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Interconnected world Modern ML

Gap



How to Represent Interconnected Data?

Graph: The language for describing entities with relations

Graph-structured data
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Represent

Interconnected world

A node

An edge



Introduction to Graph Deep Learning, Jiaxuan You, UIUC CS 4

Goal of Graph Deep Learning 
Enable DL research for the 

interconnected data

Interconnected world Modern ML

Gap



Graph: Ubiquitous across Disciplines
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Molecule
Molecule design

Image credit

Protein interaction
Drug discovery

Image credit: Science

Economic network
Policy making

Social network
Recommender systems

Image credit: Medium
Image credit: MDPI

§ Graphs: flexible and expressive
§ Graphs can bridge interdisciplinary data

https://www.nature.com/articles/s41467-017-00680-8/figures/4
https://science.sciencemag.org/content/325/5939/422
https://medium.com/analytics-vidhya/social-network-analytics-f082f4e21b16
https://www.mdpi.com/2078-2489/1/2/60/htm


Machine Learning with Graphs is Hard

§ Arbitrary size and topological structure
§ Nodes have no fixed ordering

vs.

Graphs
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Graph Machine Learning Tasks
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Node-level prediction
“Classify user by their type in a social network”

Edge-level prediction
“Recommend item nodes to user nodes”

Graph-level prediction
“Predict which molecules are drug-like”



Graph ML Tasks
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Node-level 
prediction

Edge-level 
prediction

Graph-level 
prediction

Key Idea: Node Embeddings

Intuition: Map nodes to 𝑑-dimensional 
embeddings such that similar nodes in the 
graph are embedded close together 



Graph ML Tasks

Graph Neural Networks (GNNs)
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Node-level 
prediction

Edge-level 
prediction

Graph-level 
prediction

Key Idea: Node Embeddings



Graph Neural Networks (GNNs)
Slides adapted from Stanford CS224W Course
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Deep Graph Encoders
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…

Output: Node embeddings. 
Also, we can embed subgraphs, 
graphs



Graph ML Setup
§ Assume we have a graph 𝑮:

§ 𝑉 is the vertex set
§ 𝑨 is the adjacency matrix (assume binary)
§ 𝑿 ∈ ℝ!×|$| is a matrix of node features

§ Social networks – user attributes, molecule – atom types, …
§ When there is no node feature in the graph dataset:

–  One-hot encodings – cannot generalize to new nodes
–  Vector of constant 1: [1, 1, …, 1] – inductive, but less expressive

§ Edge feature can be incorporated as well

§ 𝑣: a node in 𝑉; 𝑁 𝑣 : the set of neighbors of 𝑣.
§ Node features:
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A Naïve Approach: MLP

§ Join adjacency matrix and features
§ Feed them into a deep neural net:

§ Issues with this idea:

§ Issues with this idea:
§ 𝑂(|𝑉|) parameters
§ Not applicable to graphs of different sizes
§ Sensitive to node ordering
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End-to-end learning on graphs with GCNs Thomas Kipf

A    B    C    D    E
A
B
C
D
E

0     1     1     1     0          1     0
1     0     0     1     1          0     0
1     0     0     1     0          0     1
1     1     1     0     1          1     1
0     1     0     1     0          1     0

Feat

A naïve approach
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• Take adjacency matrix     and feature matrix   

• Concatenate them  

• Feed them into deep (fully connected) neural net 

• Done?

Problems:

• Huge number of parameters 
• No inductive learning possible

?A

C

B

D

E

[A,X]



Idea: Convolutional Networks

CNN on an image:
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Goal is to generalize convolutions beyond simple lattices
Leverage node features/attributes (e.g., text, images)



Real-World Graphs

But our graphs look like this:

Introduction to Graph Deep Learning, Jiaxuan You, UIUC CS 15

End-to-end learning on graphs with GCNs Thomas Kipf

or this:

Graph-structured data
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… …

…

Input

Hidden layer Hidden layer

ReLU

Output

ReLU

What if our data looks like this?

End-to-end learning on graphs with GCNs Thomas Kipf

or this:

Graph-structured data

6

… …

…

Input

Hidden layer Hidden layer

ReLU

Output

ReLU

What if our data looks like this?

or this:

§ There is no fixed notion of locality or sliding 
window on the graph

§ Graph is permutation invariant



From Images to Graphs
Single Convolutional neural network (CNN) layer with 
3x3 filter:
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End-to-end learning on graphs with GCNs Thomas Kipf

Convolutional neural networks (on grids)

5

(Animation by  
Vincent Dumoulin)

Single CNN layer with 3x3 filter:

Image Graph
Idea: transform information at the neighbors and combine it:

§ Transform “messages” ℎ! from neighbors: 𝑊!	ℎ!
§ Add them up: ∑!𝑊!	ℎ!



