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Topics:
• Gradient Descent
• Neural Networks



Administrivia

• Assignment 1 out!
• Due Feb 3th (with grace period Feb 5th)
• Start now, start now, start now!
• Start now, start now, start now!
• Start now, start now, start now!

• Piazza
• Be active!!!

• Office hours 
• Lots of special topics (e.g. Assignment 1, Matrix Calculus, etc. )

• Note: Course will start to get math heavy!



⬣ Input (and representation)

⬣ Functional form of the model

⬣ Including parameters

⬣ Performance measure to improve

⬣ Loss or objective function

⬣ Algorithm for finding best parameters

⬣ Optimization algorithm

Components of a Parametric Model

Data: Image

Car

Class Scores

Coffee 
Cup

Bird

Model
𝒇 𝒙, 𝑾 = 𝑾𝒙 + 𝒃

Features: Histogram Car

Class Scores

Coffee 
Cup

Bird

Loss Function

Optimizer



⬣ Input: Vector

⬣ Functional form of the model: Softmax(Wx)

⬣ Performance measure to improve: Cross-Entropy

⬣ Algorithm for finding best parameters: Gradient Descent

⬣ Compute 
𝝏𝑳

𝝏𝒘𝒊

⬣ Update Weights 𝒊 𝒊
𝝏𝑳

𝝏𝒘𝒊

So far
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Example

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n
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Cross-Entropy Loss Example

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Softmax Classifier (Multinomial Logistic Regression)
Want to interpret raw classifier scores as probabilities

Softmax
Function

Probabilities 
must be >= 0

Probabilities 
must sum to 1

𝒊 𝒊

𝒔𝒌

𝒔𝒋
𝒋

𝒊 𝒊 𝒊

3.2 24.5 0.13cat

frog

car 5.1
-1.7

164.0
0.18

0.87
0.00

exp normalize

Unnormalized 
probabilities

ProbabilitiesUnnormalized log-
probabilities / logits

𝒊



Regularization

Often, we add a regularization term to the loss function

Example regularizations:

⬣ L1/L2 on weights (encourage small values)

L1 Regularization



Derivatives

⬣ We can find the steepest descent direction by 
computing the derivative (gradient):

⬣ Steepest descent direction is the negative 
gradient

⬣ Intuitively: Measures how the function 
changes as the argument a changes by a small 
step size

⬣ As step size goes to zero

⬣ In Machine Learning: Want to know how the 
loss function changes as weights are varied

⬣ Can consider each parameter separately 
by taking partial derivative of loss 
function with respect to that parameter

ᇱ

𝒉→𝟎

Image and equation from: 
https://en.wikipedia.org/wiki/Derivative#/media/
File:Tangent_animation.gif



Gradient Descent

This idea can be turned into an algorithm (gradient descent)

1. Choose a model: 

2. Choose loss function: 

3. Calculate partial derivative for each parameter: 
𝒊

4. Update the parameters: 
𝒊

Add learning rate to prevent too big of a step: 𝒊 𝒊
𝝏𝑳

𝝏𝒘𝒊

5. Repeat (from Step 3)



Gradient Descent Properties

Gradient descent is guaranteed to converge under some 
conditions

⬣ For example, learning rate has to be appropriately reduced 
throughout training

⬣ It will converge to a local minima

⬣ Small changes in weights would not decrease the loss

⬣ It turns out that some of the local minima that it finds in 
practice (if trained well) are still pretty good! 



Computing Gradients

We know how to compute the 
model output and loss 
function

Several ways to compute 
𝒊

⬣ Manual differentiation

⬣ Symbolic differentiation

⬣ Numerical differentiation

⬣ Automatic differentiation



Manual Differentiation

For some functions, we can analytically derive the partial derivative

Example: 

Function Loss

Update Rule

𝒊
𝑻

𝒊
෍(𝒚𝒊 − 𝒘𝑻𝒙𝒊)𝟐

𝑵

𝒊ୀ𝟏

𝒋 𝒋 𝒊 𝒊𝒋

𝑵

𝒊ୀ𝟏

Derivation of Update Rule

Gradient descent tells us 
we should update 𝒘 as 
follows to minimize 𝐿:

So what’s 
𝝏𝑳

𝝏𝒘𝒋
?

