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Last Lecture Speed Recap: The Transformer Block
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Last Lecture Speed Recap: Attention is “All” You Need
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How do we go from purpose driven models to LLMs?
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https://github.com/Mooler0410/LLMsPracticalGuide

How do we go from purpose driven models to LLMs?

LM LLaMA-2-Chat Q¥ — Caute )
. ] 4 ic-2] A=
Evolutionary ? i ed By Caudd A
GmD Tree

OPT-IML 0.\

Self-Supervised Learning
How do we most effectively turn
raw text into meaningful loss?

ferr

GPT-Neo(s]

2
5

GPT2.5)

GPT-1[&]

B

O@30= BO ok

https://github.com/Mooler0410/LLMsPracticalGuide €S 4644 /7643 Deep Learning - William Held



https://github.com/Mooler0410/LLMsPracticalGuide

How do we go from purpose driven models to LLMs?

Self-Supervised Learning
How do we most effectively turn
raw text into meaningful loss?
Covered Today

- Encoder Only
- Decoder Only
- Encoder-Decoder

https://github.com/Mooler0410/LLMsPracticalGuide
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https://github.com/Mooler0410/LLMsPracticalGuide

How do we go from purpose driven models to LLMs?
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https://github.com/Mooler0410/LLMsPracticalGuide

How do we go from purpose driven models to LLMs?
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https://github.com/Mooler0410/LLMsPracticalGuide

LLM Advancements have been driven primarily by these two

Self-Supervised Learning Data Scaling
How do we most effectively turn How do we source and train on
raw text into meaningful loss? high-quality data at scale?
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SSL | From raw text to loss!

Input Masking

90190

Masked Language Model
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https://arxiv.org/abs/1810.04805

SSL | What is the “Mask” in a Masked Language Model?

Input Masking
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Masked Language Model
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https://arxiv.org/abs/1810.04805

SSL | What is the “Mask” in a Masked Language Model?

Input Masking

Similarities: E = QXT / sqrt(DQ)
Attention Matrix: A = softmax(E,dim=1)
o Output vectors: Y = AX

Y, = S.A X

—] Recall

1081

Masked Language Model
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https://arxiv.org/abs/1810.04805

SSL | What is the “Mask” in a Masked Language Model?

Input Masking

= Masked Attention
] Similarities: E = (QXT / sqrt(DQ)) * MASK
Attention Matrix: A = softmax(E,dim=1)
o Output vectors: Y = AX
Y, = S X

1081

Masked Language Model
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https://arxiv.org/abs/1810.04805

SSL | What is the “Mask” in a Masked Language Model?

Input Masking

If MASK, = @, then Y, = 3. ., A X

j,jt=1'1,j

—] Intuition

a.k.a the representation of the masked
token is created purely from context

108

Masked Language Model
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https://arxiv.org/abs/1810.04805

SSL | Masked Token Prediction
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https://arxiv.org/abs/1810.04805

SSL | Masked Token Prediction

Input Masking
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~

Masked Language Model
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https://arxiv.org/abs/1810.04805

SSL | Masked Token Prediction
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SSL | Masked Token Prediction

P(“World” | Context)
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loss = -log(P(“World” | Context)
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Side Note | Tokens v.s. Words

If Vv

Languages have a lot of words!
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Side Note | Tokens v.s. Words

Languages have a lot of words!

If V = Number of Words:
O(V) Memory Scaling .
O(V) Runtime Scaling -=’
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Side Note | Tokens v.s. Words

Languages have a lot of words!
If V = Number of Words:
O(V) Memory Scaling . _--
O(V) Runtime Scaling -=7"~

N
N\

This limits our vocabulary size a lot.~,

Tokenizers:
Pre-processing to split words into
smaller chunks called “Tokens” so that we
can cover all words with smaller V
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Side Note | Tokens v.s. Words

Languages have a lot of words!
If V = Number of Words:
O(V) Memory Scaling . _--
O(V) Runtime Scaling -=7"~

N
N\

This limits our vocabulary size a lot.~,

Tokenizers:
Pre-processing to split words into
smaller chunks called “Tokens” so that we
can cover all words with smaller V

Important but outside of Course Scope
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https://huggingface.co/docs/transformers/tokenizer_summary

Data | BERT used existing curation!

