
CS 4644-DL / 7643-A: LECTURE 12
DANFEI XU

Topics:
• Training Neural Networks (Part 3)

Administrative
• Project Proposal deadline today! No grace period
• No class next Tue (10/03)
• HW2/PS2 due next Thu (10/05) + 48hr grace period

“Xavier” initialization:
std = 1/sqrt(Din)

Recap: “Xavier” Initialization

Var(y) = Var(x1w1+x2w2+...+xDinwDin)
= Din Var(xiwi)
= Din Var(xi) Var(wi)

[Assume all xi, wi are iid]

Let: y = x1w1+x2w2+...+xDinwDin

“Just right”: Activations are
nicely scaled for all layers!

For conv layers, Din is
filter_size2 * input_channels

3

Assume: Var(x1) = Var(x2)= …=Var(xDin)

We want: Var(y) = Var(xi)

So, Var(y) = Var(xi) only when Var(wi) = 1/Din

Scaling a normal distribution (std=1) to have Var=1/Din -> multiply by sqrt(1/Din)

Recap: Kaiming / MSRA Initialization

ReLU correction: std = sqrt(2 / Din)

He et al, “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”, ICCV 2015

Issue: Half of the activation
get killed.
Solution: make the non-zero
output variance twice as
large as input

4
Visualize distribution of activations

Recap: Batch Normalization

5

… Layer i-1 Layer iBN BN Layer i+2 …

“you want zero-mean unit-variance activations? just make them so.”

Input: Per-channel mean,
shape is D

Per-channel var,
shape is D

Normalized x,
Shape is N x D

Batch Normalization [Ioffe and Szegedy, 2015]

Learnable scale and
shift parameters:

𝛾, 𝛽: ℝ!

Output,
Shape is N x D

We want to give the
model a chance to
adjust batchnorm if the
default is not optimal.
Learning 𝛾 = 𝜎 and 𝛽 =
𝜇 will recover the identity
function!

Input: Per-channel mean,
shape is D

Per-channel var,
shape is D

Normalized x,
Shape is N x D

Batch Normalization: Test-Time

Output,
Shape is N x D

(Moving) average of
values seen during training

(Moving) average of
values seen during training

During testing batchnorm
becomes a linear operator!
Can be fused with the previous
fully-connected or conv layer

Learnable scale and
shift parameters:

𝛾, 𝛽: ℝ!

Batch Normalization [Ioffe and Szegedy, 2015]

- Makes deep networks much easier to train!
- If you are interested in the theory, read

https://arxiv.org/abs/1805.11604
- TL;DR: makes optimization landscape smoother

- Allows higher learning rates, faster convergence
- More useful in deeper networks
- Networks become more robust to initialization
- Zero overhead at test-time: can be fused with conv!
- Behaves differently during training and testing: this is a very

common source of bugs!
- Needs large batch size to calculate accurate stats

8

https://arxiv.org/abs/1805.11604

Group Normalization

Wu and He, “Group Normalization”, ECCV 2018

10

SGD + Momentum
Intuitions:
• Think of a ball (set of parameters) moving in

space (loss landscape), with momentum
keeping it going in a direction.

• Individual gradient step may be noisy, the
general trend accumulated over a few steps
will point to the right direction.

• Momentum can “push” the ball over saddle
points or local minima.

Local Minima Saddle points

Noisy gradients

11

SGD + Momentum:
continue moving in the general direction as the previous iterations

SGD

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically rho=0.9 or 0.99

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

SGD+Momentum

12

Gradient

Velocity

actual step

Momentum update:

Nesterov Momentum

Nesterov, “A method of solving a convex programming problem with convergence rate O(1/k^2)”, 1983
Nesterov, “Introductory lectures on convex optimization: a basic course”, 2004
Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

Gradient
Velocity

actual step

Nesterov Momentum

Combine gradient at current point with
velocity to get step used to update weights

“Look ahead” to the point where updating using
velocity would take us; compute gradient there and
mix it with velocity to get actual update direction

13

Optimization: Problem #3 with SGD
What if loss changes quickly in one direction and slowly in another?
Very slow progress along shallow dimension, jitter along steep direction

Loss function has high condition number: ratio of largest to smallest eigen
value (𝜆!"#/𝜆!$%) of the Hessian matrix of a loss function is large
Small condition number in loss Hessian -> circular contour
Large condition number in loss Hessian -> skewed contour
Can we enable SGD to adapt to this skew-ness?

https://www.cs.toronto.edu/~rgrosse/courses/csc421_2019/slides/lec07.pdf

14

AdaGrad

Q2: What happens to the step size over long time? Decays to zero

15

RMSProp: “Leaky AdaGrad”

AdaGrad

RMSProp

Tieleman and Hinton, 2012

16

Adam (full form)

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Momentum

AdaGrad / RMSProp

Bias correction

Bias correction for the fact that
first and second moment
estimates start at zero

Adam with beta1 = 0.9,
beta2 = 0.999, and learning_rate = 1e-3 or 5e-4
is a great starting point for many models!

