
Machine Learning Applications

CS 4644-DL / 7643-A
ZSOLT KIRA

Topics:
• Gradient Descent
• Neural Networks

Administrivia

• Assignment 1 out!
• Due Feb 3th (with grace period Feb 5th)
• Start now, start now, start now!
• Start now, start now, start now!
• Start now, start now, start now!

• Piazza
• Be active!!!

• Office hours
• Lots of special topics (e.g. Assignment 1, Matrix Calculus, etc.)

• Note: Course will start to get math heavy!

⬣ Input (and representation)

⬣ Functional form of the model

⬣ Including parameters

⬣ Performance measure to improve

⬣ Loss or objective function

⬣ Algorithm for finding best parameters

⬣ Optimization algorithm

Components of a Parametric Model

Data: Image

Car

Class Scores

Coffee
Cup

Bird

Model
𝒇 𝒙, 𝑾 = 𝑾𝒙 + 𝒃

Features: Histogram Car

Class Scores

Coffee
Cup

Bird

Loss Function

Optimizer

⬣ Input: Vector

⬣ Functional form of the model: Softmax(Wx)

⬣ Performance measure to improve: Cross-Entropy

⬣ Algorithm for finding best parameters: Gradient Descent

⬣ Compute
𝝏𝑳

𝝏𝒘𝒊

⬣ Update Weights 𝒊 𝒊
𝝏𝑳

𝝏𝒘𝒊

So far

56 231

24 2

Example

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

0.2 -0.5 0.1 2.0

1.5 1.3 2.1 0.0

0 0.25 0.2 -0.3
Input image

56

231

24

2

Stretch pixels into column

1.1

3.2

-1.2

+

-96.8

437.9

61.95

=

Cat score

Dog score

Ship score

Cross-Entropy Loss Example

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Softmax Classifier (Multinomial Logistic Regression)
Want to interpret raw classifier scores as probabilities

Softmax
Function

Probabilities
must be >= 0

Probabilities
must sum to 1

𝒊 𝒊

𝒔𝒌

𝒔𝒋
𝒋

𝒊 𝒊 𝒊

3.2 24.5 0.13cat

frog

car 5.1
-1.7

164.0
0.18

0.87
0.00

exp normalize

Unnormalized
probabilities

ProbabilitiesUnnormalized log-
probabilities / logits

𝒊

Regularization

Often, we add a regularization term to the loss function

Example regularizations:

⬣ L1/L2 on weights (encourage small values)

L1 Regularization

Derivatives

⬣ We can find the steepest descent direction by
computing the derivative (gradient):

⬣ Steepest descent direction is the negative
gradient

⬣ Intuitively: Measures how the function
changes as the argument a changes by a small
step size

⬣ As step size goes to zero

⬣ In Machine Learning: Want to know how the
loss function changes as weights are varied

⬣ Can consider each parameter separately
by taking partial derivative of loss
function with respect to that parameter

ᇱ

𝒉→𝟎

Image and equation from:
https://en.wikipedia.org/wiki/Derivative#/media/
File:Tangent_animation.gif

Gradient Descent

This idea can be turned into an algorithm (gradient descent)

1. Choose a model:

2. Choose loss function:

3. Calculate partial derivative for each parameter:
𝒊

4. Update the parameters:
𝒊

Add learning rate to prevent too big of a step: 𝒊 𝒊
𝝏𝑳

𝝏𝒘𝒊

5. Repeat (from Step 3)

Gradient Descent Properties

Gradient descent is guaranteed to converge under some
conditions

⬣ For example, learning rate has to be appropriately reduced
throughout training

⬣ It will converge to a local minima

⬣ Small changes in weights would not decrease the loss

⬣ It turns out that some of the local minima that it finds in
practice (if trained well) are still pretty good!

Computing Gradients

We know how to compute the
model output and loss
function

Several ways to compute
𝒊

⬣ Manual differentiation

⬣ Symbolic differentiation

⬣ Numerical differentiation

⬣ Automatic differentiation

Manual Differentiation

For some functions, we can analytically derive the partial derivative

Example:

Function Loss

Update Rule

𝒊
𝑻

𝒊
෍(𝒚𝒊 − 𝒘𝑻𝒙𝒊)𝟐

𝑵

𝒊ୀ𝟏

𝒋 𝒋 𝒊 𝒊𝒋

𝑵

𝒊ୀ𝟏

Derivation of Update Rule

Gradient descent tells us
we should update 𝒘 as
follows to minimize 𝐿:

So what’s
𝝏𝑳

𝝏𝒘𝒋
?

