Topics:
* Backpropagation / Automatic Differentiation
* Jacobians

CS 4644 / 7643-A
ZSOLT KIRA

* Assignment 1 out!
* Due Feb 3rd (with grace period 5t")
* Start now, start now, start now!
e Start now, start now, start now!
e Start now, start now, start now!

* Resources:
e These lectures

e Matrix calculus for deep learning

* Gradients notes and MLP/ReLU Jacobian notes.
 Assignment 1 (@67) and matrix calculus (@86), convex optimization (@89)

* Piazza: Project teaming thread
* Will post video of project overview

To develop a general algorithm for
this, we will view the function as a
computation graph

Graph can be any directed acyclic
graph (DAG)

Modules must be differentiable to
support gradient computations
for gradient descent

A training algorithm will then
process this graph, one module at a
time

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

) A General Framework

oL oL
hf—l) aw}

We want to to compute: {6

JL JL (\ OL JdL
? 7—1| oht ont ? 7—1
oht O0h {ahf’-l’aw} ﬂ» oh Loss
L
! | 2 !
0) OW i

We will use the chain rule to do this:

Chain Rule: 22 = 22 . 2
daln Rule. 9x ay Ox

2 Computing the Gradients of Loss

Backpropagation: a simple example

f(z,y,2) = (z +y)z
eg.x=-2,y=5,z=-4

oz —
~ o7
_ of _ _ of _ Chain rule: Oy
~of of of dy 0q Oy
Want: o Oy Bz

x
Upstream Local
gradient gradient

) Georgia ,"|

Tech M

Conventions:
Size of derivatives for scalars, vectors, and matrices:

Assume we have scalar s € R1, vector v € R™, i.e. v = [vq, V3, ..., Uy
and matrix M € R**

s [V“ M
s iy Oy s

ds, ov * : oM

ov | avl- -
V' s] v, | ‘
Mool Tensors

Georgia &

Dimensionality of Derivatives Tech |

: : oL
h h 7
What is the size Ofa .

Remember that loss is a scalar and W is a matrix:

Wip Wiz 0 Wy b1
Wz1 Wiz - Wy b2
W31 W3z 0 W3y, b3
Jacobian is also a matrix: W
- dL JL JL OL
owy, 0wy, 0wy, 0by
oL oL JL
w7 we b,
JL JL
ows,, O0b;,

Dimensionality of Derivatives in ML Gograla |

—

Define:
¢ _ Tpt-1
h; =w;h

Function

Output

|h?| x 1

Parameters

h* = Wh*1

|h€| % |h€—1

At~ 1 x 1

h* = Wh*1

oh’

oht—1 =W

Defi oL dL ah'
§me.T - oht—1 ah{’ oht—1

A L JL]

1x |kt~ 1 x|hf| |h*| x |h*7Y

Fully Connected (FC) Layer

Note doing this on full W
matrix would result in

ht = wht1 Jacobian tensor!
But it is sparse — each
dht . output only affected by
dht-1 w corresponding weight row
Define: oL @ oL dn'
) AT ARt T
t _ o Tpt-1 dw: | dh* Ow;
o C0 e
oh! ~ o
L — p-DT
aw!

» Fully Connected (FC) Layer

We can employ any differentiable
(or piecewise differentiable)
function

A common choice is the Rectified
Linear Unit

Provides non-linearity but better S
gradient flow than sigmoid P

1 0. 5 5
Performed element-wise

R = max(O ht-1)

. O,
How many parameters for this layer? E max0.) a

) Rectified Linear Unit (ReLU)

Full Jacobian of ReLU layer is large
(output dim x input dim)

But again it is sparse

Only diagonal values non-zero
because it is element-wise

An output value affected only by
corresponding input value

Max function funnels gradients
through selected max

Gradient will be zero if input
<=

Backward: p oL

N\

|h? x h*71|

Input

Function Output

|14
Parameters

Forward: h* = max(0, h*™1)

dL ohnt

ht-1 _ oht o9ht-1

For diagonal

dht
ah{’—l

|

1 ifht"1>0
0 otherwise

) Jacobian of ReLU

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

4D input x: 4D output z:
: 1] — —a [1]
2] — | f(x)=max(0,x) | — [0|
4 } " (elementwise) - g :
., 4D dL/dz:
What doesalooklike? [4]| +—
[-1]+ Upstream
[§]=» - gradient
[9]+