BERT Corpus
English Wikipedia + BooksCorpus

Size
~3 Billion Tokens

Quality
High quality text,
Broad “Academic” Knowledge,
Limited Diversity

CS 4644 / 7643 Deep Learning - William Held


https://arxiv.org/abs/1810.04805

Applications | Encoders as “Foundation” Language Models
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https://arxiv.org/abs/1810.04805

Applications | Encoders as “Foundation” Language Models
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https://arxiv.org/abs/1810.04805

Applications | Encoders as “Foundation” Language Models
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https://aclanthology.org/2021.emnlp-main.106/

Input Masking
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SSL | “How does GPT work?”

Input Masking

—

Transformer
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Radford et al. 2019 (GPT-2)
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https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf

SSL | Autoregressive Language Modeling
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Radford et al. 2019 (GPT-2)
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https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf

SSL | Autoregressive Language Modeling

Masking

~
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https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf

SSL | Autoregressive Language Modeling
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https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf

SSL | Autoregressive Language Modeling

Masking

sl Masked Attention Again!

Similarities: E = (QXT / sqrt(DQ)) * MASK

Attention Matrix: A = softmax(E,dim=1)
Output vectors: Y = AX

Y, = 3A, X

Tokens only affected by preceding tokens
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https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf

SSL | First successful GPT Model, Purely Autoregressive
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https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf

SSL | First successful GPT Model, Purely Autoregressive
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loss = -(log(P(“World” | “Hello”) + log(P("“!"
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https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf

Data | Increasing Token Count via Human Curation Heuristics

GPT-2 Corpus
All Reddit Outbound links with at

least 3 karma

Size
~10 Billion Tokens

Quality
High quality text,
Broad Knowledge,
Improved Diversity

URL Domain #Docs % of Total Docs
bbc.co.uk 116K 1.50%
theguardian.com 115K 1.50%
washingtonpost.com 89K 1.20%
nytimes.com 88K 1.10%
reuters.com 79K 1.10%
huffingtonpost.com 72K 0.96%
cnn.com 70K 0.93%
cbc.ca 67K 0.89%
dailymail.co.uk 58K 0.77%
go.com 48K 0.63%
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https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf

SSL | Architecture Comparison

Ok, but what should | use?

CS 4644 / 7643 Deep Learning - William Held



SSL | Classification Comparison

Model MNLI CoLA SST-2 MRPC STS-B QQP QNLI RTE Avg
GPT-2-original 85.9/85.6  54.8 94.5 86.9/82.2 86.3/85.2 725/893 912 69.8  80.9
GPT-2-finetuned 85.8/85.5  40.9 945 87.0/81.0 85.6/84.3 71.4/88.5 915 69.0 78.8

RoBERTa-large 90.1/89.7  63.8 96.1 91.2/88.3 90.9/90.7 72.5/89.6  94.5 859 86.5
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https://aclanthology.org/2022.tacl-1.48.pdf

SSL | Pretrained Retrieval Comparison

GPT-2 separates into two clusters Bert consists of multiple small clusters

Left ’ PCA ‘ Right UMAP | PCA ‘ UMAP

absolute
position ID

manifold with other positional IDs 260

240
220
200
180
contains only position ID 0 160
140
R 3 120

100

each cloud consists of unsorted posIDs 80

60

40
20

0
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https://bert-vs-gpt2.dbvis.de/

SSL | Generative Comparison

Encoders can't generate!
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SSL | Encoder-Only vs. Decoder-Only

Encoder Decoder
+ Retrieval + Generative Abilities
+ Classification - Retrieval

- No Generative Abilities - Classification
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https://proceedings.mlr.press/v162/wang22u.html

SSL | Encoder-Only vs. Decoder-Only

Encoder Decoder
+ Retrieval + | Generative Abilities |—— This is pretty essentiall
+ Classification - Retrieval

- No Generative Abilities - Classification
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https://proceedings.mlr.press/v162/wang22u.html

Input Masking
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Questions?

