CS 4803-DL/ 7643-A: Lecture 19
Danfei Xu

Topics:
e Generative Adversarial Networks

e Self-supervised Learning
* Pretext task from image transformation
e Contrastive learning

Administrative

* HW2 / PS2 grade out. Please submit your regrade request by the end
of this week

 HW4 / PS4 out. Due Nov 14th, Grade Period ends 16th.

* Start the coding part NOW --- it takes some time to run GAN /
diffusion model training on Colab GPUs.

* Milestone Report & Video due Nov 7t". NO GRACE PERIOD

Denoising Diffusion: Image to Noise and Back

we | 4% Z %» :
Denoising o ~ ~
Diffusion |0 [Xt| T X2| T [Fr| | X2 T | M| T Ko

=N

Generative
Adversarial
Networks 7| ——» —>

(GANSs)

The Denoising Diffusion Process

image from The “forward diffusion” process: noise V(0,1
dataset add Gaussian noise each step ’

—> X171 — XT

«——XT7-1 «— XT

The “denoising diffusion” process:
generate an image from noise by
denoising the gaussian noises

The Denoising (Decoding) Process

The learned denoising process X0 X1 XT

Po(Xe—11xt) = N (xp—1; 1o (xr, 1), Zq(2))

High-level intuition: derive a ground truth denoising distribution q(x;_1|x;, xy) and
train a neural net pg (x;_1|x;) to match the distribution.

The learning objective: argming Dy, (q(x:—1|x¢, X0) | |pg (Xe—11%¢))

What does it look like? g(x,_1|x;, x0) = N (Xt—1; tq (0), Zq(t))
1

pq (t) =—<xt—Le :
! v Ja—-a)

The “ground truth” noise that brought x;_; to x;

Recall: Gaussian
e~N(0,]) < L .
(0,1) reparameterization trick

The Denoising (Decoding) Process

The learned denoising process X0 X1 XT
Po(Xt-11x¢) = N (x¢—1; 1o (x4, t);zq(t))

High-level intuition: derive a ground truth denoising distribution q(x;_1|x;, xy) and
train a neural net pg (x;_1|x;) to match the distribution.

The learning objective: argming Dy, (q(x:—1|x¢, X0) | |pg (Xe—11%¢))
What does it look like? q(x,_1|x,, xo) = N(Xt—ﬁuq(t),zq(ﬂ)
Assuming identical variance X, (t), we have:

argming Dy, (q (o1 |z %) |[po Cee—11x)) = argmingw e, () — iy (x, O]

Should be variance-dependent, but constant
works better in practice

The Denoising Diffusion Algorithm

Algorithm 1 Training

repeat
Xo ~ q(Xo)

S s B I

@)

t ~ Uniform({1,...
e ~N(0,I)
Take gradient descent step on

Ve ||€ — 69(\/5(75)(0 —+ vV 1-— 5[156, t)“2

: until converged

,T})

NGO —>»| €

X0

t

—>

N\

—>

Pl

noising

The Denoising Diffusion Probabilistic Models, Ho et al., 2020

—>

Xt

L=||e—e"||2<— €

—>

€g(x¢, t)

Compute regression loss

The Denoising Diffusion Algorithm

Algorithm 1 Training | Algorithm 2 Sampling
1: repeat 1: xr ~N(0,1)
2: x0~q(x0) 2: fort="T,...,1do
i- t~ %1(1301;)’“({1, .5 T}) 3 z~N(0,I)ift >1,elsez =0
€~ A .
5: Take gradient descent step on 4 X1 = \/%7 Xt — \}ﬁeﬂ(xt, t)) + otz
Vo ||e — eo(varxo + V1 — aze, t)“2 5: end for
6: return xg

6: until converged

The Denoising Diffusion Probabilistic Models, Ho et al., 2020

Classifier-free Guided Diffusion

\ Conditional
An astronaut riding /
a horse in a

photorealistic style

Diffusion

Classifier-free Guided Diffusion: estimate the gradient of the classifier
model with conditional diffusion models!

1
V., logf, (v|x;) = — ——
Xt gf(p YiXt \/1——(,_¥t
679 (xti t; }’) = (W + 1)69 (xt, t; y) — WEB (xt; t)

Linearly combine denoisers from an unconditional distribution and a conditional distribution

(69 (xtr t, y) — €y (xt' t))

Ho and Salimans, 2022

GANSs: Learning to play a two-party game

w [
Denoising Xol =>x:|—=|x,|— - |Xx Xo| = | X{| = | X
Diffusion 0 - 2 L 1 L

4 I
Generative
Adversarial

Networks 7| ——» —| %

(GANs)

g J

Generative Adversarial Networks Adversoral Nets NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution. No direct
way to do this!

Solution: Sample from a simple distribution we can easily sample from, e.g. random noise.
Learn transformation to training distribution.

Generative Adversarial Networks

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution. No direct

way to do this!

Solution: Sample from a simple distribution we can easily sample from, e.g. random noise.

Learn transformation to training distribution.

Output: Sample from
training distribution

Input: Random noise

e

i

Generator
Network

A

Z

Generative Adversarial Networks Adverearil Notse, NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution. No direct
way to do this!

Solution: Sample from a simple distribution we can easily sample from, e.g. random noise.
Learn transformation to training distribution.

sample z maps to which training distribution
training image -> can't :
learn by reconstructing
training images

e

i

Generator
Network

A

*

Input: Random noise Z

Generative Adversarial Networks Adverearil Notse, NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution. No direct
way to do this!

Solution: Sample from a simple distribution we can easily sample from, e.g. random noise.
Learn transformation to training distribution.

But we don’t know which
sample z maps to which
training image -> can’t
learn by reconstructing
training images

Output: Sample from
training distribution

Objective: generated images
should look “real”

i

Generator
Network

A

Input: Random noise Z

Generative Adversarial Networks Adverearil Notse, NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution. No direct
way to do this!

Solution: Sample from a simple distribution we can easily sample from, e.g. random noise.
Learn transformation to training distribution.

But we don’t know which
sample z maps to which

Output: Sample from Discriminator | Real?

e) training distribution Network Fake?
training image -> can't
learn by reconstructing 1 _
training images Coneaor gradient
Solution: Use a discriminator Netyyork v
network to tell whether the
generate image is within data Input: Random noise 4

distribution (“real”) or not

lan Goodfellow et al., “Generative

Training GANS: TWO-player game Adversarial Nets”, NIPS 2014

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images

lan Goodfellow et al., “Generative

Training GANS: TWO-player game Adversarial Nets”, NIPS 2014

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images

Real or Fake

Discriminator Network

Fake Images Real Images
(from generator) | -~ (from training set)
f

Generator Network

A

Random noise z

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.

lan Goodfellow et al., “Generative

Training GANS: TWO-player game Adversarial Nets”, NIPS 2014

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images

Real or Fake - o
\ Discriminator learning signal

Generator learning signal 4 Discriminator Network

Fake Images Real Images
(from generator) | -~ (from training set)
V1

Gevnerator Network

A

Random noise z

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.

