CS 4644-DL / 7643-A
DANFEI XU

Topics:
* Backpropagation
* Computation Graph and Automatic Differentiation

Recap: Multiclass SVM loss

Given an example (x; y;) Loss = 0: _
where x; is the image and T I | I L L — >
where y; is the (integer) label, il L ! score
scores for other classes score for correct class
and using the shorthand for the
scores vector: s = f(x;, W) .)
(11 H 7
the SVM loss has the form: Hinge Loss
L;
L_Z 0 ifs, >s;+1
Y Lu|Sj—Sy; +1 otherwise :&',J Syi
J#Yi Sj 1
= 2 max(0,s; —s,, + 1) - /

J#Yi

Recap: Regularization

Q: How do we pick between W and 2W? y

Train Data

A: Opt for simpler functions to avoid overfit O Testoat C

How? Regularization!

Z Li(f(z;, W), y;) + AR(W) A = regularization strength
kN J (hyperparameter)

~

Data loss: Model predictions Regularization: Prevent the model
should match training data from doing too well on training data

Recap: Softmax Classifier and Cross Entropy Loss

Want to interpret raw classifier scores as probabilities

e§y i Softmax

pQ(Y = Yilx = xi) = Z'esj Function
]

Class Probabilities

Cat 3'2 0.87
car 51 |— .
frog - 1 " 7 Cat Car :r:g

Raw class scores

How do we optimize the classifier? We maximize the probability of pg (y;]x;)

1. Maximum Likelihood Estimation (MLE):
Choose weights to maximize the likelihood of

observed data. In this case, the loss function is the
Negative Log-Likelihood (NLL).

Finding a set of weights 8 that maximizes the
probability of correct prediction: argmax [[pg (v;|x;)
]

This is equivalent to:
argmax) Inpy(y;lx)
L; = —Inpg(y;lx;) = —ln< >

2. Information theory view:
Derive NLL from the cross entropy measurement.
Also known as the cross-entropy loss

Cross Entropy: H(p,q) = — Z p(x)In
Cross Entropy Loss -> NLL
Hi(p,00) ==) p01a) In s (1)
yeY
= —Inpy(yilx:)
L= Hip,po) ==) np(ilx) = NLL

Why this?

Q: Why softmax? ct [32 e Probaies 1

car 51 |— ., P

-1.7 - = V; = X:) =

frogF{aw class scores - Ca’ " p9 (Y Yl |X xl) Z] esj
Use logistic function as example. Same as softmax 2. NLL w/ logistic: Strong guidance
but for binary classification when classifier is wrong

e’ > — L) = —loglx), x€[0,1]
o(x) = 1+ ex N / Lix) = — loga(x)

— L(x)= —0o(x)

Consider the following three basis for NLL: i

1. Squash and clip value to (0, 1] 2
2. Logistic function 1-

3. Logistic function but no log (just negative —

likelihood) : S A
N

-4 -2 0 / 4
Only saturate at convergence,
e.g.d(3) = 0.95

Recap: gradient-based optimization

As weights change, the
gradients change as well

CE

This is often somewhat-
smooth locally, so small
changes in weights produce
small changes in the loss

We can therefore think about
iterative algorithms that take
current values of weights and

modify them a bit

Recap: The gradient descent algorithm

1. Choose a model: f(x, W) = Wx

2. Choose loss function: L; = |y — Wx;|?

3. Calculate partial derivative for each parameter: :L

Wi

4. Update the parameters: w; = w; — aavi-
5. Add learning rate to prevent too big of a step: w; = w; — aaa“L,_

Repeat 3-5

We can find the steepest descent direction by
computing the derivative:

of _ . fw+h)—fw)

— = lim
ow h-0 h

Gradient is multi-dimensional derivatives

Notation: g—‘f/ is the gradient of f(e.g., a loss function)
with respect to variable w (e.g., a weight vector).

% is of the same shape as w

Intuitively: Measures how the function changes as
the variable w changes by a small step size

Steepest descent direction is the negative gradient

Gradient descent: Minimize loss by changing
parameters

Ax

Image and equation from:
https.//en.wikipedia.org/wiki/Derivative
#/media/File: Tangent_animation.gif

Composing simple functions creates complex analytical gradients

Compose into a

==)

complex function 1+e WX

wex ——{ -logp) —

1+e™u

Adapted from slides by: Marc'Aurelio Ranzato, Yann LeCun

u 1 p L
WX — = — —log(p) —
dL JL dp du
ow 0p duow

This time: Chain rule and Backpropagation!

