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How to Represent Interconnected Data?

A node

Represent
—p

An edge

*

Interconnected world Graph-structured data

Graph: The language for describing entities with relations
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Interconnected world Modern ML

Goal of Graph Deep Learning

Enable DL research for the
interconnected data
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= Graphs: flexible and expressive

= Graphs can bridge interdisciplinary data
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Social network
Recommender systems

Graph: Ubiquitous across Disciplines
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https://www.nature.com/articles/s41467-017-00680-8/figures/4
https://science.sciencemag.org/content/325/5939/422
https://medium.com/analytics-vidhya/social-network-analytics-f082f4e21b16
https://www.mdpi.com/2078-2489/1/2/60/htm

Machine Learning with Graphs is Hard

This is a girl
o000 Toxt
Vs.

_~RGB (218,150,149)

Images

Graphs

= Arbitrary size and topological structure
= Nodes have no fixed ordering
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Graph Machine Learning Tasks

lllllllllllllllllllllllllllllllllllllllll

Node-level prediction
“Classify user by their type in a social network”

,_> Graph-level prediction
:  “Predict which molecules are drug-like”

Edge-level prediction
“Recommend item nodes to user nodes”
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Graph ML Tasks

Node-level
prediction

_» Graph-level
:  prediction

Edge-level
prediction
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Key Idea: Node Embeddings

..................................... ,Z'u,
........... ENC(u)
o )

/ \\“ encode nodes E
~, /N
\ yd I S

ENC(v)
original network embedding space

Intuition: Map nodes to d-dimensional
embeddings such that similar nodes in the
graph are embedded close together



Graph ML Tasks Key Idea: Node Embeddings

lllllllllllllllllllllllllllllllllllllllll

Node-level
iction =000 ey o Zu
predicton - ()
o o Zv
; /\\u encode nodes -
. Graph-level \\ — /\
prediction {ENC(v):
original network embedding space
: Edge-level
i prediction
S i Graph Neural Networks (GNNs)
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Slides adapted from Stanford C5224W Course

Graph Neural Networks (GNNs)
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Deep Graph Encoders

Graph Regularization, Graph
convolutions e.g., dropout convolutions
2
6@

eO

Activation
function

/

Output: Node embeddings.
Also, we can embed subgraphs,
graphs
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Graph ML Setup

= Assume we have a graph G:
= VV is the vertex set
" Ais the adjacency matrix (assume binary)

= X € R™*IVl is a matrix of node features
= Social networks — user attributes, molecule —atom types, ...
= When there is no node feature in the graph dataset:
— One-hot encodings — cannot generalize to new nodes
— Vector of constant 1: [1, 1, ..., 1] —inductive, but less expressive
= Edge feature can be incorporated as well

= p:anodeinV; N(v): the set of neighbors of v.
" Node features:

Introduction to Graph Deep Learning, Jiaxuan You, UIUC CS
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A Naive Approach: MLP

" Join adjacency matrix and features

" Feed them into a deep neural net:

(m)
moo w »

\

input layer

A B C D E Feat —
01 1 1 0 1 0 =
1 00 1 1 0 o

1 0010 0 1 —_

1 1 1 0 1 1 1 -
01010 1 0) ——

= |ssues with this idea:

= O(]V|) parameters

hidden layer 1 hidden layer 2 hidden layer 3

output layer

— ‘:;.-:"" \_\c\-\—\ <
— 2 "4

’

&

X

= : =<
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Ny

= Not applicable to graphs of different sizes

= Sensitive to node ordering
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ldea: Convolutional Networks

CNN on an image:

Convolutions Subsampling Convolutions Subsampling Fully connected

Goal is to generalize convo

utions beyond simple lattices

Leverage node features/attributes (e.g., text, images)

Introduction to Graph Deep Learning, Jiaxuan You, UIUC CS

14



Real-World Graphs

But our graphs look like this:

o N
o ‘|:| or this: o '
[ ® 0 " :. ®
¢ O o o s 9

= There is no fixed notion of locality or sliding
window on the graph

= Graph is permutation invariant

Introduction to Graph Deep Learning, Jiaxuan You, UIUC CS



From Images to Graphs

Single Convolutional neural network (CNN) layer with
3x3 filter:

