
CS 4644-DL / 7643-A
DANFEI XU

Topics:
• Backpropagation
• Computation Graph and Automatic Differentiation

Recap: Multiclass SVM loss

Given an example (𝒙𝒊,𝒚𝒊)
where 𝒙𝒊 is the image and
where 𝒚𝒊 is the (integer) label,

and using the shorthand for the
scores vector: 𝒔 = 𝒇(𝒙𝒊,𝑾)

the SVM loss has the form:

𝑳𝒊 = #
𝒋#𝒚𝒊

$
𝟎
𝒔𝒋

= #
𝒋#𝒚𝒊

𝒎𝒂𝒙(𝟎, 𝒔𝒋 − 𝒔𝒚𝒊 + 𝟏)

− 𝒔𝒚𝒊 + 𝟏
𝐢𝐟 𝒔𝒚𝒊 ≥ 𝒔𝒋 + 𝟏
𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞

“Hinge Loss”

𝒔𝒚𝒊𝒔𝒋

𝑳𝒊

scores for other classes

margin

score
score for correct class

Loss = 0:

𝟏

Recap: Regularization
Q: How do we pick between W and 2W?
A: Opt for simpler functions to avoid overfit

How? Regularization!

= regularization strength
(hyperparameter)

Data loss: Model predictions
should match training data

Regularization: Prevent the model
from doing too well on training data

Want to interpret raw classifier scores as probabilities

Softmax
Function

How do we optimize the classifier? We maximize the probability of 𝑝#(𝑦$|𝑥$)

Recap: Softmax Classifier and Cross Entropy Loss

Want to interpret raw classifier scores as probabilities

Softmax
Function*# + = #! , = "! = -$!"

∑%-$#

How do we optimize the classifier? We maximize the probability of /#(#!|"!)!

Finding a set of weights & that maximizes the
probability of correct prediction: argmax

!
∏-! ." /"

This is equivalent to:

argmax
!

0ln-! ." /"

1. Maximum Likelihood Estimation (MLE):
Choose weights to maximize the likelihood of
observed data. In this case, the loss function is the
Negative Log-Likelihood (NLL).

3" = −ln-! ." /" = −ln 6#!"
∑$6##

Recap: Softmax Classifier and Cross Entropy Loss

2. Information theory view:
Derive NLL from the cross entropy measurement.
Also known as the cross-entropy loss

Cross Entropy: 8 -, 9 = −0: ; ln <(;)

?% :, :! = −0
&∈(

: @ ;% ln :! @ ;%

= −ln:! @% ;%
A =0?% :, :! = −0ln:! @% ;% ≡ CAA

Cross Entropy Loss -> NLL

Want to interpret raw classifier scores as probabilities

Softmax
Function*# + = #! , = "! = -$!"

∑%-$#

How do we optimize the classifier? We maximize the probability of /#(#!|"!)!

Finding a set of weights & that maximizes the
probability of correct prediction: argmax

!
∏-! ." /"

This is equivalent to:

argmax
!

0ln-! ." /"

1. Maximum Likelihood Estimation (MLE):
Choose weights to maximize the likelihood of
observed data. In this case, the loss function is the
Negative Log-Likelihood (NLL).

3" = −ln-! ." /" = −ln 6#!"
∑$6##

Recap: Softmax Classifier and Cross Entropy Loss

2. Information theory view:
Derive NLL from the cross entropy measurement.
Also known as the cross-entropy loss

Cross Entropy: 8 -, 9 = −0: ; ln <(;)

?% :, :! = −0
&∈(

: @ ;% ln :! @ ;%

= −ln:! @% ;%
A =0?% :, :! = −0ln:! @% ;% ≡ CAA

Cross Entropy Loss -> NLL

Q: Why softmax?

Consider the following three basis for NLL:
1. Squash and clip value to (0, 1]
2. Logistic function
3. Logistic function but no log (just negative

likelihood)

2. NLL w/ logistic: Strong guidance
when classifier is wrong

Only saturate at convergence,
e.g. 𝜎(3) ≈ 0.95

Use logistic function as example. Same as softmax
but for binary classification

Cross-Entropy Loss Example

Q: Why softmax?

*# + = #! , = "! = -$!"
∑%-$#

Why this?

