Topics:
* Optimization Continued

CS 4644-DL / 7643-A
ZSOLT KIRA



* Assignment 1 — due tonight, grace period 02/05

* Assignment 2

* Implement convolutional neural networks

 Facebook Lectures: Data wrangling OH recordings available on piazza



There are still many design
decisions that must be made:

Architecture

Data Considerations

Training and
Optimization
Local
Machine Learning Minima
Considerations

) Designing Deep Neural Networks




Deep learning involves complex,
compositional, non-linear functions

The loss landscape is extremely non-
convex as a result

There is little direct theory and a lot of
intuition/rules of thumbs instead

Some insight can be gained via
theory for simpler cases (e.g.
convex settings)

) » Loss Landscape

o
MCL loss

Georgia

Tec

Al

—




It used to be thought that
existence of local minima is
the main issue in optimization

There are other more
impactful issues:

Noisy gradient estimates

Saddle points

lll-conditioned loss surface

) Loss Landscape

Saddle Point

From: Identifying and attacking the saddle point problem in high-
dimensional non-convex optimization, Dauphi et al., 2014.

Georgia

Tec

Al

—




We use a subset of the
data at each iteration to
calculate the loss (&
gradients)

1
L=23 LG W),y

This is an unbiased
estimator but can have
high variance

This results in noisy steps
In gradient descent

—

) Noisy Gradients Gegrgia |




Several loss surface geometries
are difficult for optimization

Several types of minima: Local
minima, plateaus, saddle points

Saddle points are those where the
gradient of orthogonal directions
are zero

But they disagree (it's min for
one, max for another)

) Loss Surface Geometry

Saddle Point

Georgia

Tech &




Gradient descent takes a step in the
steepest direction (negative gradient) JoL

Intuitive idea: Imagine a ball rolling
down loss surface, and use
momentum to pass flat surfaces

aL Update Velocity

vi = Bvi- 1+3W; . (startsas 0, B =0.99)

Wi = Wi_1 — av; Update Weights

Generalizes SGD (B = 0)

) ) Adding Momentum Gegraia |




Velocity term is an exponential moving average of the gradient

oL
v = i1+ w1
i
oL oL
Vi =B(BVi2+ w. 2) o )
i— i—
, oL oL
= pvi2 t B T

ow;_, Jdw;_ 4

There is a general class of accelerated gradient methods, with
some theoretical analysis (under assumptions)

ec

) Accelerated Descent Methods Georgia &

—



Equivalent formulation:

oL :
v; = U4 — @ — Update Velocity

ow;_q1 (starts as 0)

Wi =W;_1 +7; Update Weights

ec

—

Equivalent Momentum Update Gegrgia |




Key idea: Rather than combining velocity
with current gradient, go along velocity
first and then calculate gradient at new

point

We know velocity is probably a
reasonable direction

Wi1=Wwi_1+ Bvi4
Momentum update: Nesterov Momentum

Gradient

Velocity Velocity
ow
i— 1 actual step

v = pvi_1+

actual step

Wl o Wl—l _— a vl Gradient
Figure Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

) » Nesterov Momentum Georgia &



Momentum

Note there are several equivalent
formulations across deep learning
frameworks!

Resource:
https://medium.com/the-artificial-
impostor/sgd-implementation-in-
pytorch-4115bcb9f02c

Georgia

Tec

Al




Various mathematical ways to
characterize the loss landscape

If you liked Jacobians... meet the

er_# #f ]
dx? Oz Oz Oz, Oz,
o f o f o f
- Oxy Oz 3$§‘ Oxy 0z
o f o f o f
| G®nlni 08y, 025 Oz

Gives us information about the
curvature of the loss surface

) Hessian and Loss Curvature

Georgia &

Tech

—



Condition number is the ratio of
the largest and smallest eigenvalue

Tells us how different the
curvature is along different
dimensions

If this is high, SGD will make big
steps in some dimensions and
small steps in other dimension