O

(5

Image Graph

Idea: transform information at the neighbors and combine it:

* Transform “messages” h; from neighbors: W; h;
= Add them up: }; W; h;

Introduction to Graph Deep Learning, Jiaxuan You, UIUC CS
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[Kipf and Welling, ICLR 2017]

Graph Convolutional Networks

= Graph Convolutional Networks: one of the first GNN models

Determine node Propagate and
computation graph transform information

Introduction to Graph Deep Learning, Jiaxuan You, UIUC CS



ldea: Aggregate Neighbors

* Key idea: Generate node embeddings based on local network
neighborhoods
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ldea: Aggregate Neighbors

" |ntuition: Nodes aggregate information from their neighbors using
neural networks

TARGET NODE

l

INPUT GRAPH

Neural networks

Introduction to Graph Deep Learning, Jiaxuan You, UIUC CS
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ldea: Aggregate Neighbors
" |ntuition: Network neighborhood defines a computation graph

Every node defines a computation
graph based on its neighborhood!

INPUT GRAPH
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Deep Model: Many Layers

= Model can be of arbitrary depth:
= Nodes have embeddings at each layer
= Layer-0 embedding of node u is its input feature, x,,

" Layer-k embedding gets information from nodes that are K hops away

Layer-0
....................... b X 4

TARGET NODE ‘A‘: ...................... . XC
i Layer-2 .~ ® XA

4 .
= @ X
/ 2 P .4—.:: ................. D

s
INPUTGRAPH o e A
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The Math: GCN with Many Layers

= Basic approach: Average neighbor messages and apply a neural

network
Initial O-th layer embeddings are

- _— equal tonode features  embedding of
/ v at layer [
h(*D :I(wl + B0, vie0,. JH-1)

z, = h1(yL) Average of neighbor’s  Total number
previous layer embeddings  of |ayers

\ Embedding after L | |
layers of neighborhood Non-linearity
aggregation (e.g., ReLU)

Introduction to Graph Deep Learning, Jiaxuan You, UIUC CS 22



Training the GNN Model

How do we train the model to
generate embeddings?

Z, ® «

Need to define a loss function on the embeddings

Introduction to Graph Deep Learning, Jiaxuan You, UIUC CS
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Model Parameters

Trainable weight matrices
h(O) (i.e., what we learn)

v / M

h{), vl € {0,...,L — 1}

(1+1) _
Y=o ) MO
7.

(L) UEN (D)
— hv
\

Final node embedding

We can feed these embeddings into any loss function and run

SGD to train the weight parameters

hl: the hidden representation of node v at layer [
= W, : weight matrix for neighborhood aggregation
= B,:weight matrix for transforming hidden vector of

self

Introduction to Graph Deep Learning, Jiaxuan

You, UIUC CS 24



How to train a GNN

GNN provides us node embedding z,,
Supervised setting:
we want to minimize the loss L:
min L(y, f(z,))
* y: node/egde/graph label (from external sources)

= L could be L2 if y is real number, or cross entropy if
y is categorical

Unsupervised setting:

= Use graph structure/feature itself as supervision
= E.g., link prediction, masked feature prediction, ...

Introduction to Graph Deep Learning, Jiaxuan You, UIUC CS
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Model Design: Overview

(1) Define a neighborhood
aggregation function

ZA."

\

(2) Define a loss function on the
embeddings

Introduction to Graph Deep Learning, Jiaxuan You, UIUC CS
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Model Design: Overview

(3) Train on a set of nodes, i.e.,
a batch of computational graphs

I I
VAN News
o o " o0 ®
&/ % Q@ X /o = @
®e 0o0® e I ./
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Model Design: Overview

(4) Test time: Generate embeddings
for nodes as needed

Even for nodes we never
trained on!