Trammg GANS TWO-pIayer game lan Goodfellow et al., “Generative

Adversarial Nets”, NIPS 2014

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images

Train jointly in minimax game
Minimax objective function:

min max [Exrvpdm log Do, (z) + Eznp(z) log(1 — Dg, (Go, (Z)))]
g d

/
Generator Discriminat
objective iscriminator

objective

Trammg GANS TWO-pIayer game lan Goodfellow et al., “Generative

Adversarial Nets”, NIPS 2014
Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images
Train jointly in minimax game

Discriminator outputs likelihood in (0,1) of real image
Minimax objective function:

min max []Ex,\,pdam log Dg,(z) + E,~p(z) log(1l — De,(Go, (Z)))]
0 Oa — ' !

. . . 1
Discriminator output Discriminator output for
for real data x

generated fake data G(z)

1 1

Classify all real images Classify all generated
as real images as fake

Trammg GANS TWO-pIayer game lan Goodfellow et al., “Generative

Adversarial Nets”, NIPS 2014

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images

Train jointly in minimax game

Discriminator outputs likelihood in (0,1) of real image
Minimax objective function:

min max []Ex,\,pdam log Dy, (z) + E,~p(z) log(1l — De, (Go, (Z)))]
0, 64 —

I Generator: learn to fool
discriminator. Minimize

log(l - Ped (xgen))

Training GANs: Two-player game povorsarai N, NPS 2016

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images

Train jointly in minimax game

Discriminator outputs likelihood in (0,1) of real image
Minimax objective function:

min max [E:crvpdm log Do, (2) + E.np(z) log(1 — Dy, (G, (Z)))]
g d

- Discriminator (84) wants to maximize objective such that D(x) is close to 1 (real) and
D(G(z)) is close to 0 (fake)

- Generator (84) wants to minimize objective such that D(G(z)) is close to 1
(discriminator is fooled into thinking generated G(z) is real)

lan Goodfellow et al., “Generative

Training GANS: TWO-player game Adversarial Nets”, NIPS 2014

Minimax objective function:
min max [Evapdata log Dy, (z) + E,np(2) log(1 — De, (Go, (z)))]

0, 6a

Alternate between:
1. Gradient ascent on discriminator

II;&X [EmNPdam log Dy, (:U) + IIE‘:zwp(z) log(l - DGd(GG’g (z)))]
d

2. Gradient descent on generator
n%in E,p(z) log(1l — Dg,(Gg,(2)))

lan Goodfellow et al., “Generative

Training GANS: TWO-player game Adversarial Nets”, NIPS 2014

Minimax objective function:
min max [EWW log Do, () + E,p(z log(1 — Do, (Go, (z)))]

0, 6a

Alternate between:
1. Gradient ascent on discriminator

r%ax [Emdiata log Dy, (:U) +]Ezwp(z) log(l — Dg, (Geg (z)))]
d

2. Gradient descent on generator

. When sample is likely ' ‘ -
min E,p(z)log(1 — Dg, (G, (2))) fake, want to learn from |
9 it to improve generator .

In practice, optimizing this generator objective (ove to the right on X :
axis).
does not work well! |

lan Goodfellow et al., “Generative

Training GANS: TWO-player game Adversarial Nets”, NIPS 2014

Minimax objective function:
min max [Ewdaw log Do, () + E,p(z log(1 — Do, (Go, (z)))]

0, 6a

Alternate between:

1. Gradient ascent on discriminator
Gradient signal

H}gaX [Emwpdaw log Dy, (x) +]Ezwp(z) log(1 — Dg, (Geg (z)))] dominated by region
d where sample is

2. Gradient descent on generator already QO\Od

) When sample is likely -«
I%IH]Ezrvp(z) log(1 — Dy, (Geg (2))) fake, want to learn from
g it to improve generator .|
(move to the righton X -

axis). A1

In practice, optimizing this generator objective
does not work well!

But gradient in this
region is relatively flat!

lan Goodfellow et al., “Generative

Training GANS: TWO-player game Adversarial Nets”, NIPS 2014

Minimax objective function:
min max []Emwpdm log Do, () + E,p(z log(1 — Do, (Go, (z)))]

0, 6a

Alternate between:
1. Gradient ascent on discriminator

r%ax [wavpdata log Dy, (:L’) +]Ezwp(z) log(l — Dg, (G(?g (z)))]
d

2. Instead: Gradient ascent on generator, different

objective max B,z log(De,(Go, (2)))

N o v v e

Instead of minimizing likelihood of discriminator being correct, now High gradile'nt signal
maximize likelihood of discriminator being wrong.
Same objective of fooling discriminator, but now higher gradient | .

signal for bad samples => works much better! Standard in practice. ‘if@W‘éjFadié"ﬁt signal

lan Goodfellow et al., “Generative

Training GANS: TWO-player game Adversarial Nets”, NIPS 2014

Putting it together: GAN training algorithm

for number of training iterations do

for k steps do
e Sample minibatch of m noise samples {z(%), ..., z(™)} from noise prior p,(z).
e Sample minibatch of m examples {z(!),..., £(™} from data generating distribution
pdata(a’)-
e Update the discriminator by ascending its stochastic gradient:
1 & . .
Voum 2 [10g D, (2?) +log(1 — Dy, (Go, ("))]
end for
e Sample minibatch of m noise samples {z(*), ..., z(™)} from noise prior p,(z).

e Update the generator by ascending its stochastic gradient (improved objective):
1 — :
Vo, Zl log(D, (G, (2")))

end for

Training GANs: Two-player game

Putting it together: GAN training algorithm

Some find k=1
more stable,
others use k > 1,
no best rule.

Followup work
(e.g. Wasserstein
GAN, BEGAN)
alleviates this
problem, better
stability!

end for

for number of training iterations do

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Update
~ discriminator

tf stcps Ho)
e Sample minibatch of m noise samples {z(1), ..., z(™)} from noise prior p,(z).
e Sample minibatch of m examples {z(!),..., £(™} from data generating distribution
pdata(m)-
e Update the discriminator by ascending its stochastic gradient:
1 & . .
Voum 2 [10g D, (2?) +log(1 — Dy, (Go, ("))]
end for
e Sample minibatch of m noise samples {z(*), ..., z(™)} from noise prior p,(z). 7

e Update the generator by ascending its stochastic gradient (improved objective):

1 & ;
Vo, — ; log(Ds, (Go, (2)))

Update
generator

lan Goodfellow et al., “Generative

Training GANS: TWO-player game Adversarial Nets”, NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Real or Fake

Discriminator Network

Generator Network

Random noise

A

Z

e
Fake Images Real Images
(from generator) | -~ (from training set)
f

After training, use generator network to
generate new images

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Generative Adversarial Nets
Generated samples

Nearest neighbor from training set

Figures copyright lan Goodfellow et al., 2014. Reproduced with permission.

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Generative Adversarial Nets
Generated samples (CIFAR-10)

_—

Nearest neighbor from training set

Figures copyright lan Goodfellow et al., 2014. Reproduced with permission.

Generative Adversarial Nets: Convolutional Architectures

Generator is an upsampling network with fractionally-strided convolutions
Discriminator is a convolutional network

Architecture guidelines for stable Deep Convolutional GANs

e Replace any pooling layers with strided convolutions (discriminator) and fractional-strided
convolutions (generator).

e Use batchnorm in both the generator and the discriminator.
e Remove fully connected hidden layers for deeper architectures.
e Use ReLU activation in generator for all layers except for the output, which uses Tanh.

e Use LeakyReLU activation in the discriminator for all layers.

Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016

2019: BigGAN

Brock et al., 2019

Deep Generative Models

VAE

Denoising
Diffusion

Generative
Adversarial
Networks
(GANs)

_>—>

Z—»—»f
XT Xz| = | X1| = | %o

=N

Generative Models: Closing Thoughts

e Learn without supervision = ability to leverage large, raw dataset
e Realism: Generate plausible samples given dataset

e Diversity: Generate diverse samples (avoid mode collapse)

e Controllability: Generate based on instruction / conditioning

e Healthy combination of theory and deep learning magic

e Generative Model is extremely hot in 2023. More will come ...

Supervised
Learning

Train Input: {X, Y}

Learning output:
f:X =Y, P(ylx)

e.g. classification

LUy

—Jp Cat

Lion

1

Unsupervised

Learning
Input: {X}

Learning
output: P(x)

Example: Clustering,
density estimation,
generative modeling

o o E Em
o5 LI
DDD% o ol
o -

[]
]

-]
O ..l:
Em]

Self-Supervised Learning:
Create your own supervision

Reinforcement
Learning
Evaluative

feedback in the
form of reward

No supervision on
the right action

\2 Rewany
Interpreter
% \(:EJ

Agent

Self-supervised Learning

In short: still supervised learning, with two important distinctions:

1. Learnfrom labels generated autonomously instead of human annotations.

2. The goalis to learn good representations for other target tasks.

dataset (no labels)

pre-training
model

pretext
task

knowledge
transfer

] - target
task

target model

Source: Noroozi et al., 2018

Self-supervised pretext tasks

Example: learn to predict image transformations / complete corrupted images

m ¢ B

image completion rotation prediction “jigsaw puzzle” colorization

1. Solving the pretext tasks allow the model to learn good features.
2. We can automatically generate labels for the pretext tasks.

Generative vs. Self-supervised Learning

e wasanll ﬂ o ‘.;A ool A v B ; AMER\ R ’_. 'fl.,,‘
al, gl X =L
: . ! - .___ Zas \ e\ :

DOLLAR

In God

Li__l._ we frut ﬂ

Left: Drawing of a dollar bill from memory. Right: Drawing subsequently made with a
dollar bill present. Image source: Epstein, 2016

Learning to generate pixel-level details is often unnecessary; learn high-level
semantic features with pretext tasks instead

Source: Anand, 2020

https://aeon.co/essays/your-brain-does-not-process-information-and-it-is-not-a-computer
https://ankeshanand.com/blog/2020/01/26/contrative-self-supervised-learning.html

How to evaluate a self-supervised learning method?

We usually don’t care about the performance of the self-supervised learning

task, e.g., we don’t care if the model learns to predict image rotation
perfectly.

Evaluate the learned feature encoders on downstream target tasks

How to evaluate a self-supervised learning method?

feature

self-supervised extractor
E> Ieafning E> (e.g., a
convnet)
lots of
unlabeled
data ;‘ 90°
—

conv fc

1. Learn good feature extractors from
self-supervised pretext tasks, e.g.,
predicting image rotations

How to evaluate a self-supervised learning method?

feature
I:> self-supervised I:> extractor |:> supervised : evaluate on the
learning (e.g., a learning target task

convnet)

e.g. classification, detection
lots of

unlabeled
data ;\ 90° 4 bird
smaII amount of

labeled data on the

conv fc target task Ilnear
classifier
1. Learn good feature extractors from 2. Attach a shallow network on the
self-supervised pretext tasks, e.g., feature extractor; train the shallow
predicting image rotations network on the target task with small

amount of labeled data

roader picture

Today’s lecture

computer vision

Doersch et al., 2015

robot / reinforcement learning

Dense Object Net (Florence
and Manuelli et al., 2018)

language modeling

Language Models are Few-Shot Learners

Tom B. Brown" Benjamin Mann" Nick Ryder" Melanie Subbiah*

Jared Kaplan' Prafulla Dhariwal ~ Arvind Neelakantan ~ Pranav Shyam Girish Sastry

Amanda Askell Sandhini Agarwal Ariel Herbert-Voss Gretchen Krueger Tom Henighan
Rewon Child Aditya Ramesh M.Ziegler Jeffrey Wu Clemens Winter
Christopher Hesse Mark Chen Eric Sigler Mateusz Litwin Scott Gray
Benjamin Chess Jack Clark Christopher Berner
Sam McCandlish Alec Radford Tiya Sutskever Dario Amodei
OpenAl
Abstract

Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training
ona large corpus of text followed by fine-tuning on a specific task. While typically task-agnostic
in architecture, this method still requires task-specific finc-tuning datasets of thousands or tens of
thousands of examples. By contrast, humans can generally perform a new language task from only
a few examples or from simple instructions — something which current NLP systems still largely
struggle to do. Here we show that scaling up language models greatly improves task-agnostic,
few-shot performance, sometimes even reaching competitiveness with prior state-of-the-art fine-
tning approaches. Specifically, we train GPT-3, an autoregressive language model with 175 billion
‘parameters, 10x more than any previous non-sparse language model, and test its performance in
the few-shot setting. For all tasks, GPT-3 is applied without any gradient updates or fine-tuning,
‘with tasks and few-shot demonstrations specified purely via text interaction with the model. GPT-3
achieves strong performance on many NLP datasets, including translation, question-answering, and
cloze tasks, as well as several tasks that require on-the-fly reasoning or domain adaptation, such as
unscrambling words, using a novel word in a sentence, or performing 3-digit arithmetic. At the same.
time, we also identify some datasets where GPT-3's few-shot learning still struggles, as well as some
datascts where GPT3 faces methodological issues related to training on large web corpora. Finally,
we find that GPT-3 can generate samples of news articles which human evaluators have difficulty
distinguishing from articles written by humans. We discuss broader societal impacts of this finding
and of GPT-3 in general.

GPT3 (Brown, Mann, Ryder,
Subbiah et al., 2020)

speech synthesis

ot @ 0000000000000 00 00

00000000000 00000
Hden o o o ¢ gy P |
el XXX D 00000000

Hddn o 6 0 0000000 d0

=N AN NN

mt® 000000000000 0000

/1
I

Wavenet (van den Oord et al.,
2016)

Today’s Agenda

Pretext tasks from image transformations

- Rotation, inpainting, rearrangement, coloring
Contrastive representation learning

- Intuition and formulation

- Instance contrastive learning: SimCLR and MOCO
- Sequence contrastive learning: CPC

Today’s Agenda

Pretext tasks from image transformations
- Rotation, inpainting, rearrangement, coloring

Pretext task: predict rotations

90° rotation 270° rotation 180° rotation 0° rotation 270° rotation

Hypothesis: a model could recognize the correct rotation of an object only if it
has the “visual commonsense” of what the object should look like
unperturbed.

(Image source: Gidaris et al. 2018)

https://arxiv.org/abs/1803.07728

Pretext task: predict rotations

> 2(x,y=0) | =
Rotate 0 degrees Rotate(‘j image: X" Se|f-SUperVISEd
learning by rotating the
> (X, y=1) —»ﬁw > entire input images.

Rotate 90 degrees
Rotated image: X'

‘ The model learns to
> o(X,y=2) > ‘@ > predict which rotation
is applied (4-way
classification)

Rotate 180 degrees
Rotated image: X

—» g(X,y=3) —ngsﬂ

Rotate 270 degrees

Rotated image: X°
(Image source: Gidaris et al. 2018)

https://arxiv.org/abs/1803.07728

Pretext task: predict rotations

| Objectives:

ConvNet ‘ Maximize prob.
model F(.) 0 |

.~ Self-supervised
. learning by rotating the

onvNe ‘ aximize pro! H H H
> g(X.y=1) T Raee e " il o .~ entire input images.

