
CS 4803 - Robotics: AI Techniques - Asteroids Project
Introduction
This project asks you to track a collection of moving asteroids and:

• estimate their future location

• pilot a craft around them to a goal location

The asteroid field
The asteroids travel in a square with corners (-1,-1) and (1,1). Asteroids outside of the bounding box are
considered “out of play” for the moment.

Time is delimited in discrete steps (t=0,1,2,. . . ), and the asteroid’s XY location is determined by quadratic
equations in time:

x(t) = axt2 + bxt + cx

y(t) = ayt2 + byt + cy

Each asteroid’s motion can be modeled using x, y, dx, dy, ddx, ddy, similar to the models explored in the
lectures.

After drifting outside of the bounding box, most asteroids never return, but a few (<5%) reemerge onto the
field later.

Student submission
Your work on this project is to implement the class Pilot in the pilot.py file. The Pilot class must
implement three methods:

• observe_asteroids: called once per time step, informing the pilot of the latest asteroid measurements.
Measurements will include Gaussian noise. Only asteroids currently in the field are measured.

• estimate_asteroid_locs: predict the location of where the asteroids will be in the next time step.

• next_move: given the craft’s current state, choose the next move for the spacecraft to execute.

Your Pilot instance is initialized with two variables:

• minimum_threshold: in the estimation task, this value specifies how close your asteroid location
estimates must be to count as a match. In the navigation task, this value specifies how far your craft
must stay from each asteroid to avoid hitting it.

• in_bounds: a rectangle object with properties x_bounds and y_bounds, each of which contain a pair
of min and max values. In the estimation task, you need only estimate asteroids currently in bounds.
In the navigation task, your craft may not leave the bounds; doing so will count as a failure.

Task 1: estimation
Estimation counts for the majority of the credit in this project.

At each time step, the pilot will be asked to estimate the locations of all asteroids for the next time step.
For example, if the observe_asteroids method is invoked at time step t, which means that it carries the
observations at time step t, the estimate_asteroid_locs will be asked to estimate the locations of the
asteroids at time step t + 1.

1



The pilot’s estimates from the prior step will be compared with the asteroids’ current locations. Estimates
within the minimum_threshold will be considered matches.

The estimation is successful if 90% of the asteroids currently active match the prior step’s estimates before
iteration and temporal limits are reached. See the “Testing your code” section below for more information
about the limits.

Task 2: navigation
The navigation task is intended to be tackled after completing the estimation task. Your navigation code will
likely make use of your estimation code. After all, in order to navigate through an asteroid field, it would
help to know where the asteroids are at and where they are heading.

The task initializes a craft below the asteroid field and asks you to pilot it through the field and into a goal
area at the top. (y > 1.0)

The craft (implemented as CraftState in craft.py) has the following properties:

• current position, heading, and velocity (x, y, h, v)

• performance characteristics (max_speed, speed_increment, angle_increment)

Each move by the craft is specified by:

• angle change: the craft may turn left, right, or go straight with respect to its current heading. Turns
adjust the craft’s heading by angle_increment.

• speed change: the craft may accelerate, decelerate, or continue at its current velocity. Speed changes
adjust the craft’s velocity by speed_increment, maxing out at max_speed.

Note that in the navigation task, piloting your craft out of bounds is considered a crash, and the bounds are
specified by in_bounds in the pilot initialization.

The navigation is successful if your craft reaches the goal area before the iteration and temporal limits are
reached. See the “Testing your code” section below for more information about the limits.

Testing your code
Two local test scripts are provided with this project:

test_all.py runs your code against all available test cases. This script closely mirrors the auto-grader we
will use to grade your work. To run:

$ python test_all.py

test_one.py runs your code against a single test case, with additional display options. This script is intended
to assist debugging.

$ python test_one.py --help
usage: test_one.py [-h] [--case {1,2,3,4,5,6,7}]

[--display {turtle,text,none}]
{estimate,navigate}

positional arguments:
{estimate,navigate} Which method to test

optional arguments:
-h, --help show this help message and exit
--case {1,2,3,4,5,6,7}

test case number
--display {turtle,text,none}

2



For example, to test the navigation task on case 3 with the visualization, run this command:

$ python test_one.py --case 3 --display turtle navigate

Please note that the gray circles represent the actual locations of the asteroids. Green dots are your estimates
for those asteroids that match the asteroid locations, i.e., close enough to the asteroids. Red dots are your
estimates which are too far from the actual asteroid positions.

Test cases are provided in the cases subdirectory. We will use similar but different cases to grade your code.

These testing suites are NOT complete, and you may need to develop other, more complicated, test cases to
fully validate your code. We encourage you to share your test cases (only) with other students on Ed.

There are two limits that will end execution of a test case before the goal is met. One is iteration based and
the other is temporal.

In both the included test files, test_one.py and test_all.py, as well as on Gradescope, each test case will
need to be finished within a set limit of 1000 iterations. A message of “too many steps” will be displayed to
the console if the goal has not been met before this limit is reached.

Additionally, in test_all.py and on Gradescope (NOT enforced in test_one.py), each test case will be
limited to a timeout of 10 seconds. It is guaranteed that the grader on Gradescope will have a timeout
greater than or equal to the 10 seconds in the test_all.py file provided to you. A message of “execu-
tion_time_exceeded” will be displayed to the console if the goal has not been met before this time limit.
Hitting this limit means that the timeout was exceeded before either the goal was reached or 1000 steps were
run.