Graph Convolutional Networks
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Determine node 
computation graph

Propagate and
transform information

𝑖 𝑖

[Kipf and Welling, ICLR 2017]

§ Graph Convolutional Networks: one of the first GNN models



Idea: Aggregate Neighbors

§ Key idea: Generate node embeddings based on local network 
neighborhoods 
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Idea: Aggregate Neighbors

§ Intuition: Nodes aggregate information from their neighbors using 
neural networks
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Idea: Aggregate Neighbors

§ Intuition: Network neighborhood defines a computation graph
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Every node defines a computation 
graph based on its neighborhood!



Deep Model: Many Layers

§ Model can be of arbitrary depth:
§ Nodes have embeddings at each layer
§ Layer-0 embedding of node 𝑢 is its input feature, 𝑥𝑢
§ Layer-𝑘 embedding gets information from nodes that are K hops away
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The Math: GCN with Many Layers

§ Basic approach: Average neighbor messages and apply a neural 
network
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Average of neighbor’s 
previous layer embeddings

Total number 
of layers

Initial 0-th layer embeddings are 
equal to node features

Embedding after L 
layers of neighborhood 

aggregation 

Non-linearity 
(e.g., ReLU)

embedding of 
𝑣	at layer 𝑙h%& = x%

z% = h%
(()

h%
(*+,) = 𝜎(W* 0

-∈/(%)

h-
(*)

N(𝑣)
+ B*h%

(*)), ∀𝑙 ∈ {0, … , 𝐿 − 1}



𝒛0

Training the GNN Model

How do we train the model to 
generate embeddings?

Need to define a loss function on the embeddings
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Model Parameters

We can feed these embeddings into any loss function and run 
SGD to train the weight parameters

ℎ!" : the hidden representation of node 𝑣 at layer 𝑙
§ 𝑊#: weight matrix for neighborhood aggregation
§ 𝐵#: weight matrix for transforming hidden vector of 

self
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Trainable weight matrices 
(i.e., what we learn) 

Final node embedding

h!
(#) = x!

z! = h!
(%)

h!
(&'() = 𝜎(W& (

)∈+(!)

h)
(&)

N(𝑣) + B&h!
(&)), ∀𝑙 ∈ {0, … , 𝐿 − 1}



How to train a GNN
§ GNN provides us node embedding 𝒛!
§ Supervised setting: 
§ we want to minimize the loss ℒ:

min
1
ℒ(𝒚, 𝑓 𝒛% )

§ 𝒚: node/egde/graph label (from external sources)
§ ℒ could be L2 if 𝒚 is real number, or cross entropy if 
𝒚 is categorical

§ Unsupervised setting:
§ Use graph structure/feature itself as supervision

§ E.g., link prediction, masked feature prediction, …
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Model Design: Overview
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(1) Define a neighborhood 
aggregation function

(2) Define a loss function on the 
embeddings

𝒛!



Model Design: Overview

Introduction to Graph Deep Learning, Jiaxuan You, UIUC CS 27

(3) Train on a set of nodes, i.e., 
a batch of computational graphs



Model Design: Overview
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(4) Test time: Generate embeddings 
for nodes as needed

Even for nodes we never 
trained on!



GNN vs CNN & Transformer
Slides adapted from Stanford CS224W Course
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GNN vs CNN
Convolutional neural network (CNN) layer with 3x3 
filter:

30

End-to-end learning on graphs with GCNs Thomas Kipf

Convolutional neural networks (on grids)

5

(Animation by  
Vincent Dumoulin)

Single CNN layer with 3x3 filter:

Image Graph

• GNN formulation: h#
(%&') = 𝜎(𝐖𝒍∑*∈,(#)

-!
(#)

,(#) + B%h#
(%)), ∀𝑙 ∈ {0,… , 𝐿 − 1}

• CNN formulation:  h#
(%&') = 𝜎(∑*∈, # 𝐖𝒍

𝒖h*
(%) + B%h#

(%)), ∀𝑙 ∈ {0,… , 𝐿 − 1}

Key difference: We can learn different 𝑾𝒍
𝒖 for different “neighbor” 𝑢 for pixel 𝑣 on the image
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GNN vs CNN
Convolutional neural network (CNN) layer with 3x3 
filter:

31

End-to-end learning on graphs with GCNs Thomas Kipf

Convolutional neural networks (on grids)

5

(Animation by  
Vincent Dumoulin)

Single CNN layer with 3x3 filter:

Image Graph

• GNN formulation: h#
(%&') = 𝜎(𝐖𝒍∑*∈,(#)

-!
(#)