> g(X,y=0)

‘ Predict 0 degrees rotation (y=0)

Rotate 0 degrees i
Rotated image: X*

Rotate 90 degrees | Predict 90 degrees rotation (y=1) ‘
Rotated image: X ‘

‘ . The model learns to
ConvN Ximiz 5 i i i
> m(())r(liel ;E.) p Ma ;rzn(;zp)rob \ prEd|Ct Wh|Ch rotation
is applied (4-way
. classification)

‘ Predict 180 degrees rotation (y=2) |
|

|
z . ConvNet Maximize prob.
L g(X,y=3) |—» |\§L§% model F(.) — F3(X3I; |

» g(X,y=2) >

Rotate 180 degrees
Rotated image: X

Rotate 270 degrees | Predict 270 degrees rotation (y=3) |

~ (Image source: Gidaris et al. 2018)

Rotated image: X~

https://arxiv.org/abs/1803.07728

Evaluation on semi-supervised learning

Test accuracy

100

90

80

701

60

501

40y

301

20

i

/

Ours - Sem

Supervised

i-supervised

20 100 400
Training examples

1000

5000

Self-supervised learning on
CIFAR10 (entire training set).

Freeze convl + conv2

Learn conv3 + linear layers with
subset of labeled CIFAR10 data
(classification).

(Image source: Gidaris et al. 2018)

https://arxiv.org/abs/1803.07728

Transfer learned features to supervised learning

Classification Detection Segmentation
(%mAP) (%mAP) (%mloU)

Trained layers | fc6-8 all all all Pretrained with full
ImageNet labels ‘ 78.9 79.9 56.8 48.0 ImageNet su per\“Slon
Random 53.3 434 19.8 ..
Random rescaled Krihenbiihl et al. (2015) | 392 56.6 45.6 32.6 No pretraining
Egomotion (Agrawal et al., 2015) 310 542 439
Context Encoders (Pathak et al., 2016b) 346 56.5 44.5 29.7 . .
Tracking (Wang & Gupta, 2015) 556 63.1 474 Self-supervised learning on
Context (Doersch et al., 2015) 55.1 65.3 51.1 . .
Colorization (Zhang et al., 2016a) 615 65.6 46.9 35.6 ImageNEt (entlre trammg
BIGAN (Donahue et al., 2016) 523 60.1 46.9 34.9 with AlexNet.
Jigsaw Puzzles (Noroozi & Favaro, 2016) - 67.6 53.2 37.6 Set) t exNet
NAT (Bojanowski & Joulin, 2017) 567 653 494
Split-Brain (Zhang et al., 2016b) 630 67.1 46.7 36.0 .
ColorProxy (Larsson et al., 2017) 65.9 38.4 Finetune on labeled data
Counting (Noroozi et al., 2017) - 67.7 51.4 36.6 from Pascal VOC 2007.

[(Ours) RotNet 70.87 7297 544 39.1 |

Self-supervised learning with rotation source: Gidaris et al. 2018

prediction

https://arxiv.org/abs/1803.07728

Visualize learned visual attentions

Convl 27 x 27 Conv313 x 13 Conv56 X 6 Convl 27 x 27 Conv313 x 13 Conv56 x 6

(a) Attention maps of supervised model (b) Attention maps of our self-supervised model

(Image source: Gidaris et al. 2018)

https://arxiv.org/abs/1803.07728

Pretext task: predict relative patch locations

Example:

(Image source: Doersch et al., 2015)

https://arxiv.org/abs/1505.05192

Pretext task: solving “jigsaw puzzles”

-~

N

L |

w

B

(]

Permutation Set

index permutation Reorder patches according to
the selected permutation

L |

o]

TR S B

64 9.4,68325,1,7

~O

) ANERS V

11x11x96 5x5x256 3x3x384 3x3x384 3x3x256

(Image source: Noroozi & Favaro, 2016)

https://arxiv.org/abs/1603.09246

Transfer learned features to supervised learning

Table 1: Results on PASCAL VOC 2007 Detection and Classification. The results
of the other methods are taken from Pathak et al. [30].

Method Pretraining time Supervision Classification Detection Segmentation
Krizhevskyet al. [25] 3 days 1000 class labels 78.2% 56.8% 48.0%
Wang and Gupta[39] 1 week motion 58.4% 44.0% -
Doersch et al. [10] 4 weeks context 55.3% 46.6% -
Pathak et al. [30] 14 hours context 56.5% 44.5% 29.7%
Ours 2.5 days context 67.6% 53.2% 37.6%

“Ours” is feature learned from solving image Jigsaw puzzles (Noroozi & Favaro,
2016). Doersch et al. is the method with relative patch location

(source: Noroozi & Favaro, 2016)

https://arxiv.org/abs/1603.09246

Pretext task: image coloring

F
. wz:';‘ V,,g—
Grayscale image: L channel Color information: ab channels
X € RHXWXl ?E]RHXWX2

T

Source: Richard Zhang / Phillip
Isola

Pretext task: image coloring

Grayscale image: L channel

X c RHXWXI

L

Concatenate (L,ab) channels

(X,Y)

ab

Source: Richard Zhang / Phillip
Isola

Transfer learned features to supervised learning

Top-1 Accuracy

@@ Places-labels ©-@ Pathak et al.
50 _|IHE ImageNet-labels @-@® Zhang et al.

@@ Kraehenbuehletal. OO Owens et al.

V-V Gauss ©-@® Donahue et al. . .
45 ||©-© Doersch et al. Q< Split-Brain Auto(cl,cl) SElf—SUperVISEd |ea rnlng on

@-® Wang & Gupta . o e

_ ImageNet (entire training set).
40 f supervised
35 Use concatenated features
30| “— this paper from F;and F,
25| Labeled data is from the
2o Places (Zhou 2016).
15 . . L . "
Co(\\\x 900\'X (/Q(\“’L Qoo\q' COO\‘Q) Co(\“ Co(\\‘c) Qoo\c)
Layer

Source: Zhang et al., 2017

https://arxiv.org/abs/1611.09842

Pretext task: image coloring

Source: Richard Zhang / Phillip
Isola

Pretext task: image coloring

Source: Richard Zhang / Phillip
Isola

Pretext task: video coloring

Idea: model the temporal coherence of colors in videos

reference frame how should | color these frames?

Source: Vondrick et al.,

2018

https://arxiv.org/abs/1806.09594

Pretext task: video coloring

Idea: model the temporal coherence of colors in videos

reference frame how should | color these frames?

Hypothesis: learning to color video frames should allow model to learn to

track regions or objects without labels!
Source: Vondrick et al.,

2018

https://arxiv.org/abs/1806.09594

Learning to color videos

Reference Frame Input Frame

‘L Learning objective:
;“' Y

| Establish mappings
between reference and
target frames in a learned
feature space.

Use the mapping as
“pointers” to copy the
correct color (LAB).