Second-order optimization methods
divide steps by curvature, but
expensive to compute

» B Condition Number Geonl

—



Per-Parameter Learning Rate

Idea: Have a dynamic learning rate
for each weight

Several flavors of optimization
algorithms:

RMSProp
Adagrad
Adam

SGD can achieve similar results in
many cases but with much more
tuning

O

Georgia

Tec

Al




Idea: Use gradient statistics
to reduce learning rate across
iterations

Denominator: Sum up
gradients over iterations

As gradients are
accumulated learning
rate will go to zero

Directions with high
curvature will have higher
gradients, and learning rate
will reduce

Duchi, et al., “Adaptive Subgradient Methods for Online
Learning and Stochastic Optimization”

) Adagrad Georgia &




Solution: Keep a moving
average of squared

L \°
G,=BG;_1+(1—-p) (aw-_1>

gradients!
Wi =W;_1—
Does not saturate the JGi+€ OWiq

learning rate

<
Q
b~

—

) RMSProp —




dL
vi=ﬁ1vi—1+(1—ﬁ1)< )

ow;_q

Combines ideas from
above algorithms

aL '\’
GizﬁzGi—1+(1—ﬁz)< _ )

awl—l
Maintains both first W;=W;_q—
and second moment VGt €

statistics for gradients But unstable in the beginning

(one or both of moments will be
tiny values)

>
S

Kingma and Ba, “Adam: A method for stochastic optimization’,
ICLR 2015

) Adam G“""r&%ﬁ@




dL
”i=ﬁ1vi—1+(1—ﬁ1)( )

Solution: Time-varying bias Iw;_4
i

correction

L \°
G; = P> Gi—1+(1—ﬁz)< )

Typically B = 0.9, B, = 0.999 ow;_q

So v; will be small number

% _ G
divided by (1-0.9=0.1) resulting Dy=—b Gi=—
in more reasonable values (and
G; larger oD

larger) Wi =W;_1——F— l
Gi + €

) Adam Gogrota |




Optimizers behave differently
depending on landscape

w— Gradient Descent
,;.,... = Momentum
[T TRy weee Nesterov

Different behaviors such as

overshooting, stagnating, etc.

R :,::,:o,'o,';'l,'c,‘.
Yo te, 900,00.0,% () l"I‘ ()

CALAIILAINA
A0 0‘.,:4 "tﬁ‘f’o“

Plain SGD+Momentum can
generalize better than adaptive
methods, but requires more tuning

See: Luo et al., Adaptive
Gradient Methods with
Dynamic Bound of Learning
Rate, ICLR 2019

From: https://mifromscratch.com/optimizers-explained/#/

) » Behavior of Optimizers Gegraia|

ech

—



First order optimization methods have
learning rates

Theoretical results rely on annealed
learning rate

Several schedules that are typical:
Graduate student!
Step scheduler
Exponential scheduler

Cosine scheduler

Training
Loss

Maximum bound
(max_Ir)

Minimum bound

«—> (base_Ir)
stepsize

From: Leslie Smith, “Cyclical Learning Rates for Training Neural Networks”

) Learning Rate Schedules

Georgia

Tech &




Regularization




Many standard regularization methods still apply!

L1 Regularization

L=|y—Wx;|*+ A|W|

where |W| is element-wise

Example regularizations:
L1/L2 on weights (encourage small values)
L2: L = |y — Wx;|? + 2|W|? (weight decay)
Elastic L1/L2: |y — Wx;|% + a|W|? + B|W|

) Regularization




\

)
Q
)

<
\

NX KA~
250l R

)

input
layer hidden hidden
layer 1 layer 2

Problem: Network can learn to rely strong on a few features that work
really well

May cause overfitting if not representative of test data

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

Preventing Co-Adapted Features




\

§!"ﬁl’ "ag.gh"
) NX X~
EXKOIRNK
AIRAEERS

N
A

)