INPUT GRAPH \

[
- " ] 5 !
\: L R T R A UL L T )
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Slides adapted from Stanford C5224W Course

GNN vs CNN & Transformer

Introduction to Graph Deep Learning, Jiaxuan You, UIUC CS



GNN vs CNN

Convolutional neural network (CNN) layer with 3x3

filter:
O

O

Image Graph

h®

IN(W)I
* CNN formulation: h(lJr ) = 0(Luenw) Wi h,&l) + Blhf,l)),Vl e {0,..,L — 1}

* GNN formulation: h(l (Wi 2ueNw) + B h(l)),‘v’l e {0,..,L —1}

Key difference: We can learn different W' for different “neighbor” u for pixel v on the image

Introduction to Graph Deep Learning, Jiaxuan You, UIUC CS 30



GNN vs CNN

Convolutional neural network (CNN) layer with 3x3
filter:

CNN can be seen as a special GNN with fixed neighbor size
and ordering:

 The size of the filter is pre-defined for a CNN.

e The advantage of GNN is it processes arbitrary

graphs with different degrees for each node.
CNN is not permutation invariant/equivariant.
 Switching the order of pixels will leads to different
outputs.

e GNN form

e CNN form...

Key difference: We can learn different W7’ for different “neighbor” u for pixel v on the image

Introduction to Graph Deep Learning, Jiaxuan You, UIUC CS 31



Transformer

Transformer is one of the

most popular architectures
that achieves great

performance in many
sequence modeling tasks.

Key component: self-attention

= Every token/word attends to all the other tokens via matrix
multiplication.

®coocs

Introduction to Graph Deep Learning, Jiaxuan You, UIUC CS
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A nice blog plot for this: https://towardsdatascience.com/transformers-are-graph-neural-networks-bca9f75412aa

GNN vs Transformer

Transformer layer can be seen as a special GNN

that runs on a fully-connected “token graph”!

Since each word attends to all the other

tokens, the computation graph of a

transformer layer is identical to that of a am student
GNN on the fully-connected “token graph”.

d CS

- 7

Text

Fully-connected Graph
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https://towardsdatascience.com/transformers-are-graph-neural-networks-bca9f75412aa

Slides adapted from Stanford C5224W Course

Applications of GNNs

Introduction to Graph Deep Learning, Jiaxuan You, UIUC CS



Tasks on Networks

Tasks we will be able to solve:
= Node classification

" Predict a type of a given node
" Link prediction

" Predict whether two nodes are linked
= Subgraph detection

= |dentify certain subgraphs or paths within a graph
" Graph classification

= Classify different graphs

Introduction to Graph Deep Learning, Jiaxuan You, UIUC CS
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Example (2): Financial Networks

= Financial Networks: Describe financial entities and their connections

International banking Bitcoin transactions
* Nodes: Countries * Nodes: BTC wallets
* Edges: Capital flows * Edges: Transactions

Image credit: Image credit:

Introduction to Graph Deep Learning, Jiaxuan You, UIUC CS
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J. You, T. Du, J. Leskovec. ROLAND: Graph Learning Framework for Dynamic Graphs, KDD 2022

ROLAND: GNN for Financial Networks

= ROLAND framework:

= Transform financial networks as GNN
computational graphs

. . . . Supervised
= Learning from diverse objectives (node
and edge level) sources)
S $100, 01/06 e — .

E \ A
$500, 01/03 %400. 01/05 3
$200, 01/02 \
- - A— @I —)

A—§2oo, 01/02 t
$100, 01/01

&

@ client A bank company @ client A bank company

Financial networks Graph Neural Networks

Introduction to Graph Deep Learning, Jiaxuan You, UIUC CS

Self-supervised [ Will a user make a transaction? Yes
(from raw data) |

What is the amount? $500
When will it happen? 01/03

Does a user involve fraud? No

(from external - Does a user involve money laundering? Yes

oy

Ulﬂ Learn to predict

@ client A bank company

Learning objectives

37



Example (2): Recommender Systems

= Users interacts with items

= Watch movies, buy merchandise, listen to music
= Nodes: Users and items
= Edges: User-item interactions

=  Goal: Recommend items users might like

Users @ @ @ @ @ |Ei>ons

N

(\ SETROZZ

Introduction to Graph Deep Learning, Jiaxuan You, UIUC CS

“You might also like”
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Ying et al., Graph Convolutional Neural Networks for Web-Scale Recommender Systems, KDD 2018

PinSage: Graph-based Recommender

Task: Recommend related pins to users

é Task: Learn node
N embeddings z; such that

& | ‘b \ i d(ZC(lkel' ZCCLkBZ)