17

Adam

SGD

SGD+Momentum

RMSProp

Adam

18

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

Q: Which one of these learning
rates is best to use?

A: In reality, all of these are good
learning rates.

Need finer adjustment closer to convergence,
so we want to reduce learning rate over time
to keep making progress.

19

Learning rate decays over time

Reduce learning rate
Step: Reduce learning rate at a few fixed
points. E.g. for ResNets, multiply LR by 0.1
after epochs 30, 60, and 90.

20

Learning Rate Decay

: Initial learning rate
: Learning rate at epoch t
: Total number of epochs

Loshchilov and Hutter, “SGDR: Stochastic Gradient Descent with Warm Restarts”, ICLR 2017
Radford et al, “Improving Language Understanding by Generative Pre-Training”, 2018
Feichtenhofer et al, “SlowFast Networks for Video Recognition”, arXiv 2018
Child at al, “Generating Long Sequences with Sparse Transformers”, arXiv 2019

Step: Reduce learning rate at a few fixed
points. E.g. for ResNets, multiply LR by 0.1
after epochs 30, 60, and 90.

Cosine:

21

Learning Rate Decay

: Initial learning rate
: Learning rate at epoch t
: Total number of epochs

Loshchilov and Hutter, “SGDR: Stochastic Gradient Descent with Warm Restarts”, ICLR 2017
Radford et al, “Improving Language Understanding by Generative Pre-Training”, 2018
Feichtenhofer et al, “SlowFast Networks for Video Recognition”, arXiv 2018
Child at al, “Generating Long Sequences with Sparse Transformers”, arXiv 2019

Step: Reduce learning rate at a few fixed
points. E.g. for ResNets, multiply LR by 0.1
after epochs 30, 60, and 90.

Cosine:

22

Learning Rate Decay

Devlin et al, “BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding”, 2018

Step: Reduce learning rate at a few fixed
points. E.g. for ResNets, multiply LR by 0.1
after epochs 30, 60, and 90.

Cosine:

Linear:

: Initial learning rate
: Learning rate at epoch t
: Total number of epochs

23

Step: Reduce learning rate at a few fixed
points. E.g. for ResNets, multiply LR by 0.1
after epochs 30, 60, and 90.

Cosine:

Linear:

Inverse sqrt:

Learning Rate Decay

: Initial learning rate
: Learning rate at epoch t
: Total number of epochsVaswani et al, “Attention is all you need”, NIPS 2017

24

First-Order Optimization

Loss

w1

25

First-Order Optimization

Loss

w1

(1) Use gradient form linear approximation
(2) Step to minimize the approximation

26

Second-Order Optimization

Loss

w1

(1) Use gradient and Hessian to form quadratic approximation
(2) Step to the minima of the approximation

27

second-order Taylor Expansion of 𝑓 𝑥 at 𝑎:

Newton’s method for optimization: solving for the critical point 𝑓& 𝑥 = 0,
we obtain the Newton update rule

Second-Order Optimization

𝑓 𝑥 = 𝑓 𝑎 +
𝑓! 𝑎
1! 𝑥 − 𝑎 +

𝑓!! 𝑎
2! (𝑥 − 𝑎)"

𝑓! 𝑥 = 𝑓! 𝑎 + 𝑓!! 𝑎 (𝑥 − 𝑎) = 0
𝑥∗ = 𝑎 − $

%'' &
𝑓′(𝑎)

Think of 𝑎 as the current params, 𝑥∗ as the updated params

𝑎

𝑥∗

28

second-order Taylor Expansion of 𝑓 𝒙 at 𝒂:

Newton’s method for optimization: solving for the critical point we obtain
the Newton update rule:

Second-Order Optimization (multivariate)

𝑓 𝑤 = 𝑓 𝒂 + 𝒙 − 𝒂 '∇𝑓 +
1
2 (𝒙 − 𝒂)

'𝐻(𝒙 − 𝒂)

𝒙∗ = 𝒂 − 𝐻'(∇𝑓
𝑎

𝑥∗

29

second-order Taylor Expansion of 𝑓 𝒙 at 𝒂:

Newton’s method for optimization: solving for the critical point we obtain
the Newton update rule:

Second-Order Optimization (multivariate)

Q: Why is this bad for deep learning?

