gradient, but it
does provide an easier way for the model to learn long-distance dependencies.

It is possible to mitigate vanishing / exploding gradient by learning the correct f

123

124

Long Short Term Memory (LSTM): Gradient Flow
[Hochreiter et al., 1997]

c0 c1 c2 c3

Uninterrupted gradient flow!

Input

Softm
ax

3x3 conv, 64

7x7 conv, 64 / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 128
3x3 conv, 128 / 2

3x3 conv, 128
3x3 conv, 128

3x3 conv, 128
3x3 conv, 128

...

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

Pool
Similar to ResNet!

LSTM cell

125

Neural Architecture Search for RNN architectures

Zoph et Le, “Neural Architecture Search with Reinforcement Learning”, ICLR 2017
Figures copyright Zoph et al, 2017. Reproduced with permission.

Cell they found

126

Other RNN Variants

[LSTM: A Search Space Odyssey,
Greff et al., 2015]

[An Empirical Exploration of
Recurrent Network Architectures,
Jozefowicz et al., 2015]

GRU [Learning phrase representations using rnn
encoder-decoder for statistical machine translation,
Cho et al. 2014]

Simpler than LSTM, but control information
flow without cell state.

127

Recommendations
- If you want to use RNN-like models, try LSTM
- Use variants like GRU if you want faster compute and less

parameters
- New variants of RNNs are still active research topic. Example:

RWKV (“Transformer-level performance but with RNN”)

Problem with Recurrent-style Models (RNN, LSTM,
GRU, etc.)

Learning to memorize is still hard, especially for ultra-long sequences!
Essen>ally trying to tune 𝑊 such that the memory
cell c can retain important informa>on for arbitrary
future predic>on problems.

Example (Q&A):
[… (20-page long transcript)]. Q: What did the CEO
say about their competitor company? …

[… (same 20-page transcript)]. Q: How many times
did the journalist use the word “interesting”? …

Very difficult learning problem!

Next &me: Transformer Architecture
(What memory? Just show me the sequence again)