Use logistic function as example. Same as softmax
but for binary classification

: ; = <%
1 + <%

Consider the following three basis for NLL:
1. Squash and clip value to (0, 1]
2. Logistic function
3. Logistic function but no log (just negative

likelihood)

1. Squash & clip: no loss,
no learning!

Why this?
Want to interpret raw classifier scores as probabilities

Softmax
Function*# + = #! , = "! = -$!"

∑%-$#

How do we optimize the classifier? We maximize the probability of /#(#!|"!)!

Finding a set of weights & that maximizes the
probability of correct prediction: argmax

!
∏-! ." /"

This is equivalent to:

argmax
!

0ln-! ." /"

1. Maximum Likelihood Estimation (MLE):
Choose weights to maximize the likelihood of
observed data. In this case, the loss function is the
Negative Log-Likelihood (NLL).

3" = −ln-! ." /" = −ln 6#!"
∑$6##

Recap: Softmax Classifier and Cross Entropy Loss

2. Information theory view:
Derive NLL from the cross entropy measurement.
Also known as the cross-entropy loss

Cross Entropy: 8 -, 9 = −0: ; ln <(;)

?% :, :! = −0
&∈(

: @ ;% ln :! @ ;%

= −ln:! @% ;%
A =0?% :, :! = −0ln:! @% ;% ≡ CAA

Cross Entropy Loss -> NLL

As weights change, the
gradients change as well
⬣ This is often somewhat-

smooth locally, so small
changes in weights produce
small changes in the loss

We can therefore think about
iterative algorithms that take
current values of weights and
modify them a bit

Recap: gradient-based optimization

Recap: The gradient descent algorithm

⬣ 1. Choose a model: 𝒇 𝒙,𝑾 = Wx

⬣ 2. Choose loss function: 𝑳𝒊 = |𝒚 −𝑾𝒙𝒊|𝟐

⬣ 3. Calculate partial derivative for each parameter: 𝝏𝑳
𝝏𝒘𝒊

⬣ 4. Update the parameters: 𝒘𝒊 = 𝒘𝒊 −
𝝏𝑳
𝝏𝒘𝒊

⬣ 5. Add learning rate to prevent too big of a step: 𝒘𝒊 = 𝒘𝒊 − 𝜶
𝝏𝑳
𝝏𝒘𝒊

⬣ Repeat 3-5

Derivatives

⬣ We can find the steepest descent direction by
computing the derivative:

⬣ Gradient is multi-dimensional derivatives

⬣ Notation: "#
"$

is the gradient of 𝑓(e.g., a loss function)
with respect to variable 𝑤 (e.g., a weight vector).

⬣ 𝝏𝒇
𝝏𝒘

is of the same shape as 𝑤

⬣ Intuitively: Measures how the function changes as
the variable 𝑤 changes by a small step size

⬣ Steepest descent direction is the negative gradient
⬣ Gradient descent: Minimize loss by changing

parameters

𝝏𝒇
𝝏𝒘

= lim
𝒉→𝟎

𝒇 𝒘 + 𝒉 − 𝒇(𝒘)
𝒉

Image and equation from:
https://en.wikipedia.org/wiki/Derivative
#/media/File:Tangent_animation.gif

∆𝒙

Decomposing a Function

Compose into a

complex function

Adapted from slides by: Marc'Aurelio Ranzato, Yann LeCun

Composing simple functions creates complex analytical gradients

𝐬𝐢𝐧(𝒙)
𝐥𝐨𝐠(𝒙)

𝐜𝐨𝐬(𝒙)

𝐞𝐱𝐩(𝒙)

𝒙𝟑
− 𝐥𝐨𝐠

𝟏
𝟏 + 𝒆!𝒘⋅𝒙

𝒘 ⋅ 𝒙 𝟏
𝟏 + 𝒆I𝒖

−𝐥𝐨𝐠 𝒑
𝒖 𝒑 𝑳

Decomposing a Function

Adapted from slides by: Marc'Aurelio Ranzato, Yann LeCun

This time: Chain rule and Backpropagation!

𝜕𝐿
𝜕𝑤

=
𝜕𝐿
𝜕𝑝
𝜕𝑝
𝜕𝑢

𝜕𝑢
𝜕𝑤

𝒘 ⋅ 𝒙 𝟏
𝟏 + 𝒆I𝒖

−𝐥𝐨𝐠 𝒑
𝒖 𝒑 𝑳

Functions can be made arbitrarily complex (subject to memory and
computational limits), e.g.:

𝒇 𝒙,𝑾 = 𝝈(𝑾𝟓𝝈(𝑾𝟒𝝈(𝑾𝟑𝝈(𝑾𝟐𝝈 𝑾𝟏𝒙)

We can use any type of differentiable function (layer) we want!