𝑓 𝑤 = 𝑓 𝒂 + 𝒙 − 𝒂 '∇𝑓 +
1
2 (𝒙 − 𝒂)

'𝐻(𝒙 − 𝒂)

𝒙∗ = 𝒂 − 𝐻'(∇𝑓
𝑎

𝑥∗

30

Hessian Matrix

31

second-order Taylor expansion:

Solving for the critical point we obtain the Newton parameter update:

Second-Order Optimization

Q: Why is this bad for deep learning?

Hessian has O(N^2) elements
Inverting takes O(N^3)
N = Millions

𝑓 𝒙 = 𝑓 𝒂 + 𝑥 − 𝑎 '∇𝑓 +
1
2 (𝑥 − 𝑎)

'𝐻(𝑥 − 𝑎)

𝑥∗ = 𝑎 − 𝐻'(∇𝑓

32

Second-Order Optimization

- Quasi-Newton methods (BFGS most popular):
instead of inverting the Hessian (O(n^3)), approximate
inverse Hessian with rank 1 updates over time (O(n^2)
each).
Still pretty expensive

- L-BFGS (Limited memory BFGS):
Does not form/store the full inverse Hessian.

33

L-BFGS

- Usually works very well in full batch, deterministic mode
i.e. if you have a single, deterministic f(x) then L-BFGS will
probably work very nicely

- Does not transfer very well to mini-batch setting. Gives
bad results. Adapting second-order methods to large-scale,
stochastic setting is an active area of research.

Le et al, “On optimization methods for deep learning, ICML 2011”
Ba et al, “Distributed second-order optimization using Kronecker-factored approximations”, ICLR 2017

This Time:

34

Training Deep Neural Networks
• Details of the non-linear activation functions
• Data normalization
• Weight Initialization
• Batch Normalization
• Advanced Optimization
• Regularization
• Data Augmentation
• Transfer learning
• Hyperparameter Tuning

Regularization

35

36

Beyond Training Error

Better optimization algorithms
help reduce training loss

But we really care about error on
new data - how to reduce the gap?

37

Early Stopping: Always do this

Iteration

Loss

Iteration

Accuracy
Train
Val

Stop training here

Stop training the model when accuracy on the validation set decreases
Or train for a long time, but always keep track of the model snapshot
that worked best on val

38

How to improve generalization?

Regularization

Regularization: Add term to loss

39

In common use:
L2 regularization
L1 regularization
Elastic net (L1 + L2)

(Weight decay)

40

Regularization: Dropout
In each forward pass, randomly set some neurons to zero
Probability of dropping is a hyperparameter; 0.5 is common

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014

41

Regularization: Dropout Example forward
pass with a 3-
layer network
using dropout

42

Regularization: Dropout
How can this possibly be a good idea?

Forces the network to have a redundant representation;
Prevents co-adaptation of features

has an ear

has a tail

is furry

has claws
mischievous
look

cat
score

X

X

X

43

Regularization: Dropout
How can this possibly be a good idea?

Another interpretation:

Dropout is training a large ensemble of
models (that share parameters).

Each binary mask is one model

An FC layer with 4096 units has
24096 ~ 101233 possible masks!
Only ~ 1082 atoms in the universe...

44

Dropout: Test time

Dropout makes our output random!

Output
(label)

Input
(image)

Random
mask

Want to “average out” the randomness at test-time

45

Dropout: Test time
Compute the
expectation

Consider a single neuron.
a

x y

w1 w2

46

Dropout: Test time

Consider a single neuron.

Without dropout:
a

x y

w1 w2

Compute the
expectation

47

Dropout: Test time

Consider a single neuron.

Without dropout:
With dropout we have:

a

x y

w1 w2

Compute the
expectation

48

Dropout: Test time

Consider a single neuron.