Adapted from slides by: Marc'Aurelio Ranzato, Yann LeCun

Functions can be made arbitrarily complex (subject to memory and
computational limits), e.g.:
f,W) = o(Wso(Weo(W30(W20(W1x))

We can use any type of differentiable function (layer) we want!

@ We are learning complex models with significant amount of
parameters (millions or billions)

@ How do we compute the gradients of the loss (at the end) with
respect to internal parameters?

@ Intuitively, want to understand how small changes in weight are
propagated to affect the loss function at the end

To develop a general algorithm for
this, we will view the function as a
computation graph

Graph can be any directed acyclic
graph (DAG)

Modules must be differentiable to
support gradient computations
for gradient descent

The backpropagation algorithm will
then process this graph, one module
at a time

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

This is a computation graph!

u 1 p L
wex — —| -log) |—
1 1+e™ | NPTEE
du dp 6_L
ow ou dp
dL 0dLOJpou
ow dp duow

Backpropagation (roughly):
1. Calculate local gradients for each node (e.g., g—:/)

2. Trace the computation graph (backward) to calculate the global
gradients for each node w.r.t. to the loss function.

Backpropagation: a simple example

f(:z:,y,z) = (:13 +y)z

Backpropagation: a simple example

X

f(mayvz):(m—'_y)z g

Backpropagation: a simple example

X -2

q 3

f(a:’y’z):(m—'_y)z y5
eg.x=-2,y=5z=-4

zZ 4

Georgia "
Tech |

Backpropagation: a simple example

X -2

q 3

f(a:’y’z):(m—'_y)z y5
eg.x=-2,y=5z=-4

zZ 4

af af of

Want: B ? 8y’ 9z

Backpropagation: a simple example

X -2

q 3

f(a:’y’z):(m—'_y)z y5
eg.x=-2,y=5z=-4

zZ 4

1. Calculate local gradients

af af of

Want: B ? 8y’ 9z

Backpropagation: a simple example

X -2

q 3

f(z,y,2) = (x +y)z
eg.x=-2,y=5z=+4

A

z 4
_ 9q
g=iTYy = 1, ay — |
1. Calculate local gradients
a _ of
=gz g 2 4

of of of

Want: B ? ay, 9z

)

Backpropagation: a simple example

X -2

q 3

f(z,y,2) = (x +y)z
eg.x=-2,y=5z=+4

A
=12

z 4
_ 99 _ f
of
of _ _ of of
f:qz a_q ’(92: — g

of of of

Want: B ? ay, 9z

)

Backpropagation: a simple example

X -2

q 3

f(a:,y,Z):(w—f—y)z y5
eg.x=-2,y=5z=+4 1

zZ 4

_ 99 _ —
q=a+Y 5 1,3y 1
of
a .o 0z
f:qz a_q ’(92: q

of of of

Want: B ? ay, 9z

)

Backpropagation: a simple example

X -2

q 3

f(a:,y,Z):(w—f—y)z y5
eg.x=-2,y=5z=+4 1

q=a+Y o 1,3y 1
of
a .o 0z

f:qz a_q ’(92: q

of of of
Want: B ? ay, 9z

)
Teah

Backpropagation: a simple example

f(z,y,2) = (x +y)z
eg.x=-2,y=5z=+4

_ 9q
q=a+Y o 1, ay =1
aF Bf
f — < a_q 2y (92: —q
of 0of Of
Want: B ? ay 3 e

)

Backpropagation: a simple example

f(z,y,2) = (x +y)z
eg.x=-2,y=5z=+4

_ 9q
q=a+Y o 1, ay =1
aF Bf
f — < a_q 2y (92: —q
of 0of Of
Want: B ? ay 3 e

)
Teéh

Backpropagation: a simple example

f(z,y,2) = (x +y)z
eg.x=-2,y=5z=+4

g=x+y gi = 1, 3y =1
B of _ _ of Chain rule: 9y
f=4qz o ~ © 8. — 1 Of _ Of aq
of of of O o oy
Want:) (‘)y’ 0z Upstr/e'am Lgcal

gradient gradient

)
Teeh

Backpropagation: a simple example

f(z,y,2) = (x +y)z
eg.x=-2,y=5z=+4

g=x+y gi = 1, 3y =1
B of _ _ of Chain rule: 9y
f=4qz o ~ © 8. — 1 Of _ Of aq
of of of O o oy
Want:) (‘)y’ 0z Upstr/e'am Lgcal

gradient gradient

)

Backpropagation: a simple example

f(z,y,2) = (x +y)z
eg.x=-2,y=5z=+4

g=x+y gi = 1, 0y =1
ar . 8f
f — < a_q 2y (92: —
of of of & 9 o
Want:) (‘)y’ 0z Upstr/:am chal

gradient gradient

Georgia | |
Teéeh ”

