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Learning Object-Centric Neural
3D Scene Representations

Goal: Build Generalizable 3D representation of objects useful for a variety
of downstream applications
Approach: Learning with Structured Inductive Bias and Priors

Real-World Generalizable Fleet
Robotics Autonomy Learning

Credits: Sony Al Cooking, Netflix



Perception for 3D Object Understanding: Shape Representations

Andrieas Giger Implicit Neural Representations: From Objects to 3D Scene, June 2020



Perception for 3D Object Understanding: Shape Representations
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Perception for 3D Object Understanding: 6D Object Pose
Estimation

6D Pose Estimation Learning 6D Pose
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[Machine Learning Meets Geometry, Winter 2021, He Wang 2019 CVPR]



Perception for 3D Object Understanding: Applications

Y
Load 3D model

[..] eggshell broken in two with an adorable chick

standing next to it

Text-to-3D

Object Grasping

DenseFusion: 6D Object Pose Estimation by Iterative Dense Fusion, CVPR'2019
Towards Monocular 6D Object Pose Estimation, Thesis 2019, Fabian Manhardt
Dreamfusion, CVPR 2022



Perception for 3D Object Understanding: Current Paradigm
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Perception for 3D Object Understanding: Current Paradigm
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Perception for 3D Object Understanding: Current Paradigm
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Perception for 3D Object Understanding: Proposed VWork

3D Shape

Input

Applications
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Perception for 3D Object Understanding: Current Paradigm

Key highlights (Prior Methods):

Anchor-Based

- Disjoint shape reconstruction and object-
centric scene context

- Slow reconstruction

- Category-specific reconstruction and 6D
pose and size estimation

Multiple forward passes for each task

- Heads can be at different level of expertise

Key highlights (Our proposed):

+ Anchor-free

+ Joint shape reconstruction and object-
centric scene context

+ Fast (Real-time) reconstruction

+ Category agnostic reconstruction and 6D
pose and size estimation

+  Single-forward pass for entire network

+ All heads share the same level of
expertise i.e., gradient sharing



Perception for 3D Object Understanding: Our Approach

“.Train perception system
capable of utilizing geometry prior for efficient (real-time) shape
reconstruction and 6D pose estimation of multiple objects”



RGB-D

Canonical Pointclouds

CenterSnap: Single-Shot Multi-Object 3D Shape Reconstruction
and 6D Pose and Size Estimation for Robust Manipulation

Object Instances as CenterPoints
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[Ref] M.Z.Irshad, T.Kollar, M.Laskey, K.Stone, Z.Kira,
and Size Estimation, ICRA 2022
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CenterSnap: Single-Shot Multi-Object 3D Shape Reconstruction
and 6D Pose and Size Estimation for Robust Manipulation

Object Instances as CenterPoints

(A) Key highlights:

R NS . e ® Resnet50-FPN feature
I|—' | %ﬁ fra e b extractor
F" S ' ® Task specific heads for
ResNet Jad Object-centric

specific tasks

3D Parameter ® Represents shapes, poses as
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Canonical Pointclouds

CenterSnap: Single-Shot Multi-Object 3D Shape Reconstruction
and 6D Pose and Size Estimation for Robust Manipulation

Shape, Pose

and Size Codes

(B)

Key highlights:
® Unique shape code for each object
® Strong geometry prior from shape net 3D models
® Conv De-conv Neural Network as Auto-Encoder
® (ategory-agnostic reconstruction

Dea(Py,Pi) = 57 X yep, Min, cp. [z —yll3 + ﬁ > yep, Mingep, |2 — y3




CenterSnap: Single-Shot Multi-Object 3D Shape Reconstruction
and 6D Pose and Size Estimation for Robust Manipulation

Key highlights:

Single-forward pass inference

Optimized jointly

Maksed L1 Loss for Object Parameter Map

Huber Loss for Heatmap

Symmetry consideration for symmetric objects

Artifact free-depth prediction to improve simZreal transfer
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CenterSnap: Single-Shot Multi-Object 3D Shape Reconstruction
and 6D Pose and Size Estimation for Robust Manipulation

Task Setup/Dataset

e Dataset:
O NOCS Synthetic and Real275 Dataset
e Obijective:
O For novel instances, reconstruct their shapes and infer 6D pose and sizes
® Metrics:
O 3D Detection
= Mean Average Precision (IOU25, IOU50, IOU75)
O 6D pose and size
= 5° 5cm, 10° 5cm, 10° 10cm
O 3D shape reconstruction
m Chamfer Distance (CD)