Loss
FunctionInput

Label

⬣ We are learning complex models with significant amount of
parameters (millions or billions)

⬣ How do we compute the gradients of the loss (at the end) with
respect to internal parameters?

⬣ Intuitively, want to understand how small changes in weight are
propagated to affect the loss function at the end

Loss
Function

Label

𝝏𝑳
𝝏𝒘𝒊
?

To develop a general algorithm for
this, we will view the function as a
computation graph

Graph can be any directed acyclic
graph (DAG)

⬣ Modules must be differentiable to
support gradient computations
for gradient descent

The backpropagation algorithm will
then process this graph, one module
at a time

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

This is a computation graph!

Decomposing a Function

./

.0 = ./
.2
.2
.3

.3

.0

! ⋅ # $
$ + &LM −()* +

, + -

This is a computation graph!

NO
NP

NP
NQ

NQ
NR

Backpropagation (roughly):
1. Calculate local gradients for each node (e.g., *+*,)
2. Trace the computation graph (backward) to calculate the global

gradients for each node w.r.t. to the loss function.
Decomposing a Function

./

.0 = ./
.2
.2
.3

.3

.0

! ⋅ # $
$ + &LM −()* +

, + -

This is a computation graph!

NO
NP

NP
NQ

NQ
NR

Backpropagation (roughly):
1. Calculate local gradients for each node (e.g., *+*,)
2. Trace the computation graph (backward) to calculate the global

gradients for each node w.r.t. to the loss function.

Backpropagation: a simple example

18
Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example

19
Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

e.g. x = -2, y = 5, z = -4

20
Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example

e.g. x = -2, y = 5, z = -4

Want:

Backpropagation: a simple example

21
Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

e.g. x = -2, y = 5, z = -4

1. Calculate local gradients

Want:

Backpropagation: a simple example

22
Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

e.g. x = -2, y = 5, z = -4

1. Calculate local gradients

Want:

Backpropagation: a simple example

23
Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

e.g. x = -2, y = 5, z = -4

Want:

Backpropagation: a simple example

24
Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

e.g. x = -2, y = 5, z = -4

Want:

Backpropagation: a simple example

25
Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

e.g. x = -2, y = 5, z = -4

Want:

Backpropagation: a simple example

26
Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

e.g. x = -2, y = 5, z = -4

Want:

Backpropagation: a simple example

27
Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

e.g. x = -2, y = 5, z = -4

Want:

Backpropagation: a simple example

28
Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

e.g. x = -2, y = 5, z = -4

Want:

Chain rule:

Upstream
gradient

Local
gradient

Backpropagation: a simple example

29
Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Chain rule:

e.g. x = -2, y = 5, z = -4

Want:
Upstream
gradient

Local
gradient

Backpropagation: a simple example

30
Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

e.g. x = -2, y = 5, z = -4

Want:

Chain rule:

Upstream
gradient

Local
gradient

Backpropagation: a simple example

31
Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

32

Chain rule:

e.g. x = -2, y = 5, z = -4

Want:
Upstream
gradient

Local
gradient

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

How does a local gradient modify the upstream gradient? 𝑓 = 2(𝑥𝑦 + max 𝑧,𝑤)

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Q: What is an add gate?

How does a local gradient modify the upstream gradient? 𝑓 = 2(𝑥𝑦 + max 𝑧,𝑤)

Patterns in backward flow

add gate: gradient replicator

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

add gate: gradient distributor

S = T + U
NS
NT =

NS
NU = 1

How does a local gradient modify the upstream gradient? 𝑓 = 2(𝑥𝑦 + max 𝑧,𝑤)

add gate: gradient replicator
Q: What is a max gate?

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Patterns in backward flow
How does a local gradient modify the upstream gradient? 𝑓 = 2(𝑥𝑦 + max 𝑧,𝑤)

add gate: gradient replicator
max gate: gradient router

only the path selected by the
max operator gets the
upstream gradient

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Patterns in backward flow
How does a local gradient modify the upstream gradient? 𝑓 = 2(𝑥𝑦 + max 𝑧,𝑤)

add gate: gradient replicator
max gate: gradient router
Q: What is a mul gate?