Backpropagation: a simple example

f(z,y,2) = (x +y)z
eg.x=-2,y=5z=+4

g=x+y gi = 1, 0y =1
ar . 8f
f — < a_q 2y (92: —
of of of & 9 o
Want:) (‘)y’ 0z Upstr/:am chal

gradient gradient

Georgia | |
Teéh ”

Patterns in backward flow

How does a local gradient modify the upstream gradient? f = 2(xy + max(z, w))

1000 55\ -20.00
ot

Patterns in backward flow

How does a local gradient modify the upstream gradient? f = 2(xy + max(z, w))

Q: What is an add gate? x 3.00

y -4.00

-10400@ -20.00
200 _/ 1.00

z 2.00

Patterns in backward flow

How does a local gradient modify the upstream gradient? f = 2(xy + max(z, w))

add gate: gradient replicator x 3.00
f=a+b
0 f 0 f y -4.00

1

= — -10.00 /%~ -20.00
da db 2.00 @ 1.00

z 2.00

Patterns in backward flow

How does a local gradient modify the upstream gradient? f = 2(xy + max(z, w))

add gate: gradient replicator x 3.00

Q: What is a max gate?

y -4.00

-10400@ -20.00
200 _/ 1.00

z 2.00

Patterns in backward flow

How does a local gradient modify the upstream gradient? f = 2(xy + max(z, w))

add gate: gradient replicator x 3.00
max gate: gradient router

only the path selected by the
max operator gets the
upstream gradient

-m.oo@ -20.00
200 _/ 1.00

Patterns in backward flow

How does a local gradient modify the upstream gradient? f = 2(xy + max(z, w))

add gate: gradient replicator x 3.00
max gate: gradient router
Q: What is a mul gate?

-m.oo@ -20.00
200 _/ 1.00

Patterns in backward flow

How does a local gradient modify the upstream gradient? f = 2(xy + max(z, w))

add gate: gradient replicator x 3.00
max gate: gradient router
mul gate: gradient switcher

-m.oo@ -20.00
200 _/ 1.00

f=a-b
of _, Of _
oa_° ap ¢

Upstream gradients add at fork branches

&

... as long as the branches join at some point in the graph

copy

Upstream gradients add at fork branches

- o
o

0L _ OLOfi , OL 0fp Derivation: L = e* + x?2
Claim: dx df, 0x = Of, Ox oL
=1-e*+1-:-2x =e*+ 2x a=ex+2x

)

Upstream gradients add at fork branches

. oL JdL 0 oL 0
Claim: — = /1 2
0x df1 0x df, 0x

= 2. X 4 pX . Oy Derivation: L = e* - x?

)

d
—[fG9()] = (g () + f()g ()

=e*.2x +e* . x?

P

Duality in F(orward)prop and B(ack)prop

Given this computation graph, the training

algorithm will: Input Function Output

Calculate the current model’s outputs
(called the forward pass)

Calculate the gradients for each
module (called the backward pass)

W
Parameters

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

In the backward pass, we seek to
calculate the gradients of the loss with
respect to the module’s parameters

Input Function Output
hf—l

W
Parameters

oL
174

In the backward pass, we seek to
calculate the gradients of the loss with

, Input Function Output
respect to the module’s parameters

Assume that we have the gradient of the ht-1 h?
loss with respect to the module’s outputs
(given to us by upstream module)
dL
0 l
Upstream
W gradient
Parameters
JL

174

In the backward pass, we seek to
calculate the gradients of the loss with

, Input Function Output
respect to the module’s parameters

Assume that we have the gradient of the ht-1 h?
loss with respect to the module’s outputs
(given to us by upstream module)
We can calculate the gradient of the loss aL
with respect to the module’s weights : Oh!
i
Upstream
1,74 gradient
Parameters
oL JL ah!

ow ~ anlow

In the backward pass, we seek to
calculate the gradients of the loss with
respect to the module’s parameters

Assume that we have the gradient of the
loss with respect to the module’s outputs
(given to us by upstream module)

We can calculate the gradient of the loss
with respect to the module’s weights

We will also pass the gradient of the loss
with respect to the module’s inputs

This is not required for update the
module’s weights, but passes the
gradients back to the previous module

Input Function

hf—l

oL oL oh!

-1~ 9hl ghl1

W
Parameters

dL 9L dh'
oW 9hlow

Output

oL
dh!

