
CS 4644-DL / 7643-A: LECTURE 12
DANFEI XU

Topics:
• Training Neural Networks (Part 3)



Administrative
• Project Proposal deadline today! No grace period
• No class next Tue (10/03)
• HW2/PS2 due next Thu (10/05) + 48hr grace period



“Xavier” initialization: 
std = 1/sqrt(Din)

Recap: “Xavier” Initialization

Var(y) = Var(x1w1+x2w2+...+xDinwDin)                              
= Din Var(xiwi)
= Din Var(xi) Var(wi)

[Assume all xi, wi are iid]

Let: y = x1w1+x2w2+...+xDinwDin

“Just right”: Activations are 
nicely scaled for all layers!

For conv layers, Din is 
filter_size2 * input_channels
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Assume: Var(x1) = Var(x2)= …=Var(xDin)

We want: Var(y) = Var(xi)

So, Var(y) = Var(xi) only when Var(wi) = 1/Din

Scaling a normal distribution (std=1) to have Var=1/Din -> multiply by sqrt(1/Din)



Recap: Kaiming / MSRA Initialization

ReLU correction: std = sqrt(2 / Din)

He et al, “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”, ICCV 2015

Issue: Half of the activation 
get killed.
Solution: make the non-zero 
output variance twice as 
large as input

4
Visualize distribution of activations



Recap: Batch Normalization
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… Layer i-1 Layer iBN BN Layer i+2 …

“you want zero-mean unit-variance activations? just make them so.”



Input: Per-channel mean, 
shape is D

Per-channel var, 
shape is D

Normalized x,
Shape is N x D

Batch Normalization [Ioffe and Szegedy, 2015]

Learnable scale and 
shift parameters:

𝛾, 𝛽: ℝ!

Output,
Shape is N x D

We want to give the 
model a chance to 
adjust batchnorm if the 
default is not optimal. 
Learning 𝛾 = 𝜎 and 𝛽 =
𝜇 will recover the identity 
function!



Input: Per-channel mean, 
shape is D

Per-channel var, 
shape is D

Normalized x,
Shape is N x D

Batch Normalization: Test-Time

Output,
Shape is N x D

(Moving) average of 
values seen during training

(Moving) average of 
values seen during training

During testing batchnorm
becomes a linear operator! 
Can be fused with the previous 
fully-connected or conv layer

Learnable scale and 
shift parameters:

𝛾, 𝛽: ℝ!



Batch Normalization [Ioffe and Szegedy, 2015]

- Makes deep networks much easier to train!
- If you are interested in the theory, read 

https://arxiv.org/abs/1805.11604
- TL;DR: makes optimization landscape smoother

- Allows higher learning rates, faster convergence
- More useful in deeper networks
- Networks become more robust to initialization
- Zero overhead at test-time: can be fused with conv!
- Behaves differently during training and testing: this is a very 

common source of bugs!
- Needs large batch size to calculate accurate stats
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https://arxiv.org/abs/1805.11604


Group Normalization

Wu and He, “Group Normalization”, ECCV 2018
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SGD + Momentum
Intuitions:
• Think of a ball (set of parameters) moving in 

space (loss landscape), with momentum 
keeping it going in a direction.

• Individual gradient step may be noisy, the 
general trend accumulated over a few steps 
will point to the right direction.

• Momentum can “push” the ball over saddle 
points or local minima. 

Local Minima Saddle points

Noisy gradients
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SGD + Momentum:
continue moving in the general direction as the previous iterations

SGD

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically rho=0.9 or 0.99

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

SGD+Momentum
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Gradient

Velocity

actual step

Momentum update:

Nesterov Momentum

Nesterov, “A method of solving a convex programming problem with convergence rate O(1/k^2)”, 1983
Nesterov, “Introductory lectures on convex optimization: a basic course”, 2004
Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

Gradient
Velocity

actual step

Nesterov Momentum

Combine gradient at current point with 
velocity to get step used to update weights

“Look ahead” to the point where updating using 
velocity would take us; compute gradient there and 
mix it with velocity to get actual update direction
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Optimization: Problem #3 with SGD
What if loss changes quickly in one direction and slowly in another?
Very slow progress along shallow dimension, jitter along steep direction

Loss function has high condition number: ratio of largest to smallest eigen 
value (𝜆!"#/𝜆!$%) of the Hessian matrix of a loss function is large
Small condition number in loss Hessian -> circular contour
Large condition number in loss Hessian -> skewed contour
Can we enable SGD to adapt to this skew-ness?