4
N\
()
X

input
layer hidden hidden
layer 1 layer 2

An idea: For each node, keep its output with probability p
Activations of deactivated nodes are essentially zero

Choose whether to mask out a particular node each iteration

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

) » Dropout Regularization




)
s
N

A

d
)

: : KT RN EF
In practice, implement RS

N
(

D
\/
X
)%

)

with a mask calculated
each iteration

layer hidden hidden
layer 1 layer 2

During testing, no @
nodes are dropped 1]

R orRo

) » Dropout Implementation



During training, each node has an
expected p * fan_in nodes

During test all nodes are activated

Principle: Always try to have
similar train and test-time
input/output distributions!

Solution: During test time, scale
outputs (or equivalently weights) by p

l.e. Wiest = PW

Alternative: Scale by % at train time

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

) » Inference with Dropout

A

<
)

@
0N

D

4

\

/

74

)

¢
>

&

A

XS

-\

(/

Y

&

)

Q

\
(

C

\V
\0

)

[

hidden

0
1
0

11




Interpretation 1: The model should

not rely too heavily on particular ﬂ M O
features x> @ Sv7. @
. . . A RASLI
If it does, it has probability 1 — p ’/,‘i KX (
of losing that feature in an — Zin .:‘
iteration .
layer hidden hidden
layer 1 layer 2

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

) » Why Dropout Works




Interpretation 1: The model should

. . o
not rely too heavily on particular ﬂ M O
features x> @ Sv7. @
AR
If it does, it has probability 1 — p P8 LS (
- - NN
of losing that feature in an (X
iteration .
layer hidden hidden
Interpretation 2: Training 2" layer 1 layer 2
networks:

Each configuration is a network

Most are trained with 1 or 2 mini-
batches of data

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

) » Why Dropout Works




Data

Augmentation




Data augmentation — Performing a range of transformations to
the data

This essentially “increases” your dataset

Transformations should not change meaning of the data (or
label has to be changed as well)

Simple example: Image Flipping

» Data Augmentation: Motivation



Random crop
Take different crops during training

Can be used during inference too!

Random Crop



Color Jitter

Color Jitter




We can apply generic affine
transformations:

Translation
Rotation
Scale

Shear

: S Geometric Transformations




We can combine these transformations to add even more variety!

Combining Transformations




Unlabelled
Image X,

Unlabelled
Image X

Mask proportion p

CowMask m

= @D =
1)

[
CowMask m
Unlabelled
. Image x
CowMix 9 %

From French et al., “Milking CowMask for Semi-Supervised Image Classification”

Other Variations




The Process
of Training

Neural
Networks




Training deep neural networks is an art
form!

Lots of things matter (together) — the key
is to find a combination that works

Key principle: Monitoring everything to
understand what is going on!

Loss and accuracy curves
Gradient statistics/characteristics

Other aspects of computation graph

) » The Process of Training

Optimizer
Trajectory

Local
Minima




Proper Methodology

Always start with proper methodology!

Not uncommon even in published papers
to get this wrong

Separate data into: Training, validation, test
set

Do not look at test set performance until
you have decided on everything (including
hyper-parameters)

Use cross-validation to decide on hyper-
parameters if amount of data is an issue




Check the bounds of your loss function

E.g. cross-entropy ranges from [0, o]

Check initial loss at small random weight
values

E.g. —log(p) for cross-entropy,
where p = 0.5 :

Another example: Start without 0 [

regularization and make sure loss goes up
when added

0 200 400 &00 800 1k

Validation Loss

Key Principle: Simplify the dataset to make
sure your model can properly (over)-fit
before applying regularization

) Sanity Checking




Change in loss indicates speed of _
learning: Learning
, Rate
Tiny loss change -> too small of a T T T Too Low
learning rate o e W e w0 o
Loss (and then weights) turn to NaNs -> :
too high of a learning rate Learning
Ao Rate
Other bugs can also cause this, e.g.: T Too High
Divide by zero .