Transformer
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Causal Mask
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SSL | Encoder-Only vs. Decoder-Only

Encoder Decoder
. +  Retrieval + | Generative Abilities |—— This is pretty essentiall
2
How to keep this? + Classification - Retrieval

- No Generative Abilities - Classification
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SSL | Encoder-Decoder Returns
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SSL | Universal Text-to-Text

Text Noising

—_—

AALEEL
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https://arxiv.org/abs/1910.10683

SSL | Universal Text-to-Text

Text Noising

—_—

AALEEL

Original text

Thank you fef inviting me to your party Jast week.

Inputs

Thank you <X> me to your party <Y> week.

Targets
<X> for inviting <v> last <z>
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https://arxiv.org/abs/1910.10683

SSL | Universal Text-to-Text

Text Noising

AALEEL
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Input
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https://arxiv.org/abs/1910.10683

SSL | Universal Text-to-Text

Text Noising

—_—

DE.ABC. C.DE.AB
Token Masking  Sentence Permutation Document Rotation

CEED » oD « I

Token Deletion Text Infilling

AALEEL
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https://aclanthology.org/2020.acl-main.703/

SSL | UL2 - Text-to-Text Pushed to Limits

Text

AALEEL

Decoder-only
PrefixLM

OR

Encoder-Decoder

X-denoiser
(long spans &

low
corruption)

X-denoiser
(long spans &
high
corruption)

X-denoiser
(short spans
& high
corruption)

Learning Paradigms

A

X-denoiser

(extreme denoising)

R-denoiser

(short spans & low corruption)

S-denoiser

(sequential denoising / prefix
language modeling)

Tay et al. 2023

Mixture-of-Denoisers

Task Paradigms
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https://openreview.net/forum?id=6ruVLB727MC

SSL | Universal Text-to-Text

Regardless of noise, Loss Function remains the same still!

Continue using Negative Log Likelihood

loss = -(log(P(Denoised Sequence | Noised Sequence))
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SSL | Universal Text-to-Text Is Architecture Agnostic
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https://openreview.net/forum?id=6ruVLB727MC

Questions?

Text

X-denoiser X-denoiser X-denoiser

(long spans & (long spans & (short spans
low high & high
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TSUD S
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Data | Moving to truly Large Language Models

Today's LLMs are driven data and model scaling

Loss vs Model and Dataset Size

g,
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Tokens in Dataset
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https://arxiv.org/abs/2001.08361

Data | Moving to truly Large Language Models

We could get a lot more data from CommonCrawl!
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Data | Moving to truly Large Language Models

We could get a lot more data from CommonCrawl!
A lot of it is spam though...
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Data | Moving to truly Large Language Models

We could get a lot more data from CommonCrawl!
A lot of it is spam though...
How do we get “useful” data?

CS 4644 / 7643 Deep Learning - William Held



Data | C4 - First Scaling of Data Via Common Crawl

¢ We only retained lines that ended in a terminal punctuation mark (i.e. a period,
exclamation mark, question mark, or end quotation mark).

e We discarded any page with fewer than 3 sentences and only retained lines that
contained at least 5 words.

o We removed any page that contained any word on the “List of Dirty, Naughty, Obscene
or Otherwise Bad Words™.%

TS Corpus (AKA C4)

. e Many of the scraped pages contained warnings stating that Javascript should be
A” Common CraW|. TeXt WhICh enabled so we removed any line with the word Javascript.
Meets Heuristics

« Some pages had placeholder “lorem ipsum” text; we removed any page where the
phrase “lorem ipsum” appeared.

Size 75
e e Some pages inadvertently contained code. Since the curly bracket “{” appears in
~350 Billion Tokens many programming languages (such as Javascript, widely used on the web) but not in
natural text, we removed any pages that contained a curly bracket.

gualit! « Since some of the scraped pages were sourced from Wikipedia and had citation markers
Va I'yin g quallty text (e.g. [1], [citation needed], etc.), we removed any such markers.
)
Broad Knowledge’ « Many pages had boilerplate policy notices, so we removed any lines containing the

strings “terms of use”, “privacy policy”, “cookie policy”, “uses cookies”, “use of
cookies”, or “use cookies”.

