Lecture 26: Robot Learning Overview and
Deep Learning Frontiers

Danfel Xu



Administrative

Remember to fill CIOS evaluation!

Poster session Dec 51" 5pm-6:30pm
* Bring your poster. We will provide easels.
* You will be given an easel number the day of the event.

The TAs will start by grading half of the posters in the first 45 min, and the
other half in the second 45 min.

You will know which batch you are in at the event.

Check out other posters if your batch is not being graded.

We will have pizza and dessert available

We will announce a best project award at the end of the poster session.

The event is open to the GT community. Expect many attendees, so bring
your best work. And tell your friends to come too!



Past & present:
robots in factories
& semi-structured
environments




Future: robots everywhere!




ow we program these robots today ...

Image source



https://www.controleng.com/articles/plug-and-play-robot-ecosystems-on-the-rise/

Manual programming is not enough!

Mmessy environments




The Moravec's paradox

Moravec's paradox is the observation ... contrary to traditional assumptions, reasoning
requires very little computation, but sensorimotor and perception skills require
enormous computational resources. (Wikipedia)

Marvin Minsky: "In general, we're least aware of what our minds do best” ... "we're
more aware of simple processes that don't work well than of complex ones that work
flawlessly".
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Can we teach robots through data / examples?
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Can we teach robots through data / examples?
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Data source: experience from
trial-and-error

Very useful, but expensive to
acquire in the physical world



Can we teach robots through data / examples?
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Many possible data sources & formats!
Only if we can have flexible ML methods
that can learn from them all ...

Internet data
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Deep Learning for Robotics

Instruction & Action
Pick rice chips from top drawer RT-1 Mode Arm Base
and place on counter >

\ 3Hz

Images FiLM
EfficientNet TokenLearner  Transformer

= B,

The ALVINN project at CMU “Robot Transformer (RT1)” from
(Pomerleau 1988) Google Robotics (2023)

Deep Learning is NOT all you need!
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Deep Learning is NOT all your need

Robots today have some deep learning components, but nothing is fully "end-to-end”.
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The “control policy” of a learning robot for e-commerce fulfillment.
Covariant Al (video source)
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https://www.youtube.com/watch?v=DIbR5RehM8A&t=157s

Deep Learning is NOT all your need

Robots today have some deep learning components, but nothing is fully "end-to-end”.

DRIVE PERCEPTION
Obstacle Perception Path Perception Wait Conditions Perception Advanced Functions Perception

Path Perception Ensemble for
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Camera/Radar
Obstacle Fusion

Camera-based Camera-based Camera-based

Camera-based Radar-based
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DRIVE OS

The perception pipeline of an autonomous driving stack
NVIDIA (image source)



https://developer.nvidia.com/drive/perception

Robot Learning

Robot learning is a research field at the intersection of machine learning
and robotics. It studies techniques allowing a robot to acquire novel skills
or adapt to its environment through learning algorithms. (Wikipedia)

More concise version:

Principles, algorithms, and systems that allow robots to improve by
learning from data.

Robot Learning research today (2023): what and how to learn.



Robot Learning: ML don’t need to (and shouldn’t) be
applied to everything!

The reason that we want to use machine learning is to deal with variation, noise,
and things that are hard to model.

Unlike computer vision and natural language understanding, robotics often deal
with physics, which we know well. So we don’t need to learn everything!

Both a challenge and an opportunity for robot learning: how to best combine what
we know and what we need to learn.
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State of Robot Learning Research

Mastery: be able to solve tasks that are hard / infeasible to solve by
manual programming.

Scaling: apply a method / framework to a broad range of tasks by
scaling up data sources.

Generalization: solve new tasks in new environments and
scenarios; show emerging behaviors that are not in the training
data.



State of Robot Learning Research

Mastery: be able to solve tasks that are hard / infeasible to solve
by manual programming (successes in some domains).

Scaling: apply a method / framework to a broad range of tasks
by scaling up data sources (ongoing progress).

Generalization: solve new tasks in new environments and
scenarios; show emerging behaviors that are not in the training
data (holy grail, no real progress yet).
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Examples of mastering hard tasks

Rubber Glove

Source: OpenAl Source: ETH Zurich
Sim-to-real Reinforcement Learning
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Examples of scaling up data sources
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RT1: Imitation learning from 130k demonstrations
collected over the course of 17 months

https://robotics-transformer.github.io/assets/rt1.pdf
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No where near generalizable decision making!

Boston Dynamics | TED

20
https://www.ted.com/talks/marc_raibert_meet_spot_the_robot_dog that _can_run_hop_and_open_doors?language=en



It’s a great time to work on robot learning!
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Deep Learning for Robotics (CS 8803-DLM): an overview

2D/3D Perception and Grasping

Act without Models: Reinforcement
Learning and Imitation Learning

Model-based Decision Making:
Learning for Planning and Control

Learning to grasp: DexNet family

Learning to grasp: visual affordances
and action-as-perception

VLM for Manipulation
Tactile Sensing

Multimodal Representation Learning

Model-free RL: TRPO, SAC, DDPG
Offline Reinforcement Learning

Imitation Learning: Behavior
Cloning, Learning from human data

Imitation Learning: Inverse RL,
Generative Adversarial Imitation,

Sim-to-real transfer
Curiosity and Exploration

Human-in-the-loop Robot Learning

Model-based RL

Learning Planning Representations
Learning Control Representations
Task and Motion Planning