< d(Zcake1) Zsweater)
Query pin

BAD RECOMMENDATION

Predict whether two nodes in a graph are related

Tee cese

| ‘ %
[
[
. N m®
&Y s > @

L ¢
- &
Introduction to Graph Deep Learning, Jiaxuan You, UIUC CS S, ‘ o ®

He:

0


https://arxiv.org/pdf/1806.01973.pdf

Example
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(3): Traffic Prediction
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alo Alto
O Stanford University

NE
Google S

- Map data ©2021 Google mezedSlales Tevm§ Send feedback 2 Mib——ouJ

Introduction to Graph Deep Learning, Jiaxuan You, UIUC CS

Diablo

Danville

San Ramon

oo

&)

Fremont

d

MtiDiablg

Tassy|

Dublin

@

Pleasant

Sunol

a

Milpi O
w

40



Road Network as a Graph

= Nodes: Road segments

= Edges: Connectivity between road segments

Introduction to Graph Deep Learning, Jiaxuan You, UIUC CS
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https://deepmind.com/blog/article/traffic-prediction-with-advanced-graph-neural-networks

Traffic Prediction via GNN

Predlct the best route via Graph Neural Networks

Predictions

Google Maps
Tralnlng API
data

= Used in Google Maps

Google'Maps Candidate Google Maps
[QULINE user routes 2pp
system A-B

THE MODEL ARCHITECTURE FOR DETERMINING OPTIMAL ROUTES AND THEIR TRAVEL TIME. Image credit: DeepMind

Introduction to Graph Deep Learning, Jiaxuan You, UIUC CS
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https://deepmind.com/blog/article/traffic-prediction-with-advanced-graph-neural-networks

Example (4): Drug Discovery

= Antibiotics are small molecular graphs

= Nodes: Atoms

= Edges: Chemical bonds

ROCHN

]TJ\

penicillins

ROCHN
jj%l

CO,H

oxacephems

CO,H
carbapenems

ROCHN; WJ\ ROCHNfH'/;SJ\
CO,H CO,H
cephalosporins cephamycins
E'/ oH R4
COZH CO,H
clavulanic acid penems

(an oxapenem)

RHN

L G i S
CO,H
nocardicin monobactams
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https://www.cnn.com/2019/01/24/health/antibiotic-resistance-climate-change-gbr-scli-intl/index.html

Stokes et al., A Deep Learning Approach to Antibiotic Discovery, Cell 2020

Deep Learning for Antibiotic Discovery

= A graph classification task

= Predict promising molecules from a pool of existing
candidates

Chemical landscape

Directed message [Large scale predictions

passing neural network (upper limit 108 +) } “
4 N\ T

T oA g N
s

Iterative
(10* molecules) pitfg

l re-training

Conventional small
molecule screening

Chemical screening
(upper limit 10° - 10°)

|

Hit validation
(1 - 3% hit rate)

Machine learning

|

Predictions &
model validation

\

E Lead

g /] identification
[antibiotic] & optimization

J . J
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https://www.sciencedirect.com/science/article/pii/S0092867420301021

You et al., Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation, NeurlPS 2018

Molecule Generation / Optimization

Graph generation: Generating novel molecules

(1) NodelD

©
© Node 6. Observe A/ Sample il NodelD ct
5 |NodelD Env render 0.1 | Step reward

—— Edge o é\b = . = Edogee:rype update = 0 | Final reward
(;) Message 0 |Stop
«——> Ppassing
- Node (d) Dynamics

embedding  (a) State — G, Scaffold — C (b) GCPN — mg(a¢|G: U €) (c) Action — a; ~ 1y P(Gry1|Ger ar) (e) State — Gy (f) Reward — 7,

Use case 1: Generate novel molecules Use case 2: Optimize existing molecules to

with high drug likeness have desirable properties

-\

A = ,

@ r & o ﬁ;f\”\«
0.948 0.945 -8.32 ‘ 20574

- ;3—0() O‘QQA{E _Qéﬁro

0.944 0.941 -5.55 -1.78
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https://arxiv.org/pdf/1806.02473.pdf

Frontiers of Graph ML Research
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J. You, R.Ying, J. Leskovec. Position-aware Graph Neural Networks, ICML 2019.