https://www.cs.toronto.edu/~rgrosse/courses/csc421_2019/slides/lec07.pdf
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AdaGrad

Q2: What happens to the step size over long time? Decays to zero
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RMSProp: “Leaky AdaGrad”

AdaGrad

RMSProp

Tieleman and Hinton, 2012
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Adam (full form)

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Momentum

AdaGrad / RMSProp

Bias correction

Bias correction for the fact that 
first and second moment 
estimates start at zero

Adam with beta1 = 0.9, 
beta2 = 0.999, and learning_rate = 1e-3 or 5e-4
is a great starting point for many models! 
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Adam 

SGD

SGD+Momentum

RMSProp

Adam
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SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have 
learning rate as a hyperparameter.

Q: Which one of these learning 
rates is best to use?

A: In reality, all of these are good 
learning rates.

Need finer adjustment closer to convergence, 
so we want to reduce learning rate over time 
to keep making progress.
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Learning rate decays over time

Reduce learning rate
Step: Reduce learning rate at a few fixed 
points. E.g. for ResNets, multiply LR by 0.1 
after epochs 30, 60, and 90.
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Learning Rate Decay

: Initial learning rate
: Learning rate at epoch t
: Total number of epochs

Loshchilov and Hutter, “SGDR: Stochastic Gradient Descent with Warm Restarts”, ICLR 2017
Radford et al, “Improving Language Understanding by Generative Pre-Training”, 2018
Feichtenhofer et al, “SlowFast Networks for Video Recognition”, arXiv 2018
Child at al, “Generating Long Sequences with Sparse Transformers”, arXiv 2019

Step: Reduce learning rate at a few fixed 
points. E.g. for ResNets, multiply LR by 0.1 
after epochs 30, 60, and 90.

Cosine:
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Learning Rate Decay

: Initial learning rate
: Learning rate at epoch t
: Total number of epochs

Loshchilov and Hutter, “SGDR: Stochastic Gradient Descent with Warm Restarts”, ICLR 2017
Radford et al, “Improving Language Understanding by Generative Pre-Training”, 2018
Feichtenhofer et al, “SlowFast Networks for Video Recognition”, arXiv 2018
Child at al, “Generating Long Sequences with Sparse Transformers”, arXiv 2019

Step: Reduce learning rate at a few fixed 
points. E.g. for ResNets, multiply LR by 0.1 
after epochs 30, 60, and 90.

Cosine:
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Learning Rate Decay

Devlin et al, “BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding”, 2018

Step: Reduce learning rate at a few fixed 
points. E.g. for ResNets, multiply LR by 0.1 
after epochs 30, 60, and 90.

Cosine:

Linear:

: Initial learning rate
: Learning rate at epoch t
: Total number of epochs
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Step: Reduce learning rate at a few fixed 
points. E.g. for ResNets, multiply LR by 0.1 
after epochs 30, 60, and 90.

Cosine:

Linear:

Inverse sqrt: 

Learning Rate Decay

: Initial learning rate
: Learning rate at epoch t
: Total number of epochsVaswani et al, “Attention is all you need”, NIPS 2017
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First-Order Optimization

Loss

w1
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First-Order Optimization

Loss

w1

(1) Use gradient form linear approximation
(2) Step to minimize the approximation
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Second-Order Optimization

Loss

w1

(1) Use gradient and Hessian to form quadratic approximation
(2) Step to the minima of the approximation
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second-order Taylor Expansion of 𝑓 𝑥 at 𝑎:

Newton’s method for optimization: solving for the critical point 𝑓& 𝑥 = 0, 
we obtain the Newton update rule

Second-Order Optimization

𝑓 𝑥 = 𝑓 𝑎 +
𝑓! 𝑎
1! 𝑥 − 𝑎 +

𝑓!! 𝑎
2! (𝑥 − 𝑎)"

𝑓! 𝑥 = 𝑓! 𝑎 + 𝑓!! 𝑎 (𝑥 − 𝑎) = 0
𝑥∗ = 𝑎 − $

%'' &
𝑓′(𝑎)

Think of 𝑎 as the current params, 𝑥∗ as the updated params

𝑎

𝑥∗
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second-order Taylor Expansion of 𝑓 𝒙 at 𝒂:

Newton’s method for optimization: solving for the critical point we obtain 
the Newton update rule:

Second-Order Optimization (multivariate)

𝑓 𝑤 = 𝑓 𝒂 + 𝒙 − 𝒂 '∇𝑓 +
1
2 (𝒙 − 𝒂)

'𝐻(𝒙 − 𝒂)

𝒙∗ = 𝒂 − 𝐻'( ∇𝑓
𝑎

𝑥∗
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second-order Taylor Expansion of 𝑓 𝒙 at 𝒂:

Newton’s method for optimization: solving for the critical point we obtain 
the Newton update rule:

Second-Order Optimization (multivariate)

Q: Why is this bad for deep learning?