,(#) + B%h#
(%)), ∀𝑙 ∈ {0,… , 𝐿 − 1}

• CNN formulation:  h#
(%&') = 𝜎(∑*∈, # 𝐖𝒍

𝒖h*
(%) + B%h#

(%)), ∀𝑙 ∈ {0,… , 𝐿 − 1}

Key difference: We can learn different 𝑾𝒍
𝒖 for different “neighbor” 𝑢 for pixel 𝑣 on the image

CNN can be seen as a special GNN with fixed neighbor size 
and ordering:
• The size of the filter is pre-defined for a CNN.
• The advantage of GNN is it processes arbitrary 

graphs with different degrees for each node.
CNN is not permutation invariant/equivariant.
• Switching the order of pixels will leads to different 

outputs.
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Transformer
Transformer is one of the 
most popular architectures 
that achieves great 
performance in many 
sequence modeling tasks.
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[Attention is all you need. Vaswani et al., NeurIPS 2017]

Key component: self-attention
¡ Every token/word attends to all the other tokens via matrix 

multiplication.

CS studentI aam



GNN vs Transformer
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I

am

a CS

student

Text Fully-connected Graph

A nice blog plot for this: https://towardsdatascience.com/transformers-are-graph-neural-networks-bca9f75412aa

Transformer layer can be seen as a special GNN 
that runs on a fully-connected “token graph”! 

Since each word attends to all the other 
tokens, the computation graph of a 
transformer layer is identical to that of a 
GNN on the fully-connected “token graph”.

CS studentI aam
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https://towardsdatascience.com/transformers-are-graph-neural-networks-bca9f75412aa


Applications of GNNs
Slides adapted from Stanford CS224W Course
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Tasks on Networks

Tasks we will be able to solve:
§ Node classification

§ Predict a type of a given node

§ Link prediction
§ Predict whether two nodes are linked

§ Subgraph detection
§ Identify certain subgraphs or paths within a graph

§ Graph classification
§ Classify different graphs
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Example (1): Financial Networks
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§ Financial Networks: Describe financial entities and their connections

Image credit: The Political Economy of Global Finance: A Network Model Image credit: https://dailyblockchain.github.io/

International banking
• Nodes: Countries
• Edges: Capital flows

Bitcoin transactions
• Nodes: BTC wallets
• Edges: Transactions



$400, 01/05

ROLAND: GNN for Financial Networks
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bankclient company

$100, 01/01

$500, 01/03

$200, 01/02

$200, 01/02

Will a user make a transaction? Yes
What is the amount? $500
When will it happen? 01/03
…
Does a user involve fraud? No
Does a user involve money laundering? Yes
…

Graph Neural NetworksFinancial networks Learning objectives

$100, 01/06

bankclient company

Self-supervised
(from raw data)

Supervised
(from external 
sources)

bankclient company

NN

NN

NN

NN

NN

NN

?

§ ROLAND framework:
§ Transform financial networks as GNN 

computational graphs
§ Learning from diverse objectives (node 

and edge level)
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J. You, T. Du, J. Leskovec. ROLAND: Graph Learning Framework for Dynamic Graphs, KDD 2022

Learn to predict



Example (2): Recommender Systems
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Items

Users

§ Users interacts with items
§ Watch movies, buy merchandise, listen to music
§ Nodes: Users and items
§ Edges: User-item interactions

§ Goal: Recommend items users might like

Interactions

“You might also like”



PinSage: Graph-based Recommender

Task: Recommend related pins to users

Query pin

8

Predict whether two nodes in a graph are related

Task: Learn node 
embeddings 𝑧2 such that
𝑑 𝑧3456,, 𝑧34567
< 𝑑(𝑧3456,, 𝑧8964:6;)

𝑧
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Ying et al., Graph Convolutional Neural Networks for Web-Scale Recommender Systems, KDD 2018

https://arxiv.org/pdf/1806.01973.pdf


Example (3): Traffic Prediction
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Road Network as a Graph

§ Nodes: Road segments
§ Edges: Connectivity between road segments
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Image credit: DeepMind

https://deepmind.com/blog/article/traffic-prediction-with-advanced-graph-neural-networks


Traffic Prediction via GNN

Predict the best route via Graph Neural Networks

§ Used in Google Maps
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Image credit: DeepMind

https://deepmind.com/blog/article/traffic-prediction-with-advanced-graph-neural-networks


Example (4): Drug Discovery

§ Antibiotics are small molecular graphs
§ Nodes: Atoms
§ Edges: Chemical bonds
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Konaklieva, Monika I. "Molecular targets of β-lactam-based antimicrobials: 
beyond the usual suspects." Antibiotics 3.2 (2014): 128-142.

Image credit: CNN

https://www.cnn.com/2019/01/24/health/antibiotic-resistance-climate-change-gbr-scli-intl/index.html


Deep Learning for Antibiotic Discovery
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Stokes, Jonathan M., et al. "A deep learning approach to antibiotic discovery." Cell 
180.4 (2020): 688-702.