Forgetting the log! with autograd.detect_anomaly():
output = model(input)

J
In pytorch, use aUtograd s detect loss = criterion(output, labels

anomaly to debug loss.backward()

) ) Loss and Not a Number (NaN)



Classic machine learning signs of
under/overfitting still apply!

Over-fitting: Validation loss/accuracy starts to
get worse after a while

Under-fitting: Validation loss very close to
training loss, or both are high

Note: You can have higher training loss!
Validation loss has no regularization

Validation loss is typically measured at
the end of an epoch

) Overfitting

Validations

Training




Many hyper-parameters to tune!

Learning rate, weight decay
crucial

Momentum, others more stable

Always tune hyper-parameters;
even a good idea will fail un-
tuned!

Start with coarser search:

E.g. learning rate of {0.1, 0.05,

0.03, 0.01, 0.003, 0.001, 0.0005,
0.0001}

Perform finer search around good
values

Grid Layout Random Layout

Unimportant
parameter
Unimportant
parameter

Important Important
parameter parameter

From: Bergstra et al., “/Random Search for Hyper-Parameter Optimization”,
JMLR, 2012

Automated methods are OK, but

intuition (or random) can do well given
enough of a tuning budget

) Hyper-Parameter Tuning




Inter-dependence of Hyperparameters

Note that hyper-parameters and even module
selection are interdependent!

Examples:

Batch norm and dropout maybe not be
needed together (and sometimes the
combination is worse)

The learning rate should be changed
proportionally to batch size — increase
the learning rate for larger batch sizes

One interpretation: Gradients are
more reliable/smoother




Note that we are optimizing a loss
function

What we actually care about is
typically different metrics that we
can’t differentiate:

Accuracy
Precision/recall
Other specialized metrics

The relationship between the two
can be complex!

>

relevant elements
] 1

false negatives true negatives

e @ O o

true positives false positives

selected elements

From https://en.wikipedia.org/wiki/Precision_and_recall




Example: Cross entropy loss

L=—-logP(Y =y;X=x;)

Accuracy is measured based on:
argmax;(P(Y = y; |X = x;))

Since the correct class score only has
to be slightly higher, we can have flat
loss curves but increasing
accuracy!

0

200 A00 600 200

Accuracy

) ) Simple Example: Cross-Entropy and Accuracy




Precision/Recall curves represent the
inherent tradeoff between number of positive
predictions and correctness of predictions

Definitions

True Positive Rate: TPR = —2
tp+fn

False Positive Rate: FPR = L
fp+tn

tp+tn
tp+tn+fp+fn

Accuracy =

{i |

0.8 —
&
g 06
5
é — NetChop C-term 3.0
3 0.4 — TAP + ProteaSMM-i
=l —  ProteaSMM-i

0.2

ot 1 R MR

0 0.2 0.4 0.6 0.8 1
False positive rate

From

https://en.wikipedia.org/wiki/Receiver_operating
characteristic




Precision/Recall curves represent the
inherent tradeoff between number of positive
predictions and correctness of predictions

Definitions
True Positive Rate: TPR = —F
tp+fn
False Positive Rate: FPR = 1P
fp+tn
_ tp+tn
Accuracy = tpt+tn+fp+fn

We can obtain a curve by varying the
(probability) threshold:

Area under the curve (AUC) common
single-number metric to summarize

Mapping between this and loss is not simple!

0.6 —

—— NetChop C-term 3.0

True positive rate

——  ProteaSMM-i

— TAP + ProteaSMM-i

1

False positive rate

From
https://en.wikipedia.org/wiki/Receiver_operating
characteristic

1 1 | 1 1
0 0.2 0.4 0.6 0.8 l

) Example: Precision/Recall or ROC Curves




Resource: Local

Minima
A disciplined approach to
neural network hyper-
parameters: Part 1 --
learning rate, batch size,
momentum, and weight

decay, Leslie N. Smith

Optimizer
Trajectory

) » Resources