Reference Colors Target Colors

Source: Vondrick et al.,
2018

https://arxiv.org/abs/1806.09594

Learning to color videos

Grayscale Video Embeddings
Reference A B A I ¢ ACi Reference
Frame = © @ j\; o Colors
i l
Target f Predicted
Frame © A A/fj o A ; | Colors

attention map on the reference
frame

__exp(fff))
> exp (fi f)

Source: Vondrick et al.,

2018

https://arxiv.org/abs/1806.09594

Learning to color videos

Grayscale Video

Reference
Frame

Target
Frame

attention map on the reference

frame

A
o

Embeddings

L\

exp (fI f5)

A
L
\

N |

g
® 4
IAJ'

A Ci Reference
o Colors

Predicted
® Agj Colors

B D €XP (fgfj)

predicted color = weighted
sum of the reference color

Yj = Z Ajje
0

Source: Vondrick et al.,
2018

https://arxiv.org/abs/1806.09594

Learning to color videos

Grayscale Video Embeddings
Reference A | Af g A peference
Frame ® I ® Colors
\
J-,»% :
Target A Predicted
Frame © A ® Ay, ® Ay Colors
j
attention map on the reference predicted color = weighted loss between predicted color
frame sum of the reference color and ground truth color

T
exp (f+ f4 : o
Ay = D (f J;{) Yj = ZAz'jCi mamzﬁ(yﬂ’cﬂ)
Dk €XP (fk fj) i J
Source: Vondrick et al.,
2018

https://arxiv.org/abs/1806.09594

Colorizing videos (qualitative)

reference frame target frames (gray) predicted color

Source: Google Al blog
post

https://ai.googleblog.com/2018/06/self-supervised-tracking-via-video.html

Colorizing videos (qualitative)

reference frame target frames (gray) predicted color

Source: Google Al blog
post

https://ai.googleblog.com/2018/06/self-supervised-tracking-via-video.html

Tracking emerges from colorization

Propagate segmentation masks using learned attention

Source: Google Al blog
post

https://ai.googleblog.com/2018/06/self-supervised-tracking-via-video.html

Tracking emerges from colorization

Propagate pose keypoints using learned attention

— —
——
———
—
——
G e
————
———
—_——
——
e —
——
El
c
.\

Source: Google Al blog
post

https://ai.googleblog.com/2018/06/self-supervised-tracking-via-video.html

Summary: pretext tasks from image transformations

® Pretext tasks focus on “visual common sense”, e.g., predict rotations,
inpainting, rearrangement, and colorization.

e The models are forced learn good features about natural images, e.g.,
semantic representation of an object category, in order to solve the pretext
tasks.

e We don’t care about the performance of these pretext tasks, but rather how
useful the learned features are for downstream tasks (classification, detection,

segmentation).

Summary: pretext tasks from image transformations

® Pretext tasks focus on “visual common sense”, e.g., predict rotations,
inpainting, rearrangement, and colorization.

e The models are forced learn good features about natural images, e.g.,
semantic representation of an object category, in order to solve the pretext
tasks.

e We don’t care about the performance of these pretext tasks, but rather how
useful the learned features are for downstream tasks (classification, detection,

segmentation).

® Problems: 1) coming up with individual pretext tasks is tedious, and 2) the
learned representations may not be general.

Pretext tasks from image transformations

w9 u B

image rotation “jigsaw puzzle” colorization
completion prediction

Learned representations may be tied to a specific pretext task!
Can we come up with a more general pretext task?

A more general pretext task?

same object

A more general pretext task?

same object

different object

Contrastive Representation Learning

attract

Today’s Agenda

Contrastive representation learning

- Intuition and formulation

- Instance contrastive learning: SimCLR and MOCO
- Sequence contrastive learning: CPC

Contrastive Representation Learning

attract

Contrastive Representation Learning
|

L

L reference
CE+

positive

L negative

A formulation of contrastive learning

What we want:

score(f(x), f(x™)) >> score(f(x), f(z7))

x: reference sample; x* positive sample; x negative sample

Given a chosen score function, we aim to learn an encoder

function f that yields high score for positive pairs (x, x*) and low
scores for negative pairs (x, x).

A formulation of contrastive learning

Loss function given 1 positive sample and N - 1 negative samples:

L=-FEx

exp(s(f(z), f ($+))

log

exp(s(f(z),

f(z

)+ 30 exp(s(f(z),

flz

i)

A formulation of contrastive learning

Loss function given 1 positive sample and N - 1 negative samples:

exp(s(f(z), f(-’B*))
® exp(s(f(), (1)) + 300 eX]D(S(f(fl?) f(i)

L=—-Ex |log

A formulation of contrastive learning

Loss function given 1 positive sample and N - 1 negative samples:

L=-FEx

exp(s(f(z), f(ﬂv*))

log _
exp(s(f(2), f(z+)) + S0 exp(s(f (@), £ (z7))
score for the positive score for the N-1 negative
pair pairs

This seems familiar ...

A formulation of contrastive learning

Loss function given 1 positive sample and N - 1 negative samples:

= —-Ex log

exp(s(f(z), f(w+))

exp(s(f(z),

f(z

) + 350, exp(s(f (@),

score for the positive

pair

This seems familiar ...

flz

).

Cross entropy loss for a N-way softmax classifier!

l.e., learn to find the positive sample from the N samples

pairs

score for the N-1 negative

A formulation of contrastive learning

Loss function given 1 positive sample and N - 1 negative samples:

exp(s(f(z), f($+))
exp(s(f(x), f(2+)) + 272, exp(s(f(2), f(z))

Commonly known as the InfoNCE loss (van den Oord et al., 2018)

L = —EX lOg

A lower bound on the mutual information between f(x) and f(x*)
MI[f(z), f(z*)] - log(N) > ~L
The larger the negative sample size (N), the tighter the bound

Detailed derivation: Poole et al., 2019

https://arxiv.org/abs/1807.03748
https://arxiv.org/pdf/1905.06922.pdf

SImCLR: A Simple Framework for Contrastive Learning

Cosine similarity as the score function:

$(u, V) = e

Use a projection network h(-) to project
features to a space where contrastive learning

is applied

Generate positive samples through data

augmentation:
® random cropping, random color
distortion, and random blur.

Maximize agreement

Zi < > Zj
o fg0)
h; <— Representation —> h;
fQ) fQ)
T i

Source: Chen et al.,
2020

https://arxiv.org/pdf/2002.05709.pdf

SimCLR: generating positive samples from data
augmentation

(b) Crop and resize (c) Crop, resize (and flip) (d) Color distort. (drop) (e) Color distort. (jitter)

(f) Rotate {90°,180°,270°} (g) Cutout (h) Gaussian noise (i) Gaussian blur (j) Sobel filtering

Source: Chen et al.,
2020

https://arxiv.org/pdf/2002.05709.pdf

Algorithm 1 SimCLR’s main learning algorithm.
S | m C I_ R input: batch size IV, constant 7, structure of f, g, 7.

for sampled minibatch {z;}_, do
forallk e {1,....N}do

draw two augmentation functions t ~ 7, t' ~T
/ # the first augmentation

Tok—1 = t(xk)

Generate a positive pair _—"

hor—1 = J (@2k—1) # representation
by sampling data Zor—1 = g(har_1) # projection
augmentation functions # the second augmentation
T Top = t’(wk)
hoy = f(T2k) # representation
Zor = g(hax) # projection
end for
foralli € {1,...,2N}andj € {1,...,2N} do
si; = z; zi/(|zillll%]) # pairwise similarity
end for

exp(s;,5/7)
N Likozi) exp(ss,6/T)

L= 30 [6(2k—1,2k) + £(2k, 2k—1)]
update networks f and g to minimize £

end for

return encoder network f(-), and throw away g(-)

define £(z, j) as £(z,7)=—log 52
k

Source: Chen et al.,
2020

https://arxiv.org/pdf/2002.05709.pdf

SImMCLR

Generate a positive pair
by sampling data
augmentation functions

Algorithm 1 SimCLR’s main learning algorithm.

input: batch size IV, constant 7, structure of f, g, 7.
for sampled minibatch {z;}_, do

forallk € {1...