𝑓 𝑤 = 𝑓 𝒂 + 𝒙 − 𝒂 '∇𝑓 +
1
2 (𝒙 − 𝒂)

'𝐻(𝒙 − 𝒂)

𝒙∗ = 𝒂 − 𝐻'( ∇𝑓
𝑎

𝑥∗
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Hessian Matrix
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second-order Taylor expansion:

Solving for the critical point we obtain the Newton parameter update:

Second-Order Optimization

Q: Why is this bad for deep learning?

Hessian has O(N^2) elements
Inverting takes O(N^3)
N = Millions

𝑓 𝒙 = 𝑓 𝒂 + 𝑥 − 𝑎 '∇𝑓 +
1
2 (𝑥 − 𝑎)

'𝐻(𝑥 − 𝑎)

𝑥∗ = 𝑎 − 𝐻'( ∇𝑓
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Second-Order Optimization

- Quasi-Newton methods (BFGS most popular):
instead of inverting the Hessian (O(n^3)), approximate 
inverse Hessian with rank 1 updates over time (O(n^2) 
each).
Still pretty expensive

- L-BFGS (Limited memory BFGS): 
Does not form/store the full inverse Hessian.
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L-BFGS

- Usually works very well in full batch, deterministic mode 
i.e. if you have a single, deterministic f(x) then L-BFGS will 
probably work very nicely

- Does not transfer very well to mini-batch setting. Gives 
bad results. Adapting second-order methods to large-scale, 
stochastic setting is an active area of research.

Le et al, “On optimization methods for deep learning, ICML 2011”
Ba et al, “Distributed second-order optimization using Kronecker-factored approximations”, ICLR 2017



This Time:
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Training Deep Neural Networks
• Details of the non-linear activation functions
• Data normalization
• Weight Initialization
• Batch Normalization 
• Advanced Optimization
• Regularization
• Data Augmentation
• Transfer learning
• Hyperparameter Tuning



Regularization
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Beyond Training Error

Better optimization algorithms 
help reduce training loss

But we really care about error on 
new data - how to reduce the gap?
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Early Stopping: Always do this

Iteration

Loss

Iteration

Accuracy
Train
Val

Stop training here

Stop training the model when accuracy on the validation set decreases
Or train for a long time, but always keep track of the model snapshot 
that worked best on val
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How to improve generalization?

Regularization



Regularization: Add term to loss
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In common use:
L2 regularization
L1 regularization
Elastic net (L1 + L2)

(Weight decay)
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Regularization: Dropout
In each forward pass, randomly set some neurons to zero
Probability of dropping is a hyperparameter; 0.5 is common

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014
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Regularization: Dropout Example forward 
pass with a 3-
layer network 
using dropout
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Regularization: Dropout
How can this possibly be a good idea?

Forces the network to have a redundant representation;
Prevents co-adaptation of features

has an ear

has a tail

is furry

has claws
mischievous 
look

cat 
score

X

X

X
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Regularization: Dropout
How can this possibly be a good idea?

Another interpretation:

Dropout is training a large ensemble of 
models (that share parameters).

Each binary mask is one model

An FC layer with 4096 units has
24096 ~ 101233 possible masks!
Only ~ 1082 atoms in the universe...



44

Dropout: Test time

Dropout makes our output random!

Output
(label)

Input
(image)

Random 
mask

Want to “average out” the randomness at test-time
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Dropout: Test time
Compute the 
expectation

Consider a single neuron.
a

x y

w1 w2
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Dropout: Test time

Consider a single neuron.

Without dropout:
a

x y

w1 w2

Compute the 
expectation
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Dropout: Test time

Consider a single neuron.

Without dropout:
With dropout we have:

a

x y

w1 w2

Compute the 
expectation
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Dropout: Test time

Consider a single neuron.