Georgia "|

Tech | M

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

4D input X: 4D output z:
[1 J—— — [1]
2] —f(x)=max(0,x) | — L[O
T 31: — 7| (elementwise) |~ ! g :
4D dL/dx: [dz/dx] [dL/dZz] 4D dL/dz:
[#] »=—=[]1000][4] *——]4 |%—=
Q] = [0000]][-1] <*—1Il-1]*— Upsiream
(] [00T0][E] *=——[5]" gradient
[0] [0000][9] + ol O A E

For element-wise ops, jacobian is sparse: off-diagonal entries always zero!
Never explicitly form Jacobian -- instead use elementwise multiplication

Georgia ,"|
Tech |}

Neural networks involves composing simple functions into a
computation graph

Optimization (updating weights) of this graph is through backpropagation
Recursive algorithm: Gradient descent (partial derivatives) plus chain
rule

Remaining questions:
How does this work with vectors, matrices, tensors?
Across a composed function? This Time!

How can we implement this algorithmically to make these
calculations automatic? Automatic Differentiation

) Summary Gogrota |

Vectorizaiton
In Function
Compositions

'0
Georgi =
oo &

Composition of Functions: f(g(®) = (f° 9)(x)

A complex function (e.g. defined by a neural network):

f) =g,(gr-1(--91(x)))
f(X)=9r°9¢-1..°91(x)

(Many of these will be parameterized)

(Note you might find the opposite notation as well!)

) Composition of Functions & Chain Rule Gegrala |

—

—

) Scalar Case Gegrgia |

—

) Vector Case Gegrgia |

Jacobian View of Chain Rule Gegrgia |

—

Graphical View of Chain Rule Gograla |

—

—

) Chain Rule: Cascaded Gegrgia |

Input: x € RP
Binary label: y € {—1,+1}

Parameters: w € RD i
1

.y 1

Output prediction: =1|x) =
putp p(y =1x) = —7 4 _
1 wlx
Loss: L =3 lw]|* — Alog(p(y|x))
A
L
Log Loss
1 WTxy Adapted from slide by Marc'Aurelio Ranzato

Linear Classifier: Logistic Regression

We have discussed computation
graphs for generic functions

Machine Learning functions

(input -> model -> loss function)
IS also a computation graph

We can use the computed u 1
gradients from wix |— o
backprop/automatic re

—log(p)

differentiation to update the
weights!

) Neural Network Computation Graph

L=1

u p L _aL 1

1+e™

where p = o(w'x) and o(x) = —
q=9L _90L dp_ 5 _
u_au_ap au_po-(l 0')
o 0L 0L du_ oo
W_aw_au aw_ux

We can do this in a combined way to see all terms

together:
=L o ou_ g0 1 T _ T)Y 2T
W= e aw = LPU= a(wa)a(w x)(1—o (wlx))x

This effectively shows gradient flow along path from
Ltow

Example Gradient Computations

The chain rule can be
computed as a series of
scalar, vector, and matrix
linear algebra operations

Extremely efficient in
graphics processing units
(GPUs)

>

“ 1
wlx
1+e™

p L
l—r —log(p) pP—>

[]] (]
1xd 1x1 1x1
dx1
W= — a(v:Tx) o(w'x)(1— o (wl'x))xT

[L] (1 C]

1x1 1x1 1x1 1xd

Vectorized Computations

f(x1,x3) = x1x5 + sin(x;)

We want to find the partial
derivative of output f (output)
with respect to all intermediate
variables

Assign intermediate variables
Simplify notation:
_ 9

Denote bar as: a; =
6a3

Start at end and move
backward

f(x1,x2) = x1x2 + sin(x3) @ = 9 _y

6a3
S d df OJda df d(ai+a d S
a1=f=f 3 _ O0f 9(aq 2)=f1=a3
aa1 6a3 6a1 aag 6a1 6a3
____df _ of daz _ __
a; = = = as
6a2 aa3 aaz
P1_ Of 041 _ ——
X2 = 5ar ax, — 01 cos(xy)
Gradients
—po af Oda af J(x1x2 S i
xb2 = f da; _ Of 0(x1x2) _ azxy from multiple
dap; 0x2 da; dx2 paths
summed
—__ Of day
1~ aaz 6x1 - 242

Example

f(x1,x3) = x1x5 + sin(x;)

Of _ Of daz _ Of Odai+ay) _ 9f o -

a; = = =
1 aa1 6a3 6a1 6a3 aa1 aag
— _of _ of daz _ —
a; = = = as
aaz aag 6a2

Addition operation distributes gradients
along all paths!