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Patterns in backward flow
How does a local gradient modify the upstream gradient? 𝑓 = 2(𝑥𝑦 + max 𝑧,𝑤)

Patterns in backward flow

add gate: gradient replicator
max gate: gradient router
mul gate: gradient switcher

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

add gate: gradient distributor
max gate: gradient router
mul gate: gradient switcher

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

S = T V U
NS
NT = U NS

NU = T

How does a local gradient modify the upstream gradient? 𝑓 = 2(𝑥𝑦 + max 𝑧,𝑤)

+

Upstream gradients add at fork branches

…

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

…

… as long as the branches join at some point in the graph

copy

copy

Upstream gradients add at fork branches

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

x

"! = $"

"# = %#

+

Upstream gradients add at fork branches

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

& = "! +"#

Claim: EFEG =
EF
EH(

EH(
EG +

EF
EH)

EH)
EG

= 1 > ?I + 1 > 2A
= ?I + 2A

Derivation: B = ?I + AJ
CB
CD = ?I + 2A

Claim:)*
)+
=)*

),(

),(
)+
+)*

),)

),)
)+

= 1 L 𝑒+ + 1 L 2𝑥 = 𝑒+ + 2𝑥

Derivation: 𝐿 = 𝑒+ + 𝑥-
𝜕𝐿
𝜕𝑥 = 𝑒+ + 2𝑥

Upstream gradients add at fork branches

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

x

"! = $"

"# = %#

+

Upstream gradients add at fork branches

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

& = "! +"#

Claim: EFEG =
EF
EH(

EH(
EG +

EF
EH)

EH)
EG

= 1 > ?I + 1 > 2A
= ?I + 2A

Derivation: B = ?I + AJ
CB
CD = ?I + 2A

x

"! = $"

"# = %#

+

Upstream gradients add at fork branches

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

& = "! ∗ "#

Claim: EFEG =
EF
EH(

EH(
EG +

EF
EH)

EH)
EG

= AJ > ?I + ?I > 2A
Derivation: B = ?I ∗ AJ
CB
CD = ?I > 2A + ?I > AJ = AJ > ?I + ?I > 2A

𝐿 = 𝑓& B 𝑓'

Claim:)*
)+
=)*

),(

),(
)+
+)*

),)

),)
)+

= 𝑥- L 𝑒+ + 𝑒+ L 2𝑥 Derivation: 𝐿 = 𝑒+ L 𝑥-
𝜕𝐿
𝜕𝑥 = 𝑒+ L 2𝑥 + 𝑒+ L 𝑥-

Duality in F(orward)prop and B(ack)prop

(C) Dhruv Batra 43

+

+

FPROP BPROP

SU
M

CO
PY

Given this computation graph, the training
algorithm will:
⬣ Calculate the current model’s outputs

(called the forward pass)
⬣ Calculate the gradients for each

module (called the backward pass)

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Given this computation graph, the training
algorithm will:
⬣ Calculate the current model’s outputs

(called the forward pass)
⬣ Calculate the gradients for each

module (called the backward pass)
Backward pass is a recursive algorithm that:
⬣ Starts at loss function where we know

how to calculate the gradients
⬣ Progresses back through the modules
⬣ Ends in the input layer where we do

not need gradients (no parameters)
This algorithm is called backpropagation

Overview of Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

*ℓ'% *ℓ

%

FunctionInput Output

Parameters

In the backward pass, we seek to
calculate the gradients of the loss with
respect to the module’s parameters

Given this computation graph, the training
algorithm will:
⬣ Calculate the current model’s outputs

(called the forward pass)
⬣ Calculate the gradients for each

module (called the backward pass)
Backward pass is a recursive algorithm that:
⬣ Starts at loss function where we know

how to calculate the gradients
⬣ Progresses back through the modules
⬣ Ends in the input layer where we do

not need gradients (no parameters)
This algorithm is called backpropagation

Overview of Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

*ℓ'% *ℓ

%

FunctionInput Output

Parameters
𝝏𝑳
𝝏𝑾

In the backward pass, we seek to
calculate the gradients of the loss with
respect to the module’s parameters

Given this computation graph, the training
algorithm will:
⬣ Calculate the current model’s outputs

(called the forward pass)
⬣ Calculate the gradients for each

module (called the backward pass)
Backward pass is a recursive algorithm that:
⬣ Starts at loss function where we know

how to calculate the gradients
⬣ Progresses back through the modules
⬣ Ends in the input layer where we do

not need gradients (no parameters)
This algorithm is called backpropagation

Overview of Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

*ℓ'% *ℓ

%

FunctionInput Output

Parameters

𝝏𝑳
𝝏𝒉𝒍

𝝏𝑳
𝝏𝑾

⬣ Assume that we have the gradient of the
loss with respect to the module’s outputs
(given to us by upstream module)