CenterSnap: Single-Shot Multi-Object 3D Shape Reconstruction
and 6D Pose and Size Estimation for Robust Manipulation
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CenterSnap (Ours)
NOCS

Qualitative Pose Estimation Results on NOCS-Real? /5 Dataset



CenterSnap: Single-Shot Multi-Object 3D Shape Reconstruction
and 6D Pose and Size Estimation for Robust Manipulation

REAL275

CAMERAZ27/5

Qualitative Pose Estimation and Shape Reconstruction on NOCS-Real2/5
Natacet



CenterSnap: Single-Shot Multi-Object 3D Shape Reconstruction
and 6D Pose and Size Estimation for Robust Manipulation

CenterSnap (Ours) - Pointcloud

Comparison to depth-map reconstruction on NOCS-Real? /5 Dataset



CenterSnap: Single-Shot Multi-Object 3D Shape Reconstruction
and 6D Pose and Size Estimation for Robust Manipulation

TABLE I: Quantitative comparison of 3D object detection and 6D pose estimation on NOCS [22]: Comparison with strong baselines.
Best results are highlighted in bold. * denotes the method does not evaluate size and scale hence does not report IOU metric. For a fair
comparison with other approaches, we report the per-class metrics using nocs-level class predictions. Note that the comparison results are
either fair re-evaluations from the author’s provided best checkpoints or reported from the original paper.

CAMERA25 REAL275
Method IOU25 10U50 5°5em 5°10ecm 10°5em 10°10em IOU25  IOUS0  5°5em 5°10em 10°5cem 10°10cem
1 NOCS [22] 91.1 83.9 40.9 38.6 64.6 65.1 84.8 78.0 10.0 9.8 25.2 25.8
2 Synthesis™ [59] - - - - - - - - 0.9 1.4 24 55
3 Metric Scale [60] 93.8 90.7 20.2 28.2 554 58.9 81.6 68.1 53 55 247 26.5
4 ShapePrior [21] 81.6 72.4 59.0 59.6 81.0 81.3 81.2 713 21.4 21.4 54.1 54.1
5 CASS [44] - - - - - - 84.2 AT 23.5 23.8 58.0 583
6  CenterSnap (Ours) 93.2 92.3 63.0 69.5 79.5 87.9 83.5 80.2 27.2 292 58.8 64.4
7  CenterSnap-R (Ours) 93.2 92.5 66.2 71.7 81.3 87.9 83.5 80.2 29.1 31.6 64.3 70.9

TABLE II: Quantitative comparison of 3D shape reconstruction on NOCS [22]: Evaluated with CD metric (10~2). Lower is better.

CAMERAZ25 REAL275

Method Bottle Bowl Camera Can Laptop Mug Mean Bottle Bowl Camera Can  Laptop Mug  Mean

1 Reconstruction [21] 0.18 0.16 0.40 0.097 0.20 0.14 0.20 0.34 0.12 0.89 0.15 0.29 0.10 0.32
2 ShapePrior [21] 0.34 0.22 0.90 0.22 033 0.21 0.37 0.50 0.12 0.99 0.24 0.71 0.097 0.44

I 3 CenterSnap (Ours) 0.11 0.10 0.29 0.13 0.07 0.12 0.14 0.13 0.10 0.43 0.09 0.07 0.06 0.15 I




CenterSnap: Single-Shot Multi-Object 3D Shape Reconstruction
and 6D Pose and Size Estimation for Robust Manipulation

Ablation and Shape Reconstruction

Melrics
[ Effect of : 3D Shape 6D Pose
O Input Modailty, (i.e. RGB, Depth or # Input Shape TR D-Aux Cb | IoU2s+ WUs0t+  5°10em T 10°10em T
RGB-D), Shape, Training-regime and I RGBD v C v 0.19 284 270 142 482
Depth-Auxiliary loss ?; ggg_‘g. o gﬁ, j g oy =t f:; zgg
® Conclusions: 4 RGB v C+RF v 0.20 63.7 315 8.30 30.1
O _ : 5 Depth v C+RF v 0.15 742 66.7 302 632
Mono-RGB sensors give Iolvvest 6 RGBD v  C+RF 0.17 823 783 30.8 683
performance (Depth helps!) 7 RGBD VY C+RF 0.15 83.5 802 316 709
O Shape prediction network helps boost
network’s performance (#3 vs #8)
O Depth auxiliary loss helps Sim2Real 0.0125 | == PCN
. FN
Transfer . 0.0100 4 ™R CenterSnap{Ours)
O  Shape Reconstruction:
O Outperforms state-of-the-art ~ 0.0075
supervised shape completion baseline o
on CD metric 0.0050 1
0.0025 -
0.0000 -