Patterns of Gradient Flow: Addition

f(x1,x3) = x1x5 + sin(x;)

Multiplication operation is a gradient
switcher (multiplies it by the values of
the other term)

. Of dap Of O(x1x2) __
= = = ale
aaz axz aaz 6x2

Several other patterns as well, e.g.: 5 gradient

Max operation selects which path to
push the gradients through

Gradient flows along the path (Max 2 (Max)

that was “selected” to be max

This information must be

recorded in the forward pass 5 1 gradient

The flow of gradients is one of the most important aspects in deep
neural networks

If gradients do not flow backwards properly, learning slows or stops!

) Patterns of Gradient Flow: Other Ge%agé%

aL JL

We want to to compute: {m) W}

o oL :]ﬂ oL
? f—1 ¢ Jhrt-1
1 p
wlx » > —lo —
T g8(») . o ;
| | oW i
L=1
_ oL 1 ° .
i Backpropagation View
Wi = o0ra) (Recursive Algorithm)
— _aL_aL dp
== Eﬂ—‘-patl a)
ot oo u P L
aw du dw wa: > 1 > —l()g(p) _’ { 2 . , y
We can do this in a combined way to see all terms IS Eent v 2 : '
o)

Q

together: _ |_'_:| |::| O
Wl oW -0 (W) 1)5] 11 Ixt X Z

This effectively shows gradient flow along path from gxd o

E \
Lto w g " T 1xT 2 3%{4
Computation Graph of = s 77 X)(1 =0 (7)) m @ L

e eye . . 0 A = R o (e §
primitives (automatic B it 1xd

differentiation) Computational / Tensor View Graph View

0

0

%,D/

0(&

Different Views of Equivalent Ideas

Backpropagation
and Automatic
Differentiation

'0
Georgi =
oo &

Deep Learning = Differentiable Programming

 Computation = Graph
— Input = Data + Parameters
— Qutput = Loss
— Scheduling = Topological ordering

e What do we need to do?

— Generic code for representing the graph of modules
— Specify modules (both forward and backward function)

>

Modularized implementation: forward / backward API

Graph (or Net) object (rough psuedo code)

;:yka:, class ComputationalGraph(object):
0 o0/ O\

o Y)i #Feao

SN e \ . _ def forward(inputs):
_— # 1. [pass inputs to input gates...]
.

2. forward the computational graph:
for gate in self.graph.nodes topologically sorted():
gate.forward()
return loss # the final gate in the graph outputs the loss
def backward():
for gate in reversed(self.graph.nodes topologically sorted()):

gate.backward() # little piece of backprop (chain rule applied)

return inputs_gradients

Modularized implementation: forward / backward API

class MultiplyGate(object):

X def forward(x,y):
Z = X*y
Z e
recurn z
def backward(dz):
#dx = ... #mz\
y #dy = ... #todo g—L
return [dx, dy] <
(Xx,y,z are scalars) ,<
OL
Ox

>

Modularized implementation: forward / backward API

class MultiplyGate(object):

X def forward(x,y):
Z. = X%y
Z self.x = x # must keep these around!
self.y = y
return z
3/ def backward(dz):

dx = self.y * dz # [dz/dx * dL/dz]
dy = self.x * dz # [dz/dy * dL/dz]

(x,y,z are scalars)

return [dx, dy]

>

Example: Caffe layers

master~ caffe

src | caffe | layers Greate new file Upload files. Find fie Mistory

BiGene/ioad_h

[shothamer committed an GitHub Merge pul

esa7a7121

absval_layer.cop dismantie layer headers a year ago :
absval_layer.cu dismas he 1 ago

h_reindex_layer.

op smantle layer header

batch_reindex_layer.cu disma

r.cop

onil layer.cop A b yer - . hy
bnll_layer.cu dismantie layer headers ye - o
ma y yoa
fismantle layer hea,
o layer hoaders
ohu_layercop) yeo
embed._layer.cop yoar &

cudnn,conv_layer.cu 11 month E— dismas .

Caffe is licensed under BSD 2-Clause

sde <cmath>
je <vector>

de “caffe/layers/signoid_la

r.hpp

namespace caffe {

ylate <typen

oid SigmoidLayer<Dtype>::Forward_cpu(cor
st vector<Blob<Dtype>*>& top) {
const Dtype® bottom_data = bottom[0]->cpu
Dtype* top_data = top[8]->mu pu
const int count = bottom[9]-> t);
for (int 1 = 8; 1 < count; ++1) {
top_data[i] = id(bottom_data[i])

t vector<Blob<Dtype>'>a bottom,

te

plate <typename Dtype>
vold SigmoidLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
'st vector<bool>& propagate_down,
const vector<Blob<Dtype>*>& bottom) {

it (propagate_down[8]) {

t Dtype* top_data = top[®
t Dtype* top_diff = top
Dtype® bottom diff = bottom[@
const count = bottom[0]->cou
1=6; 1 <count; ++1) {

t Dtype sigmoid x = top_data[i];
bottom diff[i] = top_diff[i] * sigmoid x * (1. - sigmoid x); 4—-

t();