Without dropout:
With dropout we have:

a

x y

w1 w2

At test time, multiply
by dropout probability

Compute the
expectation

49

Dropout: Test time

At test time all neurons are active always
=> We must scale the activations so that for each neuron:
output at test time = expected output at training time

50

Dropout Summary

drop in train time

scale at test time

51

More common: “Inverted dropout”

test time is unchanged!

Similar to BatchNorm, different behavior train vs test!

52

Regularization: A common strategy
Training: Add some kind
of randomness

Testing: Average out randomness
(sometimes approximate)

53

Load image
and label

“cat”

CNN

Compute
loss

Regularization: Data Augmentation

This image by Nikita is
licensed under CC-BY 2.0

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/

54

Regularization: Data Augmentation

Load image
and label

“cat”

CNN

Compute
loss

Transform image

55

Data Augmentation
Horizontal Flips

56

Data Augmentation
Random crops and scales

Training: sample random crops / scales
ResNet:
1. Pick random L in range [256, 480]
2. Resize training image, short side = L
3. Sample random 224 x 224 patch

57

Data Augmentation
Random crops and scales

Training: sample random crops / scales
ResNet:
1. Pick random L in range [256, 480]
2. Resize training image, short side = L
3. Sample random 224 x 224 patch

Testing (test-time augmentation):
take votes / average from a fixed set of crops
1. Resize image at 5 scales: {224, 256, 384, 480, 640}
2. For each size, use 10 224 x 224 crops: 4 corners + center, + flips
3. Make prediction on all crops, use the majority vote as the final output.

58

Data Augmentation
Random crops and scales

Training: sample random crops / scales
ResNet:
1. Pick random L in range [256, 480]
2. Resize training image, short side = L
3. Sample random 224 x 224 patch

Testing (deterministic):
• Take a center crop of 224 by 224.
• Or crop by longer dimension and resize.

59

Data Augmentation
Color Jitter

Simple: Randomize
contrast and brightness

60

Data Augmentation
Color Jitter

Simple: Randomize
contrast and brightness

More Complex:

1. Apply PCA to all [R, G, B]
pixels in training set

2. Sample a “color offset”
along principal component
directions

1. Add offset to all pixels of a
training image

(As seen in [Krizhevsky et al. 2012], ResNet, etc)

61

Data Augmentation
Get creative for your problem!

Examples of data augmentations:
- translation
- rotation
- stretching
- shearing,
- chromatic aberration
- lens distortions, … (go crazy)

62

Automatic Data Augmentation

Cubuk et al., “AutoAugment: Learning Augmentation Strategies from Data”, CVPR 2019

Gradient clipping: prevent large gradient step
Large gradient step will likely destabilize training (gradients are noisy!)
Large gradient update can be caused by many issues, e.g., large weights, large
input, bad loss function / activation function, …
Should always first try to fix the root cause (normalization, better loss /
activation function, etc.)

But if all things fail … just clip the gradient

𝑔%)* = min 1,
𝜆
𝑔

×𝑔

𝑔: original gradient
𝜆: clipping threshold

Transfer learning / Pretraining

64

“You need a lot of a data if you want to
train/use deep neural networks”

65

“You need a lot of a data if you want to
train/use deep neural networks”

66

BU
ST

ED

Transfer Learning with CNNs

67

Transfer Learning with CNNs

AlexNet:
64 x 3 x 11 x 11

(More on this in Lecture 13)

68

Transfer Learning with CNNs

Test image L2 Nearest neighbors in feature space

(More on this in Lecture 13)

69

Transfer Learning with CNNs

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

1. Train on Imagenet

Donahue et al, “DeCAF: A Deep Convolutional Activation
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “CNN Features Off-the-Shelf: An
Astounding Baseline for Recognition”, CVPR Workshops
2014

70

Transfer Learning with CNNs

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

1. Train on Imagenet

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-C

2. Small Dataset (C classes)

Freeze these

Reinitialize
this and train

Donahue et al, “DeCAF: A Deep Convolutional Activation
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “CNN Features Off-the-Shelf: An
Astounding Baseline for Recognition”, CVPR Workshops
2014

71

Transfer Learning with CNNs

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

1. Train on Imagenet

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-C

2. Small Dataset (C classes)

Freeze these

Reinitialize
this and train

Donahue et al, “DeCAF: A Deep Convolutional Activation
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “CNN Features Off-the-Shelf: An
Astounding Baseline for Recognition”, CVPR Workshops
2014

Donahue et al, “DeCAF: A Deep Convolutional Activation Feature for
Generic Visual Recognition”, ICML 2014