Upstream
gradient

In the backward pass, we seek to
calculate the gradients of the loss with
respect to the module’s parameters
⬣ Assume that we have the gradient of the

loss with respect to the module’s outputs
(given to us by upstream module)

⬣ We can calculate the gradient of the loss
with respect to the module’s weights

Given this computation graph, the training
algorithm will:
⬣ Calculate the current model’s outputs

(called the forward pass)
⬣ Calculate the gradients for each

module (called the backward pass)
Backward pass is a recursive algorithm that:
⬣ Starts at loss function where we know

how to calculate the gradients
⬣ Progresses back through the modules
⬣ Ends in the input layer where we do

not need gradients (no parameters)
This algorithm is called backpropagation

Overview of Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

*ℓ'% *ℓ

%

FunctionInput Output

Parameters

𝝏𝑳
𝝏𝒉𝒍

𝝏𝑳
𝝏𝑾

=
𝝏𝑳
𝝏𝒉𝒍

𝝏𝒉𝒍

𝝏𝑾

Upstream
gradient

In the backward pass, we seek to
calculate the gradients of the loss with
respect to the module’s parameters
⬣ Assume that we have the gradient of the

loss with respect to the module’s outputs
(given to us by upstream module)

⬣ We can calculate the gradient of the loss
with respect to the module’s weights

⬣ We will also pass the gradient of the loss
with respect to the module’s inputs
⬣ This is not required for update the

module’s weights, but passes the
gradients back to the previous module

Given this computation graph, the training
algorithm will:
⬣ Calculate the current model’s outputs

(called the forward pass)
⬣ Calculate the gradients for each

module (called the backward pass)
Backward pass is a recursive algorithm that:
⬣ Starts at loss function where we know

how to calculate the gradients
⬣ Progresses back through the modules
⬣ Ends in the input layer where we do

not need gradients (no parameters)
This algorithm is called backpropagation

Overview of Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

*ℓ'% *ℓ

%

FunctionInput Output

Parameters

𝝏𝑳
𝝏𝒉𝒍%𝟏

=
𝝏𝑳
𝝏𝒉𝒍

𝝏𝒉𝒍

𝝏𝒉𝒍%𝟏

𝝏𝑳
𝝏𝒉𝒍

𝝏𝑳
𝝏𝑾

=
𝝏𝑳
𝝏𝒉𝒍

𝝏𝒉𝒍

𝝏𝑾

Upstream
gradient

In the backward pass, we seek to
calculate the gradients of the loss with
respect to the module’s parameters
⬣ Assume that we have the gradient of the

loss with respect to the module’s outputs
(given to us by upstream module)

⬣ We can calculate the gradient of the loss
with respect to the module’s weights

⬣ We will also pass the gradient of the loss
with respect to the module’s inputs
⬣ This is not required for update the

module’s weights, but passes the
gradients back to the previous module

⬣ Becomes the upstream gradient for
the previous module

Given this computation graph, the training
algorithm will:
⬣ Calculate the current model’s outputs

(called the forward pass)
⬣ Calculate the gradients for each

module (called the backward pass)
Backward pass is a recursive algorithm that:
⬣ Starts at loss function where we know

how to calculate the gradients
⬣ Progresses back through the modules
⬣ Ends in the input layer where we do

not need gradients (no parameters)
This algorithm is called backpropagation

Overview of Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

*ℓ'% *ℓ

%

FunctionInput Output

Parameters

𝝏𝑳
𝝏𝒉𝒍%𝟏

=
𝝏𝑳
𝝏𝒉𝒍

𝝏𝒉𝒍

𝝏𝒉𝒍%𝟏

𝝏𝑳
𝝏𝒉𝒍

𝝏𝑳
𝝏𝑾

=
𝝏𝑳
𝝏𝒉𝒍

𝝏𝒉𝒍

𝝏𝑾

Neural Network Training
Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass
Step 3: Use gradient to update all parameters at the end

Layer 1 Layer 2 Layer 3

!$ = !$ − 4
5-
5!$

Backpropagation is the application of
gradient descent to a computation
graph via the chain rule!