.. Nldo

draw two augmentation functions t ~ 7, t' ~T
/ # the first augmentation

Tok—1 = t(xk)

— Pok—1 = J(®2k—1)
zok—1 = g(hog—1)
the second augmentation
i:gk = t’(wk)
hor = f(®2x)
2ok = g(hak)
end for

representation
projection

representation
projection

foralli € {1,...,2N}andj € {1,...,2N} do
sij =z zi/(|zillllz]) #

end for
define (3, j) as

pairwise similarity

exp(s;,5/7)

K(Z’]) = IOg Ei

N Likozi) exp(ss,6/T)

L= [6(2k—1,2k) + £(2k, 2k —1)]
update networks f and g to minimize £

end for

return encoder network f(-), and throw away g(-)

InfoNCE loss:

Use all non-positive
samples in the batch
as x-

Source: Chen et al.,
2020

https://arxiv.org/pdf/2002.05709.pdf

SImMCLR

et

Generate a positive pair
by sampling data
augmentation functions

Iterate through and use
each of the 2N sample as
reference, compute
average loss

Algorithm 1 SimCLR’s main learning algorithm.

input: batch size IV, constant 7, structure of f, g, 7.
for sampled minibatch {z;}_, do

forallk € {1...

.. Nldo

draw two augmentation functions t ~ 7, t' ~T

the first augmentation

Tok—1 = t(xk)

/

hok—1 = [(®2k-1)

zok—1 = g(hok-1)
the second augmentation

i:gk = t’(wk)

hop, = f(x2r)
zok = g(hax)
end for

representation
projection

representation
projection

foralli € {1,...,2N}andj € {1,...,2N} do
sij =z zi/(|zillllz]) #

end for
define (3, j) as

pairwise similarity

exp(s;,5/7)

K(Z’]) = IOg Ei

N Likozi) exp(ss,6/T)

—— L =00 [6(2k—1,2k) + £(2k, 2k—1)]

update networks f and g to minimize £

end for

return encoder network f(-), and throw away g(-)

InfoNCE loss:

Use all non-positive
samples in the batch
as x-

Source: Chen et al.,
2020

https://arxiv.org/pdf/2002.05709.pdf

T

SimCLR: mini-batch training o F

S;5 —
N PATNEA
“Affinity matrix”
ﬁ——» encoder Z < RzNXD
list of positive - 2N
pairs

> encoder

Each 2k and 2k +1
element is a positive 2N
pair

SImCLR: mini-batch training 5i5 = Zi %
W el sl

“Affinity matrix”

— encoder — Z C RzNXD .!
list of positive ., E 2N
pairs

—_» encoder —/]
Each 2k and 2k + 1

element is a positive 2N

air e .
P .= classification label for each
row

Training linear classifier on SImCLR features

*Supervised %*SimCLR (4x)
__ 75F b B .
X .- KSImCLR (2x) Train feature encoder on ImageNet
) oCPCv2-L (entire training set) using SImCLR.
S 7OF %simCLR MoCo (4x)
3 oPIRL-coX°MC
< q oMoCo (2x) AMDIM Freeze feature encoder, train a linear
g; | qCPCv2 PIRL-ens. classifier on top with labeled data.
= PIRL e
5 eBigBiGAN
%) 60 L QMOCO
z LA
S
£ A eRotation
o9 e|nstDisc
25 50 100 200 400 626

Number of Parameters (Millions)

Source: Chen et al.,
2020

https://arxiv.org/pdf/2002.05709.pdf

Semi-supervised learning on SImCLR features

Label fraction

Method Architecture 1% 10%
Top 5

Supervised baseline ResNet-50 48.4 80.4
Methods using other label-propagation:

Pseudo-label ResNet-50 516 824
VAT+Entropy Min. ResNet-50 470 834
UDA (w. RandAug) ResNet-50 - 88.5
FixMatch (w. RandAug) ResNet-50 - 89.1
S4L (Rot+VAT+En. M.) ResNet-50 (4 %) - 91.2
Methods using representation learning only:

InstDisc ResNet-50 392 774
BigBiGAN RevNet-50 (4x) 552 78.8
PIRL ResNet-50 572 838
CPC v2 ResNet-161(x) 779 912
SimCLR (ours) ResNet-50 75.5 87.8
SimCLR (ours) ResNet-50 2x) 83.0 91.2

SimCLR (ours) ResNet-50 (4x)

Table 7. ImageNet accuracy of models trained with few labels.

Train feature encoder on ImageNet
(entire training set) using SimCLR.

Finetune the encoder with 1% / 10%
of labeled data on ImageNet.

Source: Chen et al.,
2020

https://arxiv.org/pdf/2002.05709.pdf

SimCLR design choices: projection head

60 I II II Linear / non.-linear p.rojection heads improve
E,lso Projection representation learning.
= B Linear
0 : Eﬁﬂe"”ear | | | | I A possible explanation:
> 0&%

=0 = " © ® contrastive learning objective may discard
> 2 1 . .
oo useful information for downstream tasks
Projection output dlmensmnallty . . .
® representation space z is trained to be

— Voumgemen invariant to data transformation.
{ 0] o0] ® by leveraging the projection head g(*), more
he + Representation —» information can be preserved in the h
f(ég Gg) representation space
t“?* 7 Hff

Source: Chen et al.,

2020

https://arxiv.org/pdf/2002.05709.pdf

SIimCLR design choices: large batch size

Large training batch size is crucial for

SimCLR!
65.0
62.5 .

— Large batch size causes large memory

260.0 . . .

S Batch N footprint during backpropagation:
57.5 ﬁg requires distributed training on TPUs
550 1024 (ImageNet experiments)

2048
52.5 4096

8192
500 [LT ([[]]

100 200 300 400 500 600 700 800 900 1000
Training epochs

Figure 9. Linear evaluation models (ResNet-50) trained with differ-

ent batch size and epochs. Each bar is a single run from scratch. '
Source: Chen et al.,

2020

https://arxiv.org/pdf/2002.05709.pdf

Momentum Contrastive Learning (MoCo)

contrastive loss Key differences to SimCLR:

no_grad
similarity / e Keep arunning queue of keys (negative
samples).
q kO kl k2 XX e Compute gradients and update the
queue encoder only through the queries.
e Decouple min-batch size with the number
momentum .
encoder oncodar of key.s. can support a large number of
negative samples.
ke ke ke
ey Ty Ty Too ...

Source: He et al., 2020

https://arxiv.org/abs/1911.05722

Momentum Contrastive Learning (MoCo)

contrastive loss no_gra d

similarity /

q ko k1 ko ...
queue
el momentum
encoder
ke ke ke
query Yy Yy Yy
x Lo~ Ty~ Tg 5 ...