Generating new test cases

The included file generate_test_case.py can be used to generate new test cases. It has a number of inputs,
as follows:

$ python generate_test_case.py --help
usage: Generate a test case parameters and write to file.
[-h] [--t_past T_PAST] [--t_future T_FUTURE]
[--t_step T_STEP] [--noise_sigma NOISE_SIGMA]
[--asteroid_a_max ASTEROID_A_MAX]
[--asteroid_b_max ASTEROID_B_MAX]
[--craft_max_speed CRAFT_MAX_SPEED]
[--craft_angle_increment CRAFT_ANGLE_INCREMENT]
[--minimum_threshold MINIMUM_THRESHOLD] [--seed SEED]
outfile

positional arguments:
outfile name of file to write

optional arguments:
-h, --help

show this help message and exit
--t_past T_PAST

time in past (negative integer) from which to start generating asteroids
--t_future T_FUTURE

time into future (postigive integer) at which to stop generating asteroids
--t_step T_STEP

add an asteroid every N-th time step
--noise_sigma NOISE_SIGMA

sigma of Gaussian noise applied to asteroid measurements
--asteroid_a_max ASTEROID_A_MAX

3



Figure 1: test_one.py visualization

4



maximum magnitude for quadratic asteroid coefficient
--asteroid_b_max ASTEROID_B_MAX

maximum magnitude for linear asteroid coefficient
--craft_max_speed CRAFT_MAX_SPEED

max speed for the student-piloted craft
--craft_angle_increment CRAFT_ANGLE_INCREMENT

heading change increment for student-piloted craft
--minimum_threshold minimum_threshold

minimum distance craft must be from asteroid to avoid collision
--seed SEED

random seed to use when generating asteroids

To create a new case, run as follows:

$ python generate_test_case.py my_case.py [... additional argument here ...]

To use this test case, pass the filename to test_one.py using the --case argument:

$ python test_one.py navigate --case my_case.py --display turtle

Note: case files must have the .py extension to be imported correctly by the test code.

Implementation note The test cases describe asteroid paths as follows:

x(t) := ax(t − tstart)2 + bx(t − tstart) + cx

y(t) := ay(t − tstart)2 + by(t − tstart) + cy

These equations are slightly different than those presented earlier, in that they offset t by −tstart.

Hints and suggestions
How do I share data between observe_asteroids, estimate_asteroid_locs, and next_move?

In your implementation of Pilot, you can refer to the current pilot instance using self and attach additional
data to it. Here is an example of the technique, implementing a simple counter:

class Counter(object):

def __init__(self):
self.value = 0

def increment(self):
self.value += 1

def show(self):
print(self.value)

ctr = Counter()
ctr.increment()
ctr.increment()
ctr.show() # should display ’2’

5



Should I build one Kalman filter to track all the asteroids?

Create and update a separate µ and Σ for each asteroid, using the Kalman filter equations. The motion
model matrix (F ), measurement model matrix (H), and uncertainty matrices should all be constant and the
same for all asteroids.

What is a good strategy for navigation?

On each time step, your craft has nine possible moves: three possible direction changes times three possible
speed changes. Looking ahead two time steps, your craft has 9*9 = 81 possible paths; looking ahead three,
9*9*9 = 729. As the number of paths increases exponentially in time, your code must strike a balance
between computational efficiency and navigational accuracy.

To estimate the asteroids’ future positions, combine your estimates of their current location with your motion
model. Keep in mind that your future estimates will lose accuracy the farther out you forecast.

Once you have forecast both the craft’s and the asteroids’ future locations, rank the craft’s next moves
according to some measure of quality and choose the move with the highest score. It is up to you to construct
this measure, but you will want to incentivize (1) avoiding asteroids and (2) moving toward the goal.

Often times AI algorithms need to be tuned to strike a balance between competing desires. This can be done
by weighting each of these desires. The ratio of the weights signifies the relative importances of each desire.
You may find that it is beneficial to have more than just 2 competing desires.

Submitting your assignment
Your submission will consist of the pilot.py file (only) which will be uploaded to Gradescope. Do not archive
(zip,tar,etc) it.

Academic Integrity
You must write the code for this project with your group member and no one else. While you may make
limited usage of outside resources, keep in mind that you must cite any such resources you use in your work
(for example, you should use comments to denote a snippet of code obtained from StackOverflow, lecture
videos, etc).

You must not use anybody else’s code for this project in your work (no sharing of code across teams). We will
use code-similarity detection software to identify suspicious code, and we will refer any potential incidents
to the Office of Student Integrity for investigation. Moreover, you must not post your work on a publicly
accessible repository; this could also result in an Honor Code violation [if another student turns in your code].
(Consider using the GT provided Github repository or a repo such as Bitbucket that doesn’t default to public
sharing.)

6


	CS 4803 - Robotics: AI Techniques - Asteroids Project
	Introduction
	The asteroid field
	Student submission
	Task 1: estimation
	Task 2: navigation
	Testing your code
	Generating new test cases

	Hints and suggestions
	How do I share data between observe_asteroids, estimate_asteroid_locs, and next_move?
	Should I build one Kalman filter to track all the asteroids?
	What is a good strategy for navigation?

	Submitting your assignment
	Academic Integrity