Without dropout:
With dropout we have:

a

x y

w1 w2

At test time, multiply
by dropout probability

Compute the 
expectation
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Dropout: Test time

At test time all neurons are active always
=> We must scale the activations so that for each neuron:
output at test time = expected output at training time
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Dropout Summary

drop in train time

scale at test time
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More common: “Inverted dropout”

test time is unchanged!

Similar to BatchNorm, different behavior train vs test!
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Regularization: A common strategy
Training: Add some kind 
of randomness

Testing: Average out randomness 
(sometimes approximate)
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Load image 
and label

“cat”

CNN

Compute
loss

Regularization: Data Augmentation

This image by Nikita is 
licensed under CC-BY 2.0

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
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Regularization: Data Augmentation

Load image 
and label

“cat”

CNN

Compute
loss

Transform image
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Data Augmentation
Horizontal Flips
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Data Augmentation
Random crops and scales

Training: sample random crops / scales
ResNet:
1. Pick random L in range [256, 480]
2. Resize training image, short side = L
3. Sample random 224 x 224 patch
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Data Augmentation
Random crops and scales

Training: sample random crops / scales
ResNet:
1. Pick random L in range [256, 480]
2. Resize training image, short side = L
3. Sample random 224 x 224 patch

Testing (test-time augmentation): 
take votes / average from a fixed set of crops
1. Resize image at 5 scales:  {224, 256, 384, 480, 640}
2. For each size, use 10 224 x 224 crops: 4 corners + center, + flips
3. Make prediction on all crops, use the majority vote as the final output.
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Data Augmentation
Random crops and scales

Training: sample random crops / scales
ResNet:
1. Pick random L in range [256, 480]
2. Resize training image, short side = L
3. Sample random 224 x 224 patch

Testing (deterministic): 
• Take a center crop of 224 by 224.
• Or crop by longer dimension and resize.
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Data Augmentation
Color Jitter

Simple: Randomize 
contrast and brightness
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Data Augmentation
Color Jitter

Simple: Randomize 
contrast and brightness

More Complex:

1. Apply PCA to all [R, G, B] 
pixels in training set

2. Sample a “color offset” 
along principal component 
directions

1. Add offset to all pixels of a 
training image

(As seen in [Krizhevsky et al. 2012], ResNet, etc)
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Data Augmentation
Get creative for your problem!

Examples of data augmentations:
- translation
- rotation
- stretching
- shearing, 
- chromatic aberration
- lens distortions, …  (go crazy)
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Automatic Data Augmentation

Cubuk et al., “AutoAugment: Learning Augmentation Strategies from Data”, CVPR 2019



Gradient clipping: prevent large gradient step
Large gradient step will likely destabilize training (gradients are noisy!)
Large gradient update can be caused by many issues, e.g., large weights, large 
input, bad loss function / activation function, …
Should always first try to fix the root cause (normalization,  better loss / 
activation function, etc.)

But if all things fail … just clip the gradient

𝑔%)* = min 1,
𝜆
𝑔

×𝑔

𝑔: original gradient
𝜆: clipping threshold



Transfer learning / Pretraining
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“You need a lot of a data if you want to 
train/use deep neural networks”
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“You need a lot of a data if you want to 
train/use deep neural networks”
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BU
ST

ED



Transfer Learning with CNNs
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Transfer Learning with CNNs

AlexNet:
64 x 3 x 11 x 11 

(More on this in Lecture 13)
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Transfer Learning with CNNs

Test image L2 Nearest neighbors in feature space

(More on this in Lecture 13)
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Transfer Learning with CNNs

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

1. Train on Imagenet

Donahue et al, “DeCAF: A Deep Convolutional Activation 
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “CNN Features Off-the-Shelf: An 
Astounding Baseline for Recognition”, CVPR Workshops 
2014
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Transfer Learning with CNNs

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

1. Train on Imagenet

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-C

2. Small Dataset (C classes)

Freeze these

Reinitialize 
this and train

Donahue et al, “DeCAF: A Deep Convolutional Activation 
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “CNN Features Off-the-Shelf: An 
Astounding Baseline for Recognition”, CVPR Workshops 
2014
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Transfer Learning with CNNs

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

1. Train on Imagenet

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-C

2. Small Dataset (C classes)

Freeze these

Reinitialize 
this and train

Donahue et al, “DeCAF: A Deep Convolutional Activation 
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “CNN Features Off-the-Shelf: An 
Astounding Baseline for Recognition”, CVPR Workshops 
2014

Donahue et al, “DeCAF: A Deep Convolutional Activation Feature for 
Generic Visual Recognition”, ICML 2014