Upstream
gradient

Upstream
gradient for
previous
module

In the backward pass, we seek to
calculate the gradients of the loss with
respect to the module’s parameters
⬣ Assume that we have the gradient of the

loss with respect to the module’s outputs
(given to us by upstream module)

⬣ We can calculate the gradient of the loss
with respect to the module’s weights

⬣ We will also pass the gradient of the loss
with respect to the module’s inputs
⬣ This is not required for update the

module’s weights, but passes the
gradients back to the previous module

⬣ Becomes the upstream gradient for
the previous module

Given this computation graph, the training
algorithm will:
⬣ Calculate the current model’s outputs

(called the forward pass)
⬣ Calculate the gradients for each

module (called the backward pass)
Backward pass is a recursive algorithm that:
⬣ Starts at loss function where we know

how to calculate the gradients
⬣ Progresses back through the modules
⬣ Ends in the input layer where we do

not need gradients (no parameters)
This algorithm is called backpropagation

Overview of Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

*ℓ'% *ℓ

%

FunctionInput Output

Parameters

𝝏𝑳
𝝏𝒉𝒍%𝟏

=
𝝏𝑳
𝝏𝒉𝒍

𝝏𝒉𝒍

𝝏𝒉𝒍%𝟏

𝝏𝑳
𝝏𝒉𝒍

𝝏𝑳
𝝏𝑾

=
𝝏𝑳
𝝏𝒉𝒍

𝝏𝒉𝒍

𝝏𝑾

Upstream
gradient

Upstream
gradient for
previous
module

⬣ Gradient descent: update weight with
gradient with respect to loss 𝑊 = 𝑊 − 𝛼

𝜕𝐿
𝜕𝑊

Backpropagation does not really spell out how to efficiently
carry out the necessary computations

But the idea can be applied to any directed acyclic graph
(DAG)

⬣ Graph represents an ordering constraining which paths
must be calculated first

Given an ordering, we can then iterate from the last module
backwards, applying the chain rule

⬣ We will store, for each node, its gradient outputs for
efficient computation

⬣ We will do this automatically by tracing the entire graph,
aggregate and assign gradients at each function /
parameters, from output to input.

This is called reverse-mode automatic differentiation

A General Framework

Computation = Graph
⬣ Input = Data + Parameters
⬣ Output = Loss
⬣ Scheduling = Topological ordering

Auto-Diff
⬣ A family of algorithms for
implementing chain-rule on computation graphs

Deep Learning = Differentiable Programming

Deep Learning Framework = Differentiable Programming Engine

• Computation = Graph
– Input = Data + Parameters
– Output = Loss
– Scheduling = Topological ordering

• What do we need to do?
– Generic code for representing the graph of modules
– Specify modules (both forward and backward function)

(C) Dhruv Batra 56

Graph (or Net) object (rough psuedo code)

57
Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Modularized implementation: forward / backward API

x

58
Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

y
(x,y,z are scalars)

z
*

Modularized implementation: forward / backward API

x

59
Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

y
(x,y,z are scalars)

z
*

Modularized implementation: forward / backward API

Computation Graphs in PyTorch

from torch.autograd import Variable

x = Variable(torch.randn(1, 20))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))
W_x = Variable(torch.randn(20, 20))

i2h = torch.mm(W_x, x.t())
h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h
next_h = next_h.tanh()

next_h.backward(torch.ones(1, 20))

% - h %0 x

h2h i2h

MM MM

Add

next_h

Tanh

A graph is created on the flyWriting code == building graph

From pytorch.org

Figure reproduced with permission from a Twitter post by Andrej Karpathy.

input image

loss

Neural TuringMachine

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://twitter.com/karpathy/status/597631909930242048?lang=en

⬣ Computation graphs are not
limited to mathematical
functions!

⬣ Can have control flows (if
statements, loops) and
backpropagate through
algorithms!

⬣ Can be done dynamically so
that gradients are computed,
then nodes are added, repeat

Adapted from figure by Andrej Karpathy

Program Space

Power of Automatic Differentiation

Software 1.0

Software 2.0

Program complexity

(optimization)

⬣ Autodiff from scratch: micrograd repo, video tutorial

Power of Automatic Differentiation

https://github.com/karpathy/micrograd
https://www.youtube.com/watch?time_continue=3050&v=VMj-3S1tku0&feature=emb_title

Power of Automatic Differentiation

Next time:
• More on backprop but for (shallow) neural nets!
• Jacobians
• Activation functions