Designing more Expressive GNNs

Position-aware task

o = GNNs fail at Position-aware tasks ®
= = v, and v, will always have the
same computational graph, due to

. structure symmetry

A A
A
5 8 = Q: Can we define deep learning
= methods that are position-aware?

Introduction to Graph Deep Learning, Jiaxuan You, UIUC CS 47



J. You, R. Ying, J. Leskovec. Position-aware Graph Neural Networks, ICML 2019.

ldea: P-GNN

= P-GNN proposes the first notion of position embeddings for graphs
= Notably, Position embeddings are crucial for Transformers and LLMs

vy | 1| 2 | 1| vi'sPosition embedding

B iv3 | 1 | 2 | O vs'sPosition embedding

Anchor-set

= P-GNN inspires many successful application of Transformer + Graphs
= E.g., GAT-POS [Ma et al., 2021], Graphormer [Ying et al., 2021], ...

Introduction to Graph Deep Learning, Jiaxuan You, UIUC CS 48



Graphs are Ubiquitous in ML problems

A: Because dogs are loyal and friendly.

Q: What are two reasons that a dog might be in a bad mood?
ons that a dog might be in a bad mood are if it is hungry

Input data

1

Graph is a superset for
existing ML input data

Understand and inspire
ML methods with graphs

Introduction to Graph Deep Learning, Jiaxuan You, UIUC CS

ML tasks

1

0 o )

tip %)
0] (0] (0] (@]

(0] (0]
QData point O Taw

Graph can represent
novel ML applications

49



J. You, et al. Handling Missing Data with Graph Representation Learning, NeurlPS 2020

(1) Graphs in Missing Data Problems

Data Matrix

anmsangvaes 95 ® Real-world data often exhibit missing values

hlBE | BRI Y | = |dea: Input data as heterogenous graph

O; | 03 | 05 | NA | 0.1 "

0, | na | N | 06 | 02 | | 1 * Nodes: Data points and features
Ol °° EEEEE *° | I = Edges: Link data points with features
7 = Graph offers unified solution for missing
Bipartite Graph

data problem

" Feature imputation — edge-level prediction
= Label prediction — node-level prediction

SRR Y 10~20% lower MAE than SOTA baselines
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J. You, J. Leskovec, K. He, S. Xie, Graph Structure of Neural Networks, ICML 2020

(2) New NN representation: Relational Graph

o0& is
) ~
Gap \ L ey o ”
.\ “ \ .
M 7
@ ® ® Lynn and Bassett,
Nature Rev. Phys. 2019
(Artificial) neural network Brain network

Can we translate any graph (e.g., brain network) to a neural network?

= Study the performance of NNs with network science tools

" Bridge deep learning with neuroscience

Introduction to Graph Deep Learning, Jiaxuan You, UIUC CS 51



J. You, J. Leskovec, K. He, S. Xie, Graph Structure of Neural Networks, ICML 2020

(2) New NN representation: Relational Graph
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Relational Graph
= Translate any graph = NN

= Computation is defined as
message passing over the graph
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Neural network layer

Directed message
computation



K. Cao*, J. You*, J. Leskovec. Relational Multi-Task Learning: Modeling Relations between Data and Tasks, ICLR 2022

(3) Graphs in Multi-task Learning Problems

= Graph representation for multi-task
learning (supervised/meta learning)

= Nodes: Data points and ML tasks

= Edges: A data point labeled by a task

* Innovations 7 o o
= Solve various multi-task settings via graph ML t1m !

= Explore new multi-task learning settings:

Leverage auxiliary labels during inference O
QData point [ Tasy

o
o
G. 0
o

= ~13% improvement with auxiliary task info
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Summary
Why Graph Deep Learning?
" Enable DL for interconnected data
What is a GNN
= Key: iterative node neighborhood aggregation

" CNN & Transformer can be considered as special GNNs

Applications of GNNs
= Different levels: Node, edge, subgraph, graph
Frontiers of Graph ML research

= Design more expressive GNNs
= Empower general ML pipeline with graphs
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