Finetuned from AlexNet

72

Transfer Learning with CNNs

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

1. Train on Imagenet

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-C

2. Small Dataset (C classes)

Freeze these

Reinitialize
this and train

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-C

3. Bigger dataset

Freeze these

Train these

With bigger
dataset, train
more layers

Lower learning rate
when finetuning;
1/10 of original LR
is good starting
point

Donahue et al, “DeCAF: A Deep Convolutional Activation
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “CNN Features Off-the-Shelf: An
Astounding Baseline for Recognition”, CVPR Workshops
2014

73

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

Task-agnostic

Task-specific

very similar
dataset

very different
dataset

very little data ? ?

quite a lot of data ? ?

74

very similar
dataset

very different
dataset

very little data Use Linear
Classifier on
top layer

?

quite a lot of data Finetune a
few layers

?

75

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

Task-agnostic

Task-specific

very similar
dataset

very different
dataset

very little data Use Linear
Classifier on
top layer

You’re in trouble…
Try linear
classifier from
different stages

quite a lot of data Finetune a
few layers

Finetune a larger
number
of layers

76

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

Task-agnostic

Task-specific

Transfer learning is pervasive…
(it’s the norm, not an exception)

Image Captioning: CNN + RNN

Girshick, “Fast R-CNN”, ICCV 2015
Figure copyright Ross Girshick, 2015. Reproduced with permission.

Object Detection
(Fast R-CNN)

Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for
Generating Image Descriptions”, CVPR 2015
Figure copyright IEEE, 2015. Reproduced for educational purposes.

77

Transfer learning is pervasive…
(it’s the norm, not an exception)

Image Captioning: CNN + RNN

Girshick, “Fast R-CNN”, ICCV 2015
Figure copyright Ross Girshick, 2015. Reproduced with permission.

Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for
Generating Image Descriptions”, CVPR 2015
Figure copyright IEEE, 2015. Reproduced for educational purposes.

Object Detection
(Fast R-CNN) CNN pretrained

on ImageNet

78

Transfer learning is pervasive…
(it’s the norm, not an exception)

Image Captioning: CNN + RNN

Girshick, “Fast R-CNN”, ICCV 2015
Figure copyright Ross Girshick, 2015. Reproduced with permission.

Object Detection
(Fast R-CNN) CNN pretrained

on ImageNet

Word vectors pretrained
with word2vec Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for

Generating Image Descriptions”, CVPR 2015
Figure copyright IEEE, 2015. Reproduced for educational purposes.

79

Transfer learning is pervasive…
(it’s the norm, not an exception)

Generic Language Model Train with Task-specific Labels

https://ruder.io/recent-advances-lm-fine-tuning/

Preview: Pretrained Language Models

“Generative Pretrained Transformer”

https://huggingface.co/blog/rlhf

Devlin et al. in BERT: Pre-training of Deep Bidirectional Transformers
for Language Understanding, 2019

82

?

Example: learn to predict image transformations / complete corrupted images

image
completion

θ=?

rotation
prediction

“jigsaw puzzle” colorization

1. Solving the pretext tasks allow the model to learn good features.
2. We can automatically generate labels for the pretext tasks.

Preview: Self-Supervised Pretraining
(pretraining tasks that do not need labels)

83

Problem: finetuning still takes a lot of data, especially if the model is
huge and/or the domain gap is large.
Fact: finetuning is just adding a 𝑊(to the existing weight matrix 𝑊,
i.e., 𝑊∗ = 𝑊 +𝑊(
Hypothesis: 𝑊(is low-rank, meaning that 𝑊(can be decomposed
into two smaller matrices 𝐴 and 𝐵, i.e., 𝑊(= 𝐴'𝐵.
So what?: 𝐴 and 𝐵 have a lot fewer parameters than the full 𝑊.
Requires less data and faster to train.

Preview: Low-rank finetuning (LORA)
quickly finetune a billion-parameter model

Hu, Edward J., et al. "Lora: Low-rank adaptation of large language models.”, 2021

Takeaway for your projects and beyond:

Source: AI & Deep Learning Memes For Back-propagated Poets

84

Takeaway for your projects and beyond:
Have some dataset of interest but not big enough to train
deep models?