Key differences to SimCLR:

Keep a running queue of keys (negative
samples).

Compute gradients and update the
encoder only through the queries.

Decouple min-batch size with the number
of keys: can support a large number of
negative samples.

The key encoder is slowly progressing through
the momentum update rules:

O +— mby + (1 — m)Qq

Source: He et al., 2020

https://arxiv.org/abs/1911.05722

Algorithm 1 Pseudocode of MoCo in a PyTorch-like style.

f_qg, f_k: encoder networks for query and key
I\/I OCO # queue: dictionary as a queue of K keys (CxK)
m: momentum
t: temperature
f_k.params = f_g.params # initialize
H : for x in loader: # load a minibatch x with N samples
Generate a pOSItlve palr X_gq = aug(x) # a randomly augmented version
. x_k = aug(x) # another randomly augmented version
by sampling data ~.
. . g = f_qg.forward(x_qg) # queries: NxC
augmenta“on functions k = f k.forward(x k) # kevs: NxC
k = k.detach() # no gradient to keys]
positive logits: Nx1 :
. 1l_pos = bmm(g.view(N,1,C), k.view(N,C,1)) Use the runnlng queue
No gradient through } rerE Lo R <« of keys as the negative
ey e 1 = .vi N,C), .vi C,K
the p05|t|ve Sample _neg mm (qg.view (), queue.view ()) Samples

logits: Nx(1+K)
logits = cat([l_pos, 1l_neg], dim=1)

contrastive loss, Egn. (1)

labels = zeros(N) # positives are the 0-th
: D —— N
loss = CrossEntropyLoss (logits/t, labels) I fONCE IOSS

SGD update: query network
loss.backward ()
update (f_g.params)

momentum update: key network Update f k through
f_k.params = mxf_k.params+ (1-m)*f_qg.params | €——— -
momentum

Update the FIFO negatlve # update dictionary
-

enqueue (queue, k) # enqueue the current m1n1batch|
sample queue

dequeue (queue) # dequeue the earliest minibatch

bmm: batch matrix multiplication; mm: matrix multiplication; cat: concatenation. S ource: H e et a I 2 O 2 O
. .y

https://arxiv.org/abs/1911.05722

“MoCo V2~

Improved Baselines with Momentum Contrastive Learning

Xinlei Chen Haoqi Fan Ross Girshick Kaiming He
Facebook AI Research (FAIR)

A hybrid of ideas from SimCLR and MoCo:
® From SimCLR: non-linear projection head and strong data
augmentation.
® From MoCo: momentum-updated queues that allow training on a
large number of negative samples (no TPU required!).

Source: Chen et al.,
2020

https://arxiv.org/pdf/2002.05709.pdf

MoCo vs. SImCLR vs. MoCo V2

unsup. pre-train ImageNet VOC detection

case MLP aug+ cos epochs acc. APsyg AP APys
supervised 76.5 81.3 53.5 58.8
MoCo vl 200 60.6 81.5 559 62.6
(a) v 200 66.2 82.0 564 62.6

®) v 200 63.4 82.2 56.8 63.2

(©) v v 200 67.3 82.5 572 639

(d v v v 200 67.5 824 57.0 63.6

(e v v v 800 71.1 82.5 574 64.0

Table 1. Ablation of MoCo baselines, evaluated by ResNet-50 for
(1) ImageNet linear classification, and (ii) fine-tuning VOC object
detection (mean of 5 trials). “MLP”: with an MLP head; “aug+”:
with extra blur augmentation; “cos”: cosine learning rate schedule.

Key takeaways:

Non-linear projection head and strong
data augmentation are crucial for
contrastive learning.

Source: Chen et al.,
2020

https://arxiv.org/pdf/2002.05709.pdf

MoCo vs. SImCLR vs. MoCo V2

unsup. pre-train ImageNet

case MLP aug+ ~cos epochs batch acc.
MoCo v1 [6] 200 256 60.6
SimCLR [2] v v v 200 256 61.9
SimCLR [2] v v v 200 8192 66.6
MoCo v2 v v v 200 256 67.5
results of longer unsupervised training follow:

SimCLR [2] v v v 1000 4096 69.3
MoCo v2 v v v 800 256 71.1

Table 2. MoCo vs. SimCLR: ImageNet linear classifier accuracy
(ResNet-50, 1-crop 224 x224), trained on features from unsuper-
vised pre-training. “aug+” in SImCLR includes blur and stronger
color distortion. SimCLR ablations are from Fig. 9 in [2] (we
thank the authors for providing the numerical results).

Key takeaways:

Non-linear projection head and strong
data augmentation are crucial for
contrastive learning.

Decoupling mini-batch size with negative
sample size allows MoCo-V2 to
outperform SimCLR with smaller batch
size (256 vs. 8192).

Source: Chen et al.,
2020

https://arxiv.org/pdf/2002.05709.pdf

MoCo vs. SImCLR vs. MoCo V2

mechanism batch memory /GPU time / 200-ep.

MoCo 256 5.0G 53 hrs
end-to-end 256 7.4G 65 hrs
end-to-end 4096 93.0GT n/a

Table 3. Memory and time cost in 8 V100 16G GPUs, imple-
mented in PyTorch. ': based on our estimation.

Key takeaways:

Non-linear projection head and strong
data augmentation are crucial for
contrastive learning.

Decoupling mini-batch size with negative
sample size allows MoCo-V2 to
outperform SimCLR with smaller batch
size (256 vs. 8192).

... all with much smaller memory
footprint! (“end-to-end” means SimCLR
here)

Source: Chen et al.,
2020

https://arxiv.org/pdf/2002.05709.pdf

Instance vs. Sequence Contrastive Learning

Predictions

AL e S
/L 3\ /@ | [\ f \/w\/w\/m\/w\

e e

Source: van den Oord et al., 2018

Instance-level contrastive learning: Sequence-level contrastive learning:
contrastive learning based on contrastive learning based on
positive & negative instances. sequential / temporal orders.

Examp|es; SimCLR, MoCo Example: Contrastive Predictive Coding (CPC)

https://arxiv.org/abs/1807.03748

Contrastive Predictive Coding (CPC)

Predictions

Contrastive: contrast between “right”
@ and “wrong” sequences using
*zm *ZHQ +zt+3 *zm contrastive learning.