¡ A graph classification task
¡ Predict promising molecules from a pool of existing 

candidates

Stokes et al., A Deep Learning Approach to Antibiotic Discovery, Cell 2020

https://www.sciencedirect.com/science/article/pii/S0092867420301021


Molecule Generation / Optimization
Graph generation: Generating novel molecules
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Use case 1: Generate novel molecules 
with high drug likeness

Use case 2: Optimize existing molecules to 
have desirable properties

You et al., Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation, NeurIPS 2018

https://arxiv.org/pdf/1806.02473.pdf


Frontiers of Graph ML Research
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Designing more Expressive GNNs

Position-aware task

!" !#A

A

BA B

B

!" !#

=

… … … …

A B

¡ GNNs fail at Position-aware tasks L 
¡ 𝑣, and 𝑣7 will always have the 

same computational graph, due to 
structure symmetry

¡ Q: Can we define deep learning 
methods that are position-aware?
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J. You, R. Ying, J. Leskovec. Position-aware Graph Neural Networks, ICML 2019.



Idea: P-GNN

§ P-GNN proposes the first notion of position embeddings for graphs
§ Notably, Position embeddings are crucial for Transformers and LLMs

§ P-GNN inspires many successful application of Transformer + Graphs
§ E.g., GAT-POS [Ma et al., 2021], Graphormer [Ying et al., 2021], …
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J. You, R. Ying, J. Leskovec. Position-aware Graph Neural Networks, ICML 2019.

𝑠' 𝑠/ 𝑠0
𝑣' 1 2 1
𝑣0 1 2 0
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𝑣0

𝑠' 𝑠/

A

A

BA B

B
Size-2
Anchor-set

Anchor
𝑠0

𝑣!’s Position embedding

𝑣"’s Position embedding



Graphs are Ubiquitous in ML problems
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Input data Neural networks

?

?

𝒕𝟏
𝒕𝟐

ML tasks

?
Data point Task

!! !"

Graph is a superset for 
existing ML input data

Understand and inspire 
ML methods with graphs

Graph can represent 
novel ML applications



(1) Graphs in Missing Data Problems
§ Real-world data often exhibit missing values
§ Idea: Input data as heterogenous graph

§ Nodes: Data points and features
§ Edges: Link data points with features 

§ Graph offers unified solution for missing 
data problem
§ Feature imputation – edge-level prediction
§ Label prediction – node-level prediction

§ 10~20% lower MAE than SOTA baselines
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J. You, et al. Handling Missing Data with Graph Representation Learning, NeurIPS 2020



Can we translate any graph (e.g., brain network) to a neural network?
§ Study the performance of NNs with network science tools
§ Bridge deep learning with neuroscience
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Gap

Lynn and Bassett, 
Nature Rev. Phys. 2019

Brain network(Artificial) neural network

(2) New NN representation: Relational Graph
J. You, J. Leskovec, K. He, S. Xie, Graph Structure of Neural Networks, ICML 2020



(2) New NN representation: Relational Graph
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1 2

4 3

𝐴𝐺𝐺(⋅) 𝐴𝐺𝐺(⋅)

𝐴𝐺𝐺(⋅) 𝐴𝐺𝐺(⋅)

J. You, J. Leskovec, K. He, S. Xie, Graph Structure of Neural Networks, ICML 2020

4321

4321
𝐴𝐺𝐺(⋅)𝐴𝐺𝐺(⋅)𝐴𝐺𝐺(⋅)𝐴𝐺𝐺(⋅)

⟺

Neural network layer
Directed message 

computation

  Relational Graph
§ Translate any graph à NN
§ Computation is defined as 

message passing over the graph



(3) Graphs in Multi-task Learning Problems

§ Graph representation for multi-task 
learning (supervised/meta learning)
§ Nodes: Data points and ML tasks 
§ Edges: A data point labeled by a task

§ Innovations 
§ Solve various multi-task settings via graph ML
§ Explore new multi-task learning settings: 

Leverage auxiliary labels during inference 
§ ~13% improvement with auxiliary task info
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K. Cao*, J. You*, J. Leskovec. Relational Multi-Task Learning: Modeling Relations between Data and Tasks, ICLR 2022

?
Data point Task

!! !"

?

?

𝒕𝟏
𝒕𝟐



Summary
§ Why Graph Deep Learning?

§ Enable DL for interconnected data

§ What is a GNN
§ Key: iterative node neighborhood aggregation
§ CNN & Transformer can be considered as special GNNs

§ Applications of GNNs
§ Different levels: Node, edge, subgraph, graph

§ Frontiers of Graph ML research
§ Design more expressive GNNs
§ Empower general ML pipeline with graphs
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