…where…

L= ∑ (𝒚𝒊 − 𝒘𝑻𝒙𝒊)𝟐𝑵
𝒊ୀ𝟏

𝒘𝒋 ← 𝒘𝒋 − 𝜶
𝝏𝑳

𝝏𝒘𝒋

𝝏𝑳

𝝏𝒘𝒋
= ෍

𝝏

𝝏𝒘𝒋
(𝒚𝒊 − 𝒘𝑻𝒙𝒊)𝟐

𝑵

𝒊ୀ𝟏

= ෍ 𝟐 𝒚𝒊 − 𝒘𝑻𝒙𝒊

𝝏

𝝏𝒘𝒋

𝑵

𝒌ୀ𝟏

(𝒚𝒊 − 𝒘𝑻𝒙𝒊)

= −𝟐 ෍ 𝜹𝒊

𝝏

𝝏𝒘𝒋

𝑵

𝒊ୀ𝟏

𝒘𝑻𝒙𝒊

= −𝟐 ෍ 𝜹𝒊

𝝏

𝝏𝒘𝒋

𝑵

𝒊ୀ𝟏

෍ 𝒘𝒌𝒙𝒊𝒌

𝒌ୀ𝟏

= −𝟐 ෍ 𝜹𝒊𝒙𝒊𝒋

𝑵

𝒊ୀ𝟏

𝜹𝒊 = 𝒚𝒊 − 𝒘𝑻𝒙𝒊

(Assume 𝒘 and 𝐱𝐢 are column vectors, so same as 𝒘 ⋅ 𝒙𝒊)

Dataset: N examples (indexed by 𝑘)



𝝈 𝒙 =
𝟏

𝟏 + 𝒆ି𝒙

𝝈ᇱ 𝒙 = 𝝈(𝒙)(𝟏 − 𝝈 𝒙 )First, one can derive that: 

Adding a Non-Linear Function

If we add a non-linearity (sigmoid), derivation is more complex

𝐟 𝐱 = 𝝈 ෍ 𝒘𝒌𝒙𝒌

𝒌

L = ෍ 𝒚𝒊 − 𝝈 ෍ 𝒘𝒌𝒙𝒊𝒌

𝒌

𝟐

𝒊

𝝏𝑳

𝝏𝒘𝒋
= ෍ 𝟐 𝒚𝒊 − 𝝈 ෍ 𝒘𝒌𝒙𝒊𝒌

𝒌

−
𝝏

𝝏𝒘𝒋
𝝈 ෍ 𝒘𝒌𝒙𝒊𝒌

𝒌𝒊

= ෍ −𝟐 𝒚𝒊 − 𝝈 ෍ 𝒘𝒌𝒙𝒊𝒌

𝒌

𝝈′ ෍ 𝒘𝒌𝒙𝒊𝒌

𝒌𝒊

𝝏

𝝏𝒘𝒋
෍ 𝒘𝒌𝒙𝒊𝒌

𝒌

= ෍ −𝟐𝜹𝒊𝝈(𝐝𝒊)(𝟏 − 𝝈 𝐝𝒊 )𝒙𝒊𝒋

𝒊

𝜹𝒊 = 𝒚𝒊 − 𝐟(𝒙𝒊) 𝒅𝒊 = ෍ 𝒘𝒌𝒙𝒊𝒌where

The sigmoid perception update rule:

𝒘𝒋 ← 𝒘𝒋 + 𝟐𝜶 ෍ 𝜹𝒊𝝈𝒊(𝟏 − 𝝈𝒊)𝒙𝒊𝒋

𝑵

𝒌ୀ𝟏

𝝈𝒊 = 𝝈 ෍ 𝒘𝒋𝒙𝒊𝒋

𝒅

𝒋ୀ𝟏

𝜹𝒊 = 𝒚𝒊 − 𝝈𝒊

where



Neural 
Network 
View of a 

Linear 
Classifier



A simple neural network has similar structure as our linear classifier:
⬣ A neuron takes input (firings) from other neurons (-> input to linear classifier)

⬣ The inputs are summed in a weighted manner (-> weighted sum)

⬣ Learning is through a modification of the weights

⬣ If it receives enough input, it “fires” (threshold or if weighted sum plus bias is high 
enough)

Origins of the Term Neural Network

Figures adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Adding Non-Linearities

Figures adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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As we did before, the output of a 
neuron can be modulated by a 
non-linear function (e.g. sigmoid)

Sigmoid 
Activation 
Function
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We can have multiple neurons 
connected to the same input