Airplane Cabinet  Car Chair Lamp Sofa  Table Mean MOS-test



CenterSnap: Single-Shot Multi-Object 3D Shape Reconstruction
and 6D Pose and Size Estimation for Robust Manipulation

Timing Comparison Inference Frames per second (FPS) Comparison
® Result: =
O Our technique runs at 40 FPS on
Nvidia Quadro RTX 5000 GPU 20
O  Conclusions:
O  Outperforms MeshRCNN, state-of-the 15
art mesh reconstruction approach by
~4x speed up
O  Shape Reconstruction: 104
O MeshRCNN bottlenecked by 2-stage
approach i.e. detection and shape 5 -
reconstruction I
Ours is a single-shot with sharable 0
para m_ete rs MestiRERNE Ceﬁigﬁ%int CenteSrtlsfrJ‘ier?t with
One side note: Less error- (Ours) Recon. (Ours)

compounding since no head is smarter
than the others



Follow-up work

(*Not part of thesis)

CARTO: Category and Joint Agnostic Reconstruction of Articulated Objects

Detection and 6D Pose estimation Articulated Shape Reconstruction and 6D Pose Estimation

Key highlights:
® FExtends CenterSnap to Articulated Objects

Synthetic

® Joint-agnostic reconstruction

Real

® |earn a per-category shape and

articulation prior

Encoder (Sec. 3.

® Fast(~1s) perimage articulated iR iir

reconstruction

® T[rained fully in sim, transfers to real-world

without re-training or finetuning

[Ref] N.Heppert, M.Z.Irshad, S. Zakharov, K.Liu, R Ambrus, J.Bohg, A.Valada, T.Kollar, ” CARTO: Category and Joint Agnostic Reconstruction of
ARTiculated Objects”, CVPR 2023



Perception for 3D Object Understanding: Current Paradigm

Observations Intermediate  Classical
Output Pipeline
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ShAPO : Implicit Representations for Multi Object
Shape Appearance and Pose Optimization

“.Train perception system
capable of utilizing geometry and appearance prior for
generalizable shape and appearance reconstruction as well as
incorporate object-centric scene context”



ShAPO : Implicit Representations for Multi Object
Shape Appearance and Pose Optimization

Single-Shot Detection and 3D
Prediction
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ShAPO : Implicit Representations for Multi Object
Shape Appearance and Pose Optimization

Single-Shot Detection and 3D
Prediction
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Key highlights:
® [Extends CenterSnap to include appearance and
segmentation masks
® Single-forward pass for efficiency
® Conv De-conv multi-headed architecture with
parameter sharing
® Trained using supervised learning objective

L= A'L'nstﬁinst + )\sdf»csdf + Ateaz»ctea: + AM»CM + /\P»CP



ShAPO : Implicit Representations for Multi Object
Shape Appearance and Pose Optimization

Key highlights:
® Represents geometry as continuous SDF
o G(x,zgqf) = 5: 259 ERO s ER

® Represents appearance as lexture Field
o tg : ]R?’ — Rg
® Architecture: Single MLP each
® Trained using supervised learning objective
® [ataset: Shapenet synthetic dataset

Disentangled Implicit Shape and e 6 Categories, 1k+ textured models
Appearance Representation
w _(x,y,z) ﬁ . “ LS’DF - |Clamp (G(a:, zsdf)a 5) - Clamp (Sgt7 5)| + Lcontrastive<zsdf)
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ShAPO : Implicit Representations for Multi Object
Shape Appearance and Pose Optimization

Key highlights:

® Represents geometry as continuous SDF
o G(x,zgqf) = 5: 259 ERO s ER

® Represents geometry as continuous SDF
° tQ . ]RB — RB

Disentangled Implicit Shape and
Appearance Representation

(2,3,2) o (xyz éx 9 @
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ShAPO : Implicit Representations for Multi Object
Shape Appearance and Pose Optimization