…where…

L= ∑ (𝒚𝒊 − 𝒘𝑻𝒙𝒊)𝟐𝑵
𝒊ୀ𝟏

𝒘𝒋 ← 𝒘𝒋 − 𝜶
𝝏𝑳

𝝏𝒘𝒋

𝝏𝑳

𝝏𝒘𝒋
= ෍

𝝏

𝝏𝒘𝒋
(𝒚𝒊 − 𝒘𝑻𝒙𝒊)𝟐

𝑵

𝒊ୀ𝟏

= ෍ 𝟐 𝒚𝒊 − 𝒘𝑻𝒙𝒊

𝝏

𝝏𝒘𝒋

𝑵

𝒌ୀ𝟏

(𝒚𝒊 − 𝒘𝑻𝒙𝒊)

= −𝟐 ෍ 𝜹𝒊

𝝏

𝝏𝒘𝒋

𝑵

𝒊ୀ𝟏

𝒘𝑻𝒙𝒊

= −𝟐 ෍ 𝜹𝒊

𝝏

𝝏𝒘𝒋

𝑵

𝒊ୀ𝟏

෍ 𝒘𝒌𝒙𝒊𝒌

𝒌ୀ𝟏

= −𝟐 ෍ 𝜹𝒊𝒙𝒊𝒋

𝑵

𝒊ୀ𝟏

𝜹𝒊 = 𝒚𝒊 − 𝒘𝑻𝒙𝒊

(Assume 𝒘 and 𝐱𝐢 are column vectors, so same as 𝒘 ⋅ 𝒙𝒊)

Dataset: N examples (indexed by 𝑘)

𝝈 𝒙 =
𝟏

𝟏 + 𝒆ି𝒙

𝝈ᇱ 𝒙 = 𝝈(𝒙)(𝟏 − 𝝈 𝒙)First, one can derive that:

Adding a Non-Linear Function

If we add a non-linearity (sigmoid), derivation is more complex

𝐟 𝐱 = 𝝈 ෍ 𝒘𝒌𝒙𝒌

𝒌

L = ෍ 𝒚𝒊 − 𝝈 ෍ 𝒘𝒌𝒙𝒊𝒌

𝒌

𝟐

𝒊

𝝏𝑳

𝝏𝒘𝒋
= ෍ 𝟐 𝒚𝒊 − 𝝈 ෍ 𝒘𝒌𝒙𝒊𝒌

𝒌

−
𝝏

𝝏𝒘𝒋
𝝈 ෍ 𝒘𝒌𝒙𝒊𝒌

𝒌𝒊

= ෍ −𝟐 𝒚𝒊 − 𝝈 ෍ 𝒘𝒌𝒙𝒊𝒌

𝒌

𝝈′ ෍ 𝒘𝒌𝒙𝒊𝒌

𝒌𝒊

𝝏

𝝏𝒘𝒋
෍ 𝒘𝒌𝒙𝒊𝒌

𝒌

= ෍ −𝟐𝜹𝒊𝝈(𝐝𝒊)(𝟏 − 𝝈 𝐝𝒊)𝒙𝒊𝒋

𝒊

𝜹𝒊 = 𝒚𝒊 − 𝐟(𝒙𝒊) 𝒅𝒊 = ෍ 𝒘𝒌𝒙𝒊𝒌where

The sigmoid perception update rule:

𝒘𝒋 ← 𝒘𝒋 + 𝟐𝜶 ෍ 𝜹𝒊𝝈𝒊(𝟏 − 𝝈𝒊)𝒙𝒊𝒋

𝑵

𝒌ୀ𝟏

𝝈𝒊 = 𝝈 ෍ 𝒘𝒋𝒙𝒊𝒋

𝒅

𝒋ୀ𝟏

𝜹𝒊 = 𝒚𝒊 − 𝝈𝒊

where

Neural
Network
View of a

Linear
Classifier

A simple neural network has similar structure as our linear classifier:
⬣ A neuron takes input (firings) from other neurons (-> input to linear classifier)

⬣ The inputs are summed in a weighted manner (-> weighted sum)

⬣ Learning is through a modification of the weights

⬣ If it receives enough input, it “fires” (threshold or if weighted sum plus bias is high
enough)

Origins of the Term Neural Network

Figures adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Impulses carried toward cell body

Impulses carried away
from cell body

dendrite

cell body

axon

presynaptic
terminal

𝟎 𝟎

𝟎 𝟎

𝟏 𝟏

𝟐 𝟐

෍ 𝒘𝒊𝒙𝒊

𝒊

+ 𝒃

𝒇 ෍ 𝒘𝒊𝒙𝒊

𝒊

+ 𝒃

𝒇

axon from a neuron
synapse

dendrite

cell body

activation
function

output axon

Adding Non-Linearities

Figures adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Impulses carried toward cell body