Corresponds to a multi-class classifier 

⬣ Each output node outputs the score 
for a class

⬣ Often called fully connected layers

⬣ Also called a linear projection 
layer

Connecting Many Neurons

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

𝟏𝟏 𝟏𝟐 𝟏𝒎

𝟐𝟏 𝟐𝟐 𝟐𝒎

𝟐𝟏 𝟐𝟐 𝟑𝒎

input layer
output layer



⬣ Each input/output is a neuron 
(node)

⬣ A linear classifier (+ optional non-
linearity) is called a fully 
connected layer

⬣ Connections are represented as 
edges

⬣ Output of a particular neuron is 
referred to as activation

⬣ This will be expanded as we view 
computation in a neural network as 
a graph

Neural Network Terminology

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

input layer
output layer



We can stack multiple layers together

⬣ Input to second layer is output of first 
layer

Called a 2-layered neural network (input is 
not counted)

Because the middle layer is neither input or 
output, and we don’t know what their values 
represent, we call them hidden layers

⬣ We will see that they end up learning 
effective features

This increases the representational power 
of the function!

⬣ Two layered networks can represent 
any continuous function

Connecting Many Layers

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

input layer
hidden layer

output layer



The same two-layered neural network 
corresponds to adding another 
weight matrix

⬣ We will prefer the linear algebra 
view, but use some terminology 
from neural networks (& biology)

The Linear Algebra View

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

input layer
hidden layer

output layer

𝟏 𝟐

𝟏 𝟐 𝟐 𝟏



A linear classifier can be broken down into:

⬣ Input

⬣ A function of the input

⬣ A loss function 

It’s all just one function that can be decomposed into building blocks

What Does a Linear Classifier Consist of?

Input Model Loss Function



Large (deep) networks can be built by 
adding more and more layers

Three-layered neural networks can 
represent any function

⬣ The number of nodes could grow 
unreasonably (exponential or worse) 
with respect to the complexity of the 
function

We will show them without edges:

Adding More Layers!

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Computation 
Graphs



Functions can be made arbitrarily complex (subject to memory and 
computational limits), e.g.:

𝟓 𝟒 𝟑 𝟐 𝟏

We can use any type of differentiable function (layer) we want!

⬣ At the end, add the loss function

Composition can have some structure

Adding Even More Layers

Loss 
Function



The world is compositional!

We want our model to reflect this 

Empirical and theoretical 
evidence that it makes learning 
complex functions easier

Note that prior state of art 
engineered features often had 
this compositionality as well

Compositionality

⬣ Pixels -> edges -> object parts -> objects

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

pixels edge texton motif part object

sample spectral 
band

formant motif phone word

character NP/VP/.. clause sentence storyword

VISION

SPEECH

NLP



⬣ We are learning complex models with significant amount of 
parameters (millions or billions)

⬣ How do we compute the gradients of the loss (at the end) with 
respect to internal parameters?

⬣ Intuitively, want to understand how small changes in weight deep 
inside are propagated to affect the loss function at the end

Computing Gradients in Complex Function

Loss 
Function

𝒊
?



Decomposing a Function 

Compose into a

complicate function

Adapted from slides by: Marc'Aurelio Ranzato, Yann LeCun

Given a library of simple functions

𝟑



To develop a general algorithm for 
this, we will view the function as a 
computation graph

Graph can be any directed acyclic 
graph (DAG)

⬣ Modules must be differentiable to 
support gradient computations 
for gradient descent

A training algorithm will then 
process this graph, one module at a 
time

A General Framework

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun



Directed Acyclic Graphs (DAGs)

• Exactly what the name suggests
– Directed edges
– No (directed) cycles
– Underlying undirected cycles okay

(C) Dhruv Batra 29



Directed Acyclic Graphs (DAGs)

• Concept
– Topological Ordering

(C) Dhruv Batra 30



Directed Acyclic Graphs (DAGs)

(C) Dhruv Batra 31



Example

𝟏

𝟐



Machine Learning Example

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun



Backpropagation



Given this computation graph, the training 
algorithm will:

⬣ Calculate the current model’s outputs 
(called the forward pass)

⬣ Calculate the gradients for each 
module (called the backward pass)

Backward pass is a recursive algorithm that:

⬣ Starts at loss function where we know 
how to calculate the gradients

⬣ Progresses back through the modules

⬣ Ends in the input layer where we do 
not need gradients (no parameters)

This algorithm is called backpropagation

Overview of Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

ℓି𝟏 ℓ

FunctionInput Output

Parameters



Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Layer 1 Layer 2 Layer 3



Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Layer 1 Layer 2 Layer 3



Note that we must store the intermediate outputs of all layers!