Improved Diversity

e To deduplicate the data set, we discarded all but one of any three-sentence span
occurring more than once in the data set.
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https://arxiv.org/abs/1910.10683

Data | GPT-3 - Increased Scaling Via Curation

Training

‘Q‘O,o —— Distinguish High and Low Quality

A
Low-Quality, High Volume 6‘%;%/
7/
e %
URL Domain #Docs % of Total Docs
bbc.co.uk 116K 1.50%
theguardian.com 115K 1.50%
washingtonpost.com 89K 1.20%
nytimes.com 88K 1.10%
reuters.com 79K 1.10%
huffingtonpost.com 72K 0.96%
cnn.com 70K 0.93%
cbe.ca 67K 0.89%
dailymail.co.uk 58K 0.77%
go.com 48K 0.63%

High Quality, Medium Volume
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https://arxiv.org/abs/2005.14165

Data | GPT-3 - Increased Scaling Via Curation

Filtering

Keep “False” Positives

% .

“False” positive ~= High Quality

Brown et al. 2020 CS 4644 / 7643 Deep Learning - William Held



https://arxiv.org/abs/2005.14165

Data | GPT-2 to Original GPT-3 was mostly data scaling

GPT-3 Corpus
Common-Crawl Filtered using

GPT-2 Training Data

Size
~400 Billion Tokens

Quality
High-ish quality text,
Broad Knowledge,
Web-scale Diversity
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https://arxiv.org/abs/2005.14165

Data | Recent Open Source models focus heavily on data scaling

Llama 1 Corpus

Size
~1.4 Trillion Tokens

Quality
Varying quality text,
Broad Knowledge,
Web-scale Diversity,
Includes Code!

Dataset Sampling prop. Epochs Disk size
CommonCrawl  67.0% 1.10 3.3TB
C4 15.0% 1.06 783 GB
Github 4.5% 0.64 328 GB
Wikipedia 4.5% 2.45 83 GB
Books 4.5% 223 85 GB
ArXiv 2.5% 1.06 92 GB
StackExchange 2.0% 1.03 78 GB



https://arxiv.org/abs/2302.13971

Data | Recent Open Source models focus heavily on data scaling

URL Text Language Repetition Document-wise Line-wise Fuzzy Exact
filtering extraction identification removal filtering corrections i dupli

ded
Falcon Refined Web Corpus .5.
i { R

23,34%

35,97% 30,15% 18,47%
om0
47,51% 37,88%
1%
i .22,59%
Slze .16,19%
100% 97,76% 96,31% I

tion tion

-;.

2428%

5 Trillion Tokens
Quality
Varying quality text,
Broad Knowledge,
Web-scale Diversity,
Includes Code

50,66%

B2,24% m———o

Document preparation Filtering Deduplication
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https://arxiv.org/abs/2005.14165

Data | Data Mixture has become the biggest “secret”

Llama 2 Corpus PALM-2 Corpus GPT-4 Corpus
Size Size Size
> 2 Trillion Tokens > 3.6 Trillion Tokens Unknown (Est. 11T Tokens)
Quality Quality Quality
Minimal details known No details known No details known

N &
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https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2305.10403
https://arxiv.org/abs/2303.08774

Llama 2 Corpus

Size
> 2 Trillion Tokens

Quality

Minimal details known

7\

Questions?