Impulses carried away
from cell body

dendrite

cell body

axon

presynaptic
terminal

𝟎 𝟎

𝟎 𝟎

𝟏 𝟏

𝟐 𝟐

෍ 𝒘𝒊𝒙𝒊

𝒊

+ 𝒃

𝒇 ෍ 𝒘𝒊𝒙𝒊

𝒊

+ 𝒃

𝒇

axon from a neuron
synapse

dendrite

cell body

activation
function

output axon

As we did before, the output of a
neuron can be modulated by a
non-linear function (e.g. sigmoid)

Sigmoid
Activation
Function

ି𝒙

1.0

0.8

0.6

0.4

0.2

0.0
-10 -5 0 5 10

We can have multiple neurons
connected to the same input

Corresponds to a multi-class classifier

⬣ Each output node outputs the score
for a class

⬣ Often called fully connected layers

⬣ Also called a linear projection
layer

Connecting Many Neurons

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

𝟏𝟏 𝟏𝟐 𝟏𝒎

𝟐𝟏 𝟐𝟐 𝟐𝒎

𝟐𝟏 𝟐𝟐 𝟑𝒎

input layer
output layer

⬣ Each input/output is a neuron
(node)

⬣ A linear classifier (+ optional non-
linearity) is called a fully
connected layer

⬣ Connections are represented as
edges

⬣ Output of a particular neuron is
referred to as activation

⬣ This will be expanded as we view
computation in a neural network as
a graph

Neural Network Terminology

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

input layer
output layer

We can stack multiple layers together

⬣ Input to second layer is output of first
layer

Called a 2-layered neural network (input is
not counted)

Because the middle layer is neither input or
output, and we don’t know what their values
represent, we call them hidden layers

⬣ We will see that they end up learning
effective features

This increases the representational power
of the function!

⬣ Two layered networks can represent
any continuous function

Connecting Many Layers

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

input layer
hidden layer

output layer

The same two-layered neural network
corresponds to adding another
weight matrix

⬣ We will prefer the linear algebra
view, but use some terminology
from neural networks (& biology)

The Linear Algebra View

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

input layer
hidden layer

output layer

𝟏 𝟐

𝟏 𝟐 𝟐 𝟏

A linear classifier can be broken down into:

⬣ Input

⬣ A function of the input

⬣ A loss function

It’s all just one function that can be decomposed into building blocks

What Does a Linear Classifier Consist of?

Input Model Loss Function

Large (deep) networks can be built by
adding more and more layers

Three-layered neural networks can
represent any function

⬣ The number of nodes could grow
unreasonably (exponential or worse)
with respect to the complexity of the
function

We will show them without edges:

Adding More Layers!

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

input
layer hidden

layer 1
hidden
layer 2

output
layer

input
layer

hidden
layer 1

hidden
layer 2

output
layer

Computation
Graphs

Functions can be made arbitrarily complex (subject to memory and
computational limits), e.g.:

𝟓 𝟒 𝟑 𝟐 𝟏

We can use any type of differentiable function (layer) we want!

⬣ At the end, add the loss function

Composition can have some structure

Adding Even More Layers

Loss
Function

The world is compositional!

We want our model to reflect this

Empirical and theoretical
evidence that it makes learning
complex functions easier

Note that prior state of art
engineered features often had
this compositionality as well

Compositionality

⬣ Pixels -> edges -> object parts -> objects

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

pixels edge texton motif part object

sample spectral
band

formant motif phone word

character NP/VP/.. clause sentence storyword

VISION

SPEECH

NLP

⬣ We are learning complex models with significant amount of
parameters (millions or billions)

⬣ How do we compute the gradients of the loss (at the end) with
respect to internal parameters?

⬣ Intuitively, want to understand how small changes in weight deep
inside are propagated to affect the loss function at the end

Computing Gradients in Complex Function

Loss
Function

𝒊
?

Decomposing a Function

Compose into a

complicate function

Adapted from slides by: Marc'Aurelio Ranzato, Yann LeCun

Given a library of simple functions

𝟑

To develop a general algorithm for
this, we will view the function as a
computation graph

Graph can be any directed acyclic
graph (DAG)

⬣ Modules must be differentiable to
support gradient computations
for gradient descent

A training algorithm will then
process this graph, one module at a
time

A General Framework

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Directed Acyclic Graphs (DAGs)

• Exactly what the name suggests
– Directed edges
– No (directed) cycles
– Underlying undirected cycles okay

(C) Dhruv Batra 29

Directed Acyclic Graphs (DAGs)

• Concept
– Topological Ordering

(C) Dhruv Batra 30

Directed Acyclic Graphs (DAGs)

(C) Dhruv Batra 31

Example

𝟏

𝟐

Machine Learning Example

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Backpropagation

Given this computation graph, the training
algorithm will:

⬣ Calculate the current model’s outputs
(called the forward pass)

⬣ Calculate the gradients for each
module (called the backward pass)

Backward pass is a recursive algorithm that:

⬣ Starts at loss function where we know
how to calculate the gradients

⬣ Progresses back through the modules

⬣ Ends in the input layer where we do
not need gradients (no parameters)

This algorithm is called backpropagation

Overview of Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

ℓି𝟏 ℓ

FunctionInput Output

Parameters

Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Layer 1 Layer 2 Layer 3

Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Layer 1 Layer 2 Layer 3

Note that we must store the intermediate outputs of all layers!