⬣ This is because we will need them to compute the gradients (the gradient 
equations will have terms with the output values in them)

Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Layer 1 Layer 2 Layer 3



In the backward pass, we seek to 
calculate the gradients of the loss with 
respect to the module’s parameters

⬣ Assume that we have the 
gradient of the loss with respect 
to the module’s outputs (given 
to us by upstream module)

⬣ We will also pass the gradient of 
the loss with respect to the 
module’s inputs

⬣ This is not required for 
update the module’s weights, 
but passes the gradients 
back to the previous module

Backward Pass Computations

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Problem:

⬣ We can compute local gradients: 
𝝏𝒉ℓ

𝝏𝒉ℓష𝟏

𝝏𝒉ℓ

𝝏𝑾

⬣ We are given: 
𝝏𝑳

𝝏𝒉ℓ

⬣ Compute: 
𝝏𝑳

𝝏𝒉ℓష𝟏,

𝝏𝑳

𝝏𝑾

ℓି𝟏 ℓ



⬣ We want to compute: 

⬣ We will use the chain rule to do this:

Chain Rule: 

Computing the Gradients of Loss

ℓି𝟏 ℓ ℓି𝟏ℓ
Loss⬣ 𝝏𝒉ℓ

𝝏𝒉ℓష𝟏

𝝏𝒉ℓ

𝝏𝑾



⬣ We can compute local gradients: 
𝝏𝒉ℓ

𝝏𝒉ℓష𝟏

𝝏𝒉ℓ

𝝏𝑾

⬣ This is just the derivative of our function with respect to its 
parameters and inputs!

Example: If  ℓ ℓି𝟏

then  
𝝏𝒉ℓ

𝝏𝒉ℓష𝟏

and  
𝝏𝒉𝒊

ℓ

𝝏𝒘𝒊

ℓି𝟏,𝑻

Computing the Local Gradients: Example



⬣ We want to to compute: 

⬣ We will use the chain rule to do this:

Chain Rule: 

Computing the Gradients of Loss

ℓି𝟏 ℓ ℓି𝟏ℓ
Loss



⬣ We will use the chain rule to compute: 
𝝏𝑳

𝝏𝒉ℓష𝟏

𝝏𝑳

𝝏𝑾

⬣ Gradient of loss w.r.t. inputs: 
𝝏𝑳

𝝏𝒉ℓష𝟏

𝝏𝑳

𝝏𝒉ℓ

𝝏𝒉ℓ

𝝏𝒉ℓష𝟏

⬣ Gradient of loss w.r.t. weights: 
𝝏𝑳

𝝏𝑾

𝝏𝑳

𝝏𝒉ℓ

𝝏𝒉ℓ

𝝏𝑾

Computing the Gradients of Loss

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

ℓି𝟏 ℓ

Given by upstream 
module (upstream 
gradient)



Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass

Layer 1 Layer 2 Layer 3



Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass

Layer 1 Layer 2 Layer 3



Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass

Layer 1 Layer 2 Layer 3



Neural Network Training
Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass

Step 3: Use gradient to update all parameters at the end

Layer 1 Layer 2 Layer 3

Backpropagation is the application of 
gradient descent to a computation 
graph via the chain rule!



48
Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example
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Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example
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e.g. x = -2, y = 5, z = -4

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example
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e.g. x = -2, y = 5, z = -4

Want: 

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example
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Backpropagation: a simple example
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Backpropagation: a simple example
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e.g. x = -2, y = 5, z = -4
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Backpropagation: a simple example
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e.g. x = -2, y = 5, z = -4
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e.g. x = -2, y = 5, z = -4
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e.g. x = -2, y = 5, z = -4

Want: 
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Backpropagation: a simple example
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e.g. x = -2, y = 5, z = -4

Want: 

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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e.g. x = -2, y = 5, z = -4

Want: 

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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e.g. x = -2, y = 5, z = -4

Want: 

Chain rule:

Upstream 
gradient

Local
gradient

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Chain rule:

e.g. x = -2, y = 5, z = -4

Want: 
Upstream 
gradient

Local
gradient

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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e.g. x = -2, y = 5, z = -4

Want: 

Chain rule:

Upstream 
gradient

Local
gradient

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Chain rule:

e.g. x = -2, y = 5, z = -4

Want: 
Upstream 
gradient

Local
gradient

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