PALM-2 Corpus

Size
> 3.6 Trillion Tokens

Quality

No details known

C

GPT-4 Corpus

Size
Unknown (Est. 11T Tokens)

Quality

No details known
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Scaling Parameters | Data Parallel Training
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UPDATE

MODEL FORWARD BACKWARD
SHARD > (LOCAL) > (LOCAL) ALL-REDUCE > v(lf;g::)s —4
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Scaling Parameters | Data Parallel Training

MODEL FORWARD > BACKWARD > > \:,‘:,DGAHTTES J
SHARD (LOCAL) (LOCAL) (LOCAL)
j\ .?s
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]
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'
SYNC
GRADS

MODEL > FORWARD BACKWARD > UBDATE
SHARD (LOCAL) (LOCAL)

WEIGHTS
(LOCAL) \

Total memory increases linearly with shards
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Scaling Parameters | Data Parallel Training

MODEL FORWARD > BACKWARD ) > \:,’:,%AHTTES J
SHARD (LOCAL) (LOCAL) (LOCAL)
T KgS
]
]
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]

'
SYNC
GRADS

MODEL > FORWARD BACKWARD > UBDATE
SHARD (LOCAL) (LOCAL)

WEIGHTS
(LOCAL) \

Max memory constrains model size
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Scaling Parameters | *Fully* Sharded Data Parallel Training

ALL- Ny FoRwaro ALL- N BACKWARD > Bl
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Scaling Parameters | *Fully* Sharded Data Parallel Training

MODEL > ALL- >
SHARD GATHER
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Total memory is constant



Scaling Parameters | *Fully* Sharded Data Parallel Training

MODEL ALL- FORWARD ALL- BACKWARD > “‘,’:I%':‘TTES \
SHARD GATHER LOCAL GATHER
\ ) F OO (LOCAL)
‘

N LAYERS N LAYERS RS

u ' ]
GATHER GATHER SYNC
WEIGHTS WEIGHTS GRADS

o' N LAYERS N LAYERS

MODEL ALL- FORWARD ALL- BACKWARD > REDUCE- > :::,‘HTTES
SHARD GATHER (LOCAL) GATHER (LOCAL) SCATTER (LOCAL) l

Max single GPU memory constrains layer Size ... o wm e




Scaling Parameters | Tensor Parallel Training

0 1 2 3 11
4 5 6 7 12

16

74

98
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346

https://huggingface.co/docs/transformers/v4.15.0/parallelism#tensor-parallelism
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Scaling Parameters | Tensor Parallel Training

X1 Al Y1
o | 1 10 | 14 1 | 15
10 | 14 . =
4 | s 1 | 15 95 | 131
o| 1] 2] 3 1 | 15 74 | 98 74 | 98
= is equal to + -
4| s | 6| 7 12 | 16 258 | 346 258 | 346
: 2 3 12 | 16 63 | 83
13 | 17
X Y = Y
6 | 7 13017 163 | 215
A
X2 A2 Y2
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Scaling Parameters | Tensor Parallel Training

X1 Al Y1
0 1 10 14 11 15
10 14 =
4 5 11 15 95 | 131
0 1 2 3 11 15 74 98 74 98
= is equal to + -
4 5 6 7 12 16 258 | 346 258 | 346
2 3 12 16 63 83
13 17
X Y = Y
6 7 13 17 163 | 215
A
X2 A2 Y2

Don’t need to sync gradients!
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Scaling Parameters | Tensor Parallel Training

X1 Al Y1l
0 1 10 14 11 15
10 14 =
4 5 11 15 95 | 131
0 1 2 3 11 15 74 98 74 98
= is equal to + =
4 5 6 7 12 16 258 | 346 258 | 346
2 3 12 16 63 83
13 17
X Y = Y
6 7 13 17 163 | 215
A
X2 A2 Y2

Don’t need to sync gradients!
Max GPU memory constrains a layer shard
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Scaling Parameters | FSDP + TP = ~Limitless Scaling

( FSDP N
(@« checkpoint_wrapper o
( Decoder ~12H? params h
FSDP
Multi-Head Attention ~4H? params
Query Key Value Out
~H2 ~H2 "'H2 ~H2 \
params || params || params || params
FSDP
E€H
~4H? params
FSDP
FC2 {
~4H? params 1
-~ 4
> =,

1 Trillion Parameter Model with Tensor Parallelism and FSDP

Outer activations are
offloaded to CPU

Inner activations are
checkpointed/recomputed

Linear layers are sharded

Full parameters of a single FSDP
instance are loaded to GPU for
computation, parameters in other
FSDP instance are offloaded to CPUs
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Final Questions?

Fill out my anonymous feedback form
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