Finetuned from AlexNet
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Transfer Learning with CNNs

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

1. Train on Imagenet

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-C

2. Small Dataset (C classes)

Freeze these

Reinitialize 
this and train

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-C

3. Bigger dataset

Freeze these

Train these

With bigger 
dataset, train 
more layers

Lower learning rate 
when finetuning; 
1/10 of original LR 
is good starting 
point

Donahue et al, “DeCAF: A Deep Convolutional Activation 
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “CNN Features Off-the-Shelf: An 
Astounding Baseline for Recognition”, CVPR Workshops 
2014
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Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

Task-agnostic

Task-specific

very similar 
dataset

very different 
dataset

very little data ? ?

quite a lot of data ? ?
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very similar 
dataset

very different 
dataset

very little data Use Linear 
Classifier on
top layer

?

quite a lot of data Finetune a 
few layers

?
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Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

Task-agnostic

Task-specific



very similar 
dataset

very different 
dataset

very little data Use Linear 
Classifier on 
top layer

You’re in trouble… 
Try linear 
classifier from 
different stages

quite a lot of data Finetune a 
few layers

Finetune a larger 
number 
of layers
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Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

Task-agnostic

Task-specific



Transfer learning is pervasive…
(it’s the norm, not an exception)

Image Captioning: CNN + RNN

Girshick, “Fast R-CNN”, ICCV 2015
Figure copyright Ross Girshick, 2015. Reproduced with permission.

Object Detection 
(Fast R-CNN)

Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for 
Generating Image Descriptions”, CVPR 2015
Figure copyright IEEE, 2015. Reproduced for educational purposes. 
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Transfer learning is pervasive…
(it’s the norm, not an exception)

Image Captioning: CNN + RNN

Girshick, “Fast R-CNN”, ICCV 2015
Figure copyright Ross Girshick, 2015. Reproduced with permission.

Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for 
Generating Image Descriptions”, CVPR 2015
Figure copyright IEEE, 2015. Reproduced for educational purposes. 

Object Detection 
(Fast R-CNN) CNN pretrained 

on ImageNet
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Transfer learning is pervasive…
(it’s the norm, not an exception)

Image Captioning: CNN + RNN

Girshick, “Fast R-CNN”, ICCV 2015
Figure copyright Ross Girshick, 2015. Reproduced with permission.

Object Detection 
(Fast R-CNN) CNN pretrained 

on ImageNet

Word vectors pretrained 
with word2vec Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for 

Generating Image Descriptions”, CVPR 2015
Figure copyright IEEE, 2015. Reproduced for educational purposes. 
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Transfer learning is pervasive…
(it’s the norm, not an exception)

Generic Language Model Train with Task-specific Labels

https://ruder.io/recent-advances-lm-fine-tuning/



Preview: Pretrained Language Models

“Generative Pretrained Transformer”

https://huggingface.co/blog/rlhf

Devlin et al. in BERT: Pre-training of Deep Bidirectional Transformers 
for Language Understanding, 2019
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?

Example: learn to predict image transformations / complete corrupted images

image 
completion

θ=?

rotation 
prediction

“jigsaw puzzle” colorization

1. Solving the pretext tasks allow the model to learn good features.
2. We can automatically generate labels for the pretext tasks.

Preview: Self-Supervised Pretraining
(pretraining tasks that do not need labels)
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Problem: finetuning still takes a lot of data, especially if the model is 
huge and/or the domain gap is large.
Fact: finetuning is just adding a 𝑊( to the existing weight matrix 𝑊, 
i.e., 𝑊∗ = 𝑊 +𝑊(
Hypothesis: 𝑊( is low-rank, meaning that 𝑊( can be decomposed 
into two smaller matrices 𝐴 and 𝐵, i.e., 𝑊( = 𝐴'𝐵. 
So what?: 𝐴 and 𝐵 have a lot fewer parameters than the full 𝑊. 
Requires less data and faster to train.

Preview: Low-rank finetuning (LORA)
quickly finetune a billion-parameter model

Hu, Edward J., et al. "Lora: Low-rank adaptation of large language models.”, 2021



Takeaway for your projects and beyond:

Source: AI & Deep Learning Memes For Back-propagated Poets
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Takeaway for your projects and beyond:
Have some dataset of interest but not big enough to train 
deep models?