1. Find a very large dataset that has
similar data, train a big model there

2. Transfer learn to your dataset
3. Try LORA (low-rank finetuning) if necessary

Deep learning frameworks provide a “Model Zoo” of pretrained
models so you don’t need to train your own
TensorFlow: https://github.com/tensorflow/models
PyTorch (Vision): https://github.com/pytorch/vision
PyTorch (NLP): https://github.com/pytorch/text 85

https://github.com/tensorflow/models
https://github.com/pytorch/vision
https://github.com/pytorch/text

86

Diagnose your training
(without tons of GPUs)

87

Diagnose your training

Step 1: Check initial loss

Turn off weight decay, sanity check loss at initialization
e.g. log(C) for softmax with C classes
Reminder: 𝐿 = − log 𝑝 = − log(1/𝐶) = log(𝐶)

88

Diagnose your training
Step 1: Check initial loss
Step 2: Overfit a small sample

Try to train to 100% training accuracy on a small sample of
training data (~5-10 minibatches); fiddle with architecture,
learning rate, weight initialization

Loss not going down? LR too low, bad initialization, bug in
code or errors in training labels
Loss explodes to Inf or NaN? LR too high, bad initialization,
bug in code

89

Diagnose your training

Step 1: Check initial loss
Step 2: Overfit a small sample
Step 3: Find LR that makes loss go down

Use the architecture from the previous step, use all training
data, turn on small weight decay, find a learning rate that
makes the loss drop significantly within ~100 iterations

Good learning rates to try: 1e-3, 3e-4, 1e-4

90

Diagnose your training

Step 1: Check initial loss
Step 2: Overfit a small sample
Step 3: Find LR that makes loss go down
Step 4: Coarse grid, train for ~1-5 epochs

Choose a few values of learning rate and weight decay around
what worked from Step 3, train a few models for ~1-5 epochs.

Good weight decay to try: 1e-4, 1e-5, 0

91

Diagnose your training

Step 1: Check initial loss
Step 2: Overfit a small sample
Step 3: Find LR that makes loss go down
Step 4: Coarse grid, train for ~1-5 epochs
Step 5: Refine grid, train longer

Pick best models from Step 4, train them for longer (~10-20
epochs) without learning rate decay

92

Diagnose your training

Step 1: Check initial loss
Step 2: Overfit a small sample
Step 3: Find LR that makes loss go down
Step 4: Coarse grid, train for ~1-5 epochs
Step 5: Refine grid, train longer
Step 6: Look at loss and accuracy curves

93

Accuracy

time

Train

Accuracy still going up, you
need to train longer

Val

94

Accuracy

time

Train

Huge train / val gap means
overfitting! Increase regularization,
get more data

Val

95

Accuracy

time

Train

No gap between train / val means
underfitting: train longer, use a
bigger model, reduce regularization

Val

96

Losses may be noisy, use a
scatter plot and also plot moving
average to see trends better

Look at learning curves!
Training Loss Train / Val Accuracy

97

Cross-validation

We develop
"command centers"
to visualize all our
models training with
different
hyperparameters

check out weights and
biases

https://wandb.ai/site?gclid=Cj0KCQjw9_mDBhCGARIsAN3PaFOdNLAotsNwzHZDz2szIWhaM-2Pu5hq07RBOuDL9l8TG8UQkdralcwaAvNJEALw_wcB

98

You can plot all your loss curves for different hyperparameters on a single plot

99

Don't look at accuracy or loss curves for too long!

100

Choosing Hyperparameters

Step 1: Check initial loss
Step 2: Overfit a small sample
Step 3: Find LR that makes loss go down
Step 4: Coarse grid, train for ~1-5 epochs
Step 5: Refine grid, train longer
Step 6: Look at loss and accuracy curves
Step 7: GOTO step 5

101

Hyperparameters to play with:
- network architecture
- learning rate, its decay schedule, update type
- regularization (L1/L2/Dropout strength)

This image by Paolo Guereta is licensed under CC-BY 2.0

https://commons.wikimedia.org/wiki/File:Pioneer_DJ_equipment_-_angled_left_-_Expomusic_2014.jpg
https://creativecommons.org/licenses/by/3.0/us/

103

Summary
- Improve your training error:

- Optimizers
- Learning rate schedules

- Improve your test error:
- Regularization
- Choosing Hyperparameters

Summary

104

Training Deep Neural Networks
• Details of the non-linear activation functions
• Data normalization
• Weight Initialization
• Batch Normalization
• Advanced Optimization
• Regularization
• Data Augmentation
• Transfer learning
• Hyperparameter Tuning

Next time: Recurrent Neural Networks

105