Learning for Task and Motion
Planning

Language Model for Robotics
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Frontiers of Deep Learning

Topics we didn’t get time to cover:
* Vision Transformers

« Graph Neural Nets

» Metric learning

« AutoML

« 3D perception & reconstruction

* Memory modeling

* Few-shot / meta learning

« Neural Radiance Field (NeRF) / implicit representations
« Adversarial learning and robustness

« Continual / lifelong learning

 Visual reasoning

* Neural Theorem Proving

« Neural Program Induction / Synthesis
 MLSys

« Many topics in NLP ...
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3D Perception

Input Image 2D Recognition

TS iR

oy s O

3D Object Detection / Pose Estimation 3D Meshes 3D Voxels

3D Object Reconstruction
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3D Perception

Many possible ways to represent the 3D world ...
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Each representation requires different neural network architectures!

Figure credit: Justin Johnson



3D Perception
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3D Convolution for Voxel-based 3D Reconstruction
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Choy et al., 3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction, ECCV 2016



3D Perception

Run MLP
un : on Max-Pool

each point

- ) Fully
‘ - Connected
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Input pointcloud: Point features:  Pooled vector:  Class score:
Px3 PxD D C

(Simplified) PointNet architecture for 3D point cloud classification

Choy et al., 3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction, ECCV 2016
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Neural Radiance Field
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Neural Radiance Field: View Synthesis

Input Images Optimize NeRF Render new views
Lo R gt E R ok
¥ EFEE LN
eFEHENe e
PGB EFHEESENY 5 O o
kit i koate 2 Yo €
FleregdarEr H
2% 0k <
= 227 B 5 ok Bk WA 4
PERE R BT

30



Volume Rendering

https://coronarenderer.freshdesk.com/support/solutions/arti
cles/12000045276-how-to-use-the-corona-volume-grid-

https://en.wikipedia.org/wiki/Volume rendering



https://en.wikipedia.org/wiki/Volume_rendering
https://coronarenderer.freshdesk.com/support/solutions/articles/12000045276-how-to-use-the-corona-volume-grid-

Volume Rendering: Ray Marching




Volume Rendering: Ray Marching

(7, 9,b)




Volume Rendering: Ray Marching
(fr7 g7 b? 57 O-)

(R,G, B)




Volume Rendering: Ray Marching
(fr7 g7 b? 57 O-)

(R,G, B)




Volume Rendering: Ray Marching
(fr7 g7 b? 57 O-)

(R,G, B)
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Volume Rendering: Ray Marching

Fg
(ZB, Y, <, 07 ¢) — (’P, g, b7 57 0)




Neural Radiance Field

5D Input Output Volume Rendering
Position + Direction JustanMLPL Color + Density Rendering Loss
r» (x,2,2,0,0) —> |:||:||:| — (RGBo) \ - .

/\
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2
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(b) (c) (d)

Very slow to train & render!
Requires many tricks to render high-quality images
One model per scene
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Instant NeRF

Muller et al., 2022
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Frontiers of Deep Learning

Topics we didn’t get time to cover:
* Vision Transformers

 Graph Neural Nets

» Metric learning

« AutoML

« 3D perception & reconstruction

* Memory modeling

* Few-shot / meta learning

* Neural Radiance Field (NeRF) / implicit representations
« Adversarial learning and robustness

« Continual / lifelong learning

 Visual reasoning

* Neural Theorem Proving

« Neural Program Induction / Synthesis
 MLSys

« Many topics in NLP ...



omogenization of Deep Learning

Homogenization is the consolidation of methodologies for building machine
learning systems across a wide range of applications.

Example: The Transformer Models (Vaswani et al., 2017)

Decoder output

T5 | T6

Encoder output
Encoder

Encoder Layer 2

Encoder Layer 1

Decoder

Linear Mapping

Decoder Layer 2

Add & Normalize
Feed Forward

Add & Normalize
Self-attention

> Decoder Layer 1

Input Layer

Pos Encoding
Input Layer

T T2 3 T4
Encoder input

T4 T5

Decoder input

Transformer Models originally
designed for NLP

|

Add & Normalize
Feed Forward
Add & Normalize

Encoder-decoder
Attention
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MLP
Head
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Almost identical model (Visual Transformers)
can be applied to Computer Vision tasks
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Lack of interpretability

I’'m turning left
here because ...

Why did the robot do that?
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What have we learned this semester?

Deep Learning
Fundamentals

Linear classification
& kNNs

Loss functions
Optimization
Optimizers
Backpropagation
Computation Graph
Multi-layer
Perceptrons

Neural Network
Components and
Architectures

Hardware & software
Convolutions
Convolution Neural
Networks

Pooling

Activation functions
Batch normalization
Transfer learning
Data augmentation
Architecture design
RNN/LSTMs
Attention &
Transformers

Applications & Learning
Algorithms

Object Detection
Semantic & instance
Segmentation
Reinforcement Learning
Large-language Models
Variational Autoencoders
Diffusion Models
Generative Adversarial Nets
Self-supervised Learning
Vision-Language Models
VLM for Robotics

Graph Neural Networks
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Thank you!

Danfei Xu

Manav Agrawal Aditya Akula

Matthew Bronars Will Held Vikranth Keerthipati Renzhi Wu Wei Zhou
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