1. Find a very large dataset that has 
similar data, train a big model there

2. Transfer learn to your dataset
3. Try LORA (low-rank finetuning) if necessary

Deep learning frameworks provide a “Model Zoo” of pretrained 
models so you don’t need to train your own
TensorFlow: https://github.com/tensorflow/models
PyTorch (Vision): https://github.com/pytorch/vision
PyTorch (NLP): https://github.com/pytorch/text 85

https://github.com/tensorflow/models
https://github.com/pytorch/vision
https://github.com/pytorch/text
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Diagnose your training
(without tons of GPUs)
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Diagnose your training

Step 1: Check initial loss

Turn off weight decay, sanity check loss at initialization
e.g. log(C) for softmax with C classes
Reminder: 𝐿 = − log 𝑝 = − log(1/𝐶) = log(𝐶)
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Diagnose your training
Step 1: Check initial loss
Step 2: Overfit a small sample

Try to train to 100% training accuracy on a small sample of 
training data (~5-10 minibatches); fiddle with architecture, 
learning rate, weight initialization

Loss not going down? LR too low, bad initialization, bug in 
code or errors in training labels
Loss explodes to Inf or NaN? LR too high, bad initialization, 
bug in code
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Diagnose your training

Step 1: Check initial loss
Step 2: Overfit a small sample
Step 3: Find LR that makes loss go down

Use the architecture from the previous step, use all training 
data, turn on small weight decay, find a learning rate that 
makes the loss drop significantly within ~100 iterations

Good learning rates to try: 1e-3, 3e-4, 1e-4
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Diagnose your training

Step 1: Check initial loss
Step 2: Overfit a small sample
Step 3: Find LR that makes loss go down
Step 4: Coarse grid, train for ~1-5 epochs

Choose a few values of learning rate and weight decay around 
what worked from Step 3, train a few models for ~1-5 epochs.

Good weight decay to try: 1e-4, 1e-5, 0
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Diagnose your training

Step 1: Check initial loss
Step 2: Overfit a small sample
Step 3: Find LR that makes loss go down
Step 4: Coarse grid, train for ~1-5 epochs
Step 5: Refine grid, train longer

Pick best models from Step 4, train them for longer (~10-20 
epochs) without learning rate decay
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Diagnose your training

Step 1: Check initial loss
Step 2: Overfit a small sample
Step 3: Find LR that makes loss go down
Step 4: Coarse grid, train for ~1-5 epochs
Step 5: Refine grid, train longer
Step 6: Look at loss and accuracy curves
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Accuracy

time

Train

Accuracy still going up, you 
need to train longer

Val
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Accuracy

time

Train

Huge train / val gap means 
overfitting! Increase regularization, 
get more data

Val
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Accuracy

time

Train

No gap between train / val means 
underfitting: train longer, use a 
bigger model, reduce regularization

Val
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Losses may be noisy, use a 
scatter plot and also plot moving 
average to see trends better

Look at learning curves!
Training Loss Train / Val Accuracy
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Cross-validation 

We develop 
"command centers" 
to visualize all our 
models training with 
different 
hyperparameters

check out weights and 
biases

https://wandb.ai/site?gclid=Cj0KCQjw9_mDBhCGARIsAN3PaFOdNLAotsNwzHZDz2szIWhaM-2Pu5hq07RBOuDL9l8TG8UQkdralcwaAvNJEALw_wcB
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You can plot all your loss curves for different hyperparameters on a single plot
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Don't look at accuracy or loss curves for too long!
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Choosing Hyperparameters

Step 1: Check initial loss
Step 2: Overfit a small sample
Step 3: Find LR that makes loss go down
Step 4: Coarse grid, train for ~1-5 epochs
Step 5: Refine grid, train longer
Step 6: Look at loss and accuracy curves
Step 7: GOTO step 5



101

Hyperparameters to play with:
- network architecture
- learning rate, its decay schedule, update type
- regularization (L1/L2/Dropout strength)

This image by Paolo Guereta is licensed under CC-BY 2.0

https://commons.wikimedia.org/wiki/File:Pioneer_DJ_equipment_-_angled_left_-_Expomusic_2014.jpg
https://creativecommons.org/licenses/by/3.0/us/
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Summary
- Improve your training error:

- Optimizers
- Learning rate schedules

- Improve your test error:
- Regularization
- Choosing Hyperparameters



Summary

104

Training Deep Neural Networks
• Details of the non-linear activation functions
• Data normalization
• Weight Initialization
• Batch Normalization 
• Advanced Optimization
• Regularization
• Data Augmentation
• Transfer learning
• Hyperparameter Tuning



Next time: Recurrent Neural Networks
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