Upstream
gradient

In the backward pass, we seek to
calculate the gradients of the loss with
respect to the module’s parameters

Assume that we have the gradient of the
loss with respect to the module’s outputs
(given to us by upstream module)

We can calculate the gradient of the loss
with respect to the module’s weights

We will also pass the gradient of the loss
with respect to the module’s inputs

This is not required for update the
module’s weights, but passes the
gradients back to the previous module

Becomes the upstream gradient for
the previous module

Input Function
hf—l
dL 9L oh' '
dh-1 " ghl9hl-1 I
0
Upstream
gradient for 1,74
previous
module Parameters
dL 9L dh'
oW dhlow
dL

wW,=w;,—a
l l awl

ah!

Upstream
gradient

In the backward pass, we seek to
calculate the gradients of the loss with
respect to the module’s parameters

Assume that we have the gradient of the
loss with respect to the module’s outputs
(given to us by upstream module)

We can calculate the gradient of the loss
with respect to the module’s weights

We will also pass the gradient of the loss
with respect to the module’s inputs

This is not required for update the
module’s weights, but passes the
gradients back to the previous module

Becomes the upstream gradient for
the previous module

Gradient descent: update weight with
gradient with respect to loss

Input Function
hf—l
L dL Adh' '
dhl-1 ~ @hlahnl-1 0
0
Upstream
gradient for 1,74
previous
module Parameters
dL _ dL dh'
oW ohlow
dL
W=W —a—-

ow

ah!

Upstream
gradient

Backpropagation does not really spell out how to efficiently
carry out the necessary computations

But the idea can be applied to any directed acyclic graph
(DAG)

Graph represents an ordering constraining which paths
must be calculated first

Given an ordering, we can then iterate from the last module
backwards, applying the chain rule

We will store, for each node, its gradient outputs for
efficient computation

We will do this automatically by tracing the entire graph,
aggregate and assign gradients at each function /
parameters, from output to input.

This is called reverse-mode automatic differentiation

) A General Framework Gegrgia |

=

Computation = Graph
Input = Data + Parameters
Output = Loss
Scheduling = Topological ordering

Auto-Diff

A family of algorithms for
Implementing chain-rule on computation graphs

) Deep Learning = Differentiable Programming Gegegla|

=

Deep Learning Framework = Differentiable Programming Engine

 Computation = Graph
— Input = Data + Parameters
— Output = Loss
— Scheduling = Topological ordering

e What do we need to do?

— Generic code for representing the graph of modules
— Specify modules (both forward and backward function)

)

Modularized implementation: forward / backward API

Graph (or Net) object (rough psuedo code)

def

def

Feun

class ComputationalGraph(object):

forward(inputs):

1. [pass inputs to input gates...]

2. forward the computational graph:

for gate in self.graph.nodes topologically sorted():
gate.forward()

return loss # the final gate in the graph outputs the loss

backward():

for gate in reversed(self.graph.nodes topologically sorted()):

gate.backward() # little piece of backprop (chain rule applied)

return inputs_gradients

Modularized implementation: forward / backward API

class MultiplyGate(object):

X def forward(x,y):
z = x*y
return z
def backward(dz):
#F WX = s #toz\
y # dy = ... #todo g—L
return [dx, dy] z
(x,y,z are scalars) o ,<
OL
Ox

)

Modularized implementation: forward / backward API

class MultiplyGate(object):
X def forward(x,y):
z = x*y
self.x = x # must keep these around!
self.y = y
return z
)/ def backward(dz):

(X,y,z are scalars) dx = self.y * dz # [dz/dx * dL/dz]

dy = self.x * dz # [dz/dy * dL/dz]

return [dx, dy]

Writing code == building graph

torch.autograd Variable

x = Variable(torch.randn(1, 20))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))
W_x = Variable(torch.randn(20, 20))

i2h = torch.mm(W_x, x.t())

h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h

next_h = next_h.tanh()

next_h.backward(torch.ones(1, 20))

From pytorch.org

) Computation Graphs in PyTorch Gegrala |

Neural Turing Machine

//

input image

loss \

https://twitter.com/karpathy/status/597631909930242048?lang=en

Computation graphs are not
limited to mathematical
functions!

Software 1.0 N
et
Can have control flows (if

statements, loops) and
backpropagate through
algorithms! Software 2.0 \

Program Space

Can be done dynamically so
that gradients are computed,
then nodes are added, repeat

Adapted from figure by Andrej Karpathy

) Power of Automatic Differentiation Geg;sgggh

=

Autodiff from scratch: micrograd repo, video tutorial

Power of Automatic Differentiation Gegroia |

=

https://github.com/karpathy/micrograd
https://www.youtube.com/watch?time_continue=3050&v=VMj-3S1tku0&feature=emb_title

Next time:

* More on backprop but for (shallow) neural nets!

e Jacobians

e Activation functions

Georgia

Power of Automatic Differentiation Techf}]

=