/genc\ /genc\ /genc\ /genc\ /genc\ /genc\ /genc\ /genc\ Predictive: the m.odel has to predict

| s | @es Zen | 2 | Tes | T future patterns given the current

l 7 B . o
Coding: the model learns useful
. . . ' positive feature vectors, or “code”, for

toxt downstream tasks, similar to other
contex self-supervised methods.

negative

Figure source Source: van den Oord et al.,

2018,

https://arxiv.org/abs/1807.03748
https://github.com/davidtellez/contrastive-predictive-coding

Contrastive Predictive Coding (CPC)

Ct Pt 1. Encode all samples in a sequence
""""""""""""" into vectors z; = genc(X;)

[AR ? ? -

Lol [[[l [o o [

1\$\37+\37+\1’+|33+\

EEEE
/
ovee] 15 @ 1

negative
- J
Figure source Source: van den Oord et al.,

£ mp(s)
£ ()
=%

2018,

https://arxiv.org/abs/1807.03748
https://github.com/davidtellez/contrastive-predictive-coding

Contrastive Predictive Coding (CPC)

Predictions

1. Encode all samples in a sequence

(N\
Ct
=_‘ffffii:j\‘_"'*:ifijj """ s into vectors z; = genc(X;)
(2)—()—(o) @ R 2. Summarize context (e.g., half of a
zt 1 zt+2 +zt+3 *zm sequence) into a context code ¢, using

/gm\/ \/gnc\ /gm\/ \/gm\ /gnc\/ \ an auto-regressive model (g,,).

| -3 | Ty—2 | Te—1 | e | Te41 | Te42 | Te43 | Teqa |
EEBEE v
/
over @1 15 @ 1

negative

Source: van den Oord et al.,

Figure source
2018,

https://arxiv.org/abs/1807.03748
https://github.com/davidtellez/contrastive-predictive-coding

Contrastive Predictive Coding (CPC)

1. Encode all samples in a sequence
"?'I'A':_::?III,'“ """" . into vectors z; = genc(X;)

@ @ ' 2. Summarize context (e.g., half of a
‘,zm *mg ézws §2t+4 sequence) into a context code ¢, using

an auto-regressive model (g,,).
genc genc genc /genc\ /genc\ /genc\ /genc\ /genc\

| e ‘ —_ ‘ T vt | T | G | e 3. Compute InfoNCE loss between the
& context ¢; and future code z,,, using
v / - . the following time-dependent score
EEHBEE v ior
y /
N : Sk (Zt+k, Ct) Wie
ovee 1 151 @ "

) , Wwhere W, is a trainable matrix.
negative

Figure source Source: van den Oord et al.,
2018,

https://arxiv.org/abs/1807.03748
https://github.com/davidtellez/contrastive-predictive-coding

CPC example: modeling audio sequences

Predictions

M () ;
* 2t+1 * 2t42 + 2t+3 Zt4+4
genc genc genc / genc \ / genc \ / genc \ / genc \ genc

i3 Tt—1 Ti4+1 Ti42 Zt+3 Ti+a |

WWWWWWWWWWWWW%WWWW

Source: van den Oord et al.,

2018,

https://arxiv.org/abs/1807.03748

CPC example: modeling audio sequences

Method | ACC

Phone classification
Random initialization 27.6

MEFCC features 39.7
CPC 64.6
Supervised 74.6
Speaker classification
Random initialization 1.87
MEFCC features 17.6
Figure 2: t-SNE visualization of audio (speech) gPCr ‘sed g;g
representations for a subset of 10 speakers (out upervise :
of 251). Every color represents a different _ o _
speaker. Linear classification on trained
representations (LibriSpeech
dataset)

Source: van den Oord et al.,

2018,

https://arxiv.org/abs/1807.03748

CPC example: modeling visual context

Idea: split image into patches, model rows of patches from top to bottom as a
sequence. l.e., use top rows as context to predict bottom rows.

Jenc - Output

L

4 -

= — = //’// |_|
=z 7
- - -7 A
P A
64 px .
7 7
7 7 7
et o o o th"2 <-[—
/// // zt—|—3 <t
rd 4 1
7
-7 a Ct4-4| |ee|-
L
50% overlap |
256 px: :
v input image |

_/’

_/‘

Gar - Output

o7
P
=7
/ .
-/

_-~ Predictions

/-

Source: van den Oord et al.,
2018,

https://arxiv.org/abs/1807.03748

CPC example: modeling visual context

Method | Top-1 ACC
Using AlexNet conv5

Video [28] 29.8
Relative Position [11] 30.4
BiGan [35] 34.8
Colorization [10] 35.2
Jigsaw [29] * 38.1
Using ResNet-V2

Motion Segmentation [36] 27.6
Exemplar [36] 31.5
Relative Position [36] 36.2
Colorization [36] 39.6
CPC 48.7

Table 3: ImageNet top-1 unsupervised classifi-
cation results. *Jigsaw is not directly compa-
rable to the other AlexNet results because of
architectural differences.

ImageNet Top-1 Accuracy (%)

Compares favorably with other pretext task-
based self-supervised learning method.
Doesn’t do as well compared to newer instance-
based contrastive learning methods on image
feature learning.

% Supervised K SIMCLR (4x)
r *SimCLR (2x)
k oCPCv2-
70F -sin MoCo (4x
*SimCLR oCMC ¢ (4x)
oPIRL-c2x
AMDIM
65k 1 oMoCo (2x)
CPCv2 PIRL-ens.
eBigBiGAN
6o} gMoCo 9
LA
L eRotation
55 e|nstDisc
25 50 100 200 400 626

Number of Parameters (Millions)

Source: van den Oord et al.,

2018,

https://arxiv.org/abs/1807.03748

Summary: Contrastive Representation Learning

A general formulation for contrastive learning:

score(f(x), f()) >> score(f(z), f(z))

InfoNCE loss: N-way classification among positive and negative samples
exp(s(f(z), f(z ™))

L= —EX log N_1
exp(s(f(x), f(z)) + 22— exp(s(f(z), f(z}))

Commonly known as the InfoNCE loss (van den Oord et al., 2018)

A lower bound on the mutual information between f(x) and f(x*)

MI|[f(z), f(z")] — log(N) = —L

https://arxiv.org/abs/1807.03748

Summary: Contrastive Representation Learning

SimCLR: a simple framework for contrastive | Maximize agreement

representation learning
e Key ideas: non-linear projection head to allow .
flexible representation learning hi ¢ Representation —
e Simple to implement, effective in learning visual
representation
® Requires large training batch size to be effective;
large memory footprint

Summary: Contrastive Representation Learning

MoCo (v1, v2): contrastive learning using momentum

sample encoder

e Decouples negative sample size from minibatch
size; allows large batch training without TPU

® MoCo-v2 combines the key ideas from SimCLR,
i.e., nonlinear projection head, strong data
augmentation, with momentum contrastive

learning

contrastive loss

similarity
q ko k1 ko ...
queue
encoder momentum
encoder
ke ke ke
xquy xOY'$1Y'x2Y'“.

Summary: Contrastive Representation Learning

CPC: sequence-level contrastive learning
e Contrast “right” sequence with “wrong”
sequence.
e InfoNCE loss with a time-dependent score
function.
e Can be applied to a variety of learning
problems, but not as effective in learning

image representations compared to instance- . “ a positive

level methods. context I's Q l

negative

Other examples

Contrastive learning between image and natural language sentences

1. Contrastive pre-training 2. Create dataset classifier from label text

pepp.er the Text
aussie pup — Encoder] 1 1 1 a ?r:no o}f Tex;
a{object}. Encoder
U]) T3 Tn
— I I;'T, I, T, I,'T; I,Ty
_ — L LT I, IpTy - Iy 3. Use for zero-shot prediction
- i
4 ’llb L i 11 Ts 7y
] I mage
" ill Encoder I3 I3T, IzT, IxTy - IgTy
&
d Image
; ; ; i ; : e Encoder 1 LORENREREN 1l I Ty
— Iy Iyt InTy IyTs - InTy {

a photo of
adog.

CLIP (Contrastive Language—Image Pre-training) Radford et al., 2021

Other examples

Contrastive learning on pixel-wise feature descriptors

(c) Background Randomization (d) Cross Object Loss

Dense Object Net, Florence et al., 2018

Other examples

Dense Object Net, Florence et al., 2018

Next Lecture: Large Vision and Language Model