⬣ This is because we will need them to compute the gradients (the gradient
equations will have terms with the output values in them)

Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Layer 1 Layer 2 Layer 3

In the backward pass, we seek to
calculate the gradients of the loss with
respect to the module’s parameters

⬣ Assume that we have the
gradient of the loss with respect
to the module’s outputs (given
to us by upstream module)

⬣ We will also pass the gradient of
the loss with respect to the
module’s inputs

⬣ This is not required for
update the module’s weights,
but passes the gradients
back to the previous module

Backward Pass Computations

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Problem:

⬣ We can compute local gradients:
𝝏𝒉ℓ

𝝏𝒉ℓష𝟏

𝝏𝒉ℓ

𝝏𝑾

⬣ We are given:
𝝏𝑳

𝝏𝒉ℓ

⬣ Compute:
𝝏𝑳

𝝏𝒉ℓష𝟏,

𝝏𝑳

𝝏𝑾

ℓି𝟏 ℓ

⬣ We want to compute:

⬣ We will use the chain rule to do this:

Chain Rule:

Computing the Gradients of Loss

ℓି𝟏 ℓ ℓି𝟏ℓ
Loss⬣ 𝝏𝒉ℓ

𝝏𝒉ℓష𝟏

𝝏𝒉ℓ

𝝏𝑾

⬣ We can compute local gradients:
𝝏𝒉ℓ

𝝏𝒉ℓష𝟏

𝝏𝒉ℓ

𝝏𝑾

⬣ This is just the derivative of our function with respect to its
parameters and inputs!

Example: If ℓ ℓି𝟏

then
𝝏𝒉ℓ

𝝏𝒉ℓష𝟏

and
𝝏𝒉𝒊

ℓ

𝝏𝒘𝒊

ℓି𝟏,𝑻

Computing the Local Gradients: Example

⬣ We want to to compute:

⬣ We will use the chain rule to do this:

Chain Rule:

Computing the Gradients of Loss

ℓି𝟏 ℓ ℓି𝟏ℓ
Loss

⬣ We will use the chain rule to compute:
𝝏𝑳

𝝏𝒉ℓష𝟏

𝝏𝑳

𝝏𝑾

⬣ Gradient of loss w.r.t. inputs:
𝝏𝑳

𝝏𝒉ℓష𝟏

𝝏𝑳

𝝏𝒉ℓ

𝝏𝒉ℓ

𝝏𝒉ℓష𝟏

⬣ Gradient of loss w.r.t. weights:
𝝏𝑳

𝝏𝑾

𝝏𝑳

𝝏𝒉ℓ

𝝏𝒉ℓ

𝝏𝑾

Computing the Gradients of Loss

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

ℓି𝟏 ℓ

Given by upstream
module (upstream
gradient)

Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass

Layer 1 Layer 2 Layer 3

Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass

Layer 1 Layer 2 Layer 3

Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass

Layer 1 Layer 2 Layer 3

Neural Network Training
Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass

Step 3: Use gradient to update all parameters at the end

Layer 1 Layer 2 Layer 3

Backpropagation is the application of
gradient descent to a computation
graph via the chain rule!

48
Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example

49
Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example

50

e.g. x = -2, y = 5, z = -4

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example

51

e.g. x = -2, y = 5, z = -4

Want:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example

52

e.g. x = -2, y = 5, z = -4

Want:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example

53

e.g. x = -2, y = 5, z = -4

Want:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example

54

e.g. x = -2, y = 5, z = -4

Want:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example

55

e.g. x = -2, y = 5, z = -4

Want:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example

56

e.g. x = -2, y = 5, z = -4

Want:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example

57

e.g. x = -2, y = 5, z = -4

Want:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example

58

e.g. x = -2, y = 5, z = -4

Want:

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

59

e.g. x = -2, y = 5, z = -4

Want:

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

60

e.g. x = -2, y = 5, z = -4

Want:

Chain rule:

Upstream
gradient

Local
gradient

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

61

Chain rule:

e.g. x = -2, y = 5, z = -4

Want:
Upstream
gradient

Local
gradient

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

62

e.g. x = -2, y = 5, z = -4

Want:

Chain rule:

Upstream
gradient

Local
gradient

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

63

Chain rule:

e.g. x = -2, y = 5, z = -4

Want:
Upstream
gradient

Local
gradient

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