Caffe Sigmoid Layer

(1—o(z))o(x)

#ifdef CPU_ONLY
(SigmoidLayer);

S(SigmoidLayer);

Caffe is licensed under BSD 2-Clause

*top_diff (

chain rule

Backpropagation does not really spell out how to efficiently
carry out the necessary computations

But the idea can be applied to any directed acyclic graph
(DAG)

Graph represents an ordering constraining which paths
must be calculated first

Given an ordering, we can then iterate from the last module
backwards, applying the chain rule

We will store, for each node, its gradient outputs for
efficient computation

We will do this automatically by computing backwards
function for primitives and as you write code, express the
function with them

This is called reverse-mode automatic differentiation

) A General Framework

Computation = Graph
Input = Data + Parameters
Output = Loss
Scheduling = Topological ordering

Auto-Diff

A family of algorithms for
Implementing chain-rule on computation graphs

) Deep Learning = Differentiable Programming ‘399,;9(357

L=1

u p L _ dL 1

1 p = —— = —
1+e™u

where p = o(w'x) and o(x) = —
_ 9L _dL ap _ _

o L U=3.=9, u-pPod—o0)

Automatic differentiation:

_ 9L _ 9L du _ _ T
wW=—= — =ux

Carries out this procedure for us
on arbitrary graphs

_aw_ﬁ ow

We can do this in a combined way to see all terms

Knows derivatives of primitive together:
functions
. . W= g_f’ O a(;Tx) o(w'x)(1 - o (W'x))x"

As a result, we just define these (1 (W)) .

. = — —o\w X)|X
(forward) functions and don’t
even need to specify the This effectively shows gradient flow along path from
gradient (backward) functions! Lto w

) Example Gradient Computations

: : . . ~— _ Of Odag _
Key idea is to explicitly store X2 = 30 o, = 01 €OS(X2)

computation graph in
memory and corresponding
gradient functions

Nodes broken down to basic
primitive computations
(addition, multiplication, log,
etc.) for which
corresponding derivative is
known

) Computational Implementation

A graph is created on the fly

torch.autograd Variable

x = Variable(torch.randn(1, 20))
prev_h = Variable(torch.randn(1l, 20))
W_h = Variable(torch.randn(20, 20))
W _x = Variable(torch.randn(20, 20))

i2h = torch.mm(W_x, x.t())
h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h

(Note above)

» Computation Graphs in PyTorch

Back-propagation uses the
dynamically built graph

torch.autograd Variable

x = Variable(torch.randn(1, 20))
prev_h = Variable(torch.randn(1l, 20))
W_h = Variable(torch.randn(20, 20))

W _x = Variable(torch.randn(20, 20))

i2h = torch.mm(W _x, x.t())

h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h

next_h = next_h.tanh()

next_h.backward(torch.ones(1, 20))
From pytorch.org

2 Computation Graphs in PyTorch Ge%;%?

Note that we can also do forward mode
automatic differentiation

t

Start from inputs and propagate gradients W3 = Wi+ W,

forward @

Complexity is proportional to input size . : : .
pIeXIty 1S prop P Wi = cos(xq)Xy Wy = X1X3 + X1Xy

Memory savings (all forward pass, no
need to store activations) @

However, in most cases our inputs X1 X1 X2
(images) are large and outputs
(loss) are small

) Automatic Differentiation

Assume given
dht1 ah{’_ dh? oht1
dx dx dht-1 ox

See https://www.cc.gatech.edu/classes/AY2020/cs7643 spring/slides/autodiff forward reverse.pdf

) Forward Mode Autodifferentiation

Convolutional network (AlexNet)

» , ‘7 =3 i_; 21

weights

sl |5
loss \ o s
P | P % |
& ar—— B
3 ~
e Ar ac S |
- Py -
= g Figure copyright Alex Krizhevsky, llya Sutskever, and
i : Geoffrey Hinton, 2012. Reproduced with permission.

Georgia ,"|

Tech M

Neural Turing Machine

input image/

loss \

Georgia ,"|

Tech M

Computation graphs are not
limited to mathematical
functions!

Software 1.0 \e,,;\'d
Can have control flows (if \

statements, loops) and
backpropagate through
algorithms! Software 2.0\

Program Space

Can be done dynamically so
that gradients are computed,
then nodes are added, repeat

Differentiable programming

Adapted from figure by Andrej Karpathy

) Power of Automatic Differentiation Ge'?rggg:f?