Key highlights:

® Represents geometry as continuous SDF
o G(x,zgqf) = 5: 259 ERO s ER

® Represents geometry as continuous SDF
° tQ . ]RB — RB

SDF
Disentangled Implicit Shape and [ —
Appearance Representation . .
G o Ji=
X, Z R ] . - .
T U Z “ ( k. “) a | C § a) Without Contrastive b) Without Regularization
ontrast
| o i | 1€ -
Zsdf Ztex + . 'D | & W % 3 s k&‘&
(rgb) " - *)

Shape Space Appearance Space ; ¢) With Contrastive d) With \Iean Textures



ShAPO : Implicit Representations for Multi Object
Shape Appearance and Pose Optimization

Key components:
e Differentiable iso-surface
projection
® Octree-based point sampling

Implicit (Dense) Rendered (Sp arse)

Appearance Shape and

Pose Optimization




ShAPO : Implicit Representations for Multi Object
Shape Appearance and Pose Optimization

Differentiable iso-surface projection:
® [rivial Solution: Threshold the
points based on SDF value, Non-
Differentiable
® Alternate solution: Utilize
gradients and normal values

(Ours)
OG(xi;Zsdrf)
ni — 8:21 :
0G (32
pi =T — —(axj df)G(SUi;stf)

Implicit (Dense) Rendered (Sp arse)

3D Points

Appearance Shape and

Pose Optimization



ShAPO : Implicit Representations for Multi Object
Shape Appearance and Pose Optimization

Octree-based point sampling:
® Brute Force Solution: Extremely
inefficient
® 603 points = 216000 ~= 1600
surface points (0./%)
® Solution: Coarse-to-fine sampling
e [oD3toloD/

LoD3




ShAPO : Implicit Representations for Multi Object
Shape Appearance and Pose Optimization

Octree-based point sampling:
® Brute Force Solution: Extremely
inefficient
® 603 points = 216000 ~= 1600
surface points (0./%)
® Solution: Coarse-to-fine sampling
e [oD3toloD/

Target



ShAPO : Experiments

How well does How well does our
How well does ShAPQO perform in terms of differentiable iterative
ShAPO reconstructing geometry improvement and multi-level
FECOVET pose and and appearance of optimization impact shape,
sizes of novel multiple objects from appearance
objects? a single-view RGB-D bose and size?

observation?



ShAPO : Qualitative Results



Our qualitative results show complete and accurate
shape reconstruction with fine-grained geometric detail

NOCS REAL275

3D Shape + 6D Pose



Our qualitative results show complete and accurate
texture reconstruction with fine-grained geometric detail

NOCS REAL275

3D Shape + 6D Pose + Appearance



Our novel implicit textured representation learns to embed
objects in a concise space for downstream optimization

08 . :

GT Optimizafion GT Optimization

GT Optimization GT Optimization



Our inference-time optimization allows us to perform
accurate 6D pose and size estimation

Testing Results on NOCS-Real275 Dataset



Multi-Object Shape, Appearance and Pose Optimization

3D Detection and Instance optimization
Network Inference

6D Pose and Size




Our superior shape and appearance reconstruction
iIn comparison to strong baseline CenterSnap

ShAPO (Ours) ShAPQO (Ours)
Mesh Mesh Appearance

E— 4 |

Testing Results on NOCS-Real275 Dataset



Our results on real-world single-view RGBD
captured on an HSR Robot Camera

Appearance
Reconstruction

da &

6D pose and size 3D Shape

Testing Results on Xtion Pro Live Camera on HSR Robot



ShAPO : Quantitative Results

e Compared against 7 baseline
variations:

1. NOCS 2. Synthesis 3. Metric

Scale 4. Shape Prior 5. CASS 6.

CenterSnap
e Qutperform baselines on 6D

pose and size, 3D shape

Table 2: Quantitative comparison of 6D pose estimation and 3D object de-
tection on NOCS [411]: Comparison with strong baselines. Best results are highlighted
in bold. * denotes the method does not report IOU metrics since size and scale is not
evaluated. We report metrics using nocs-level class predictions for a fair comparison
with all baselines.

CAMERAZ25 REAL275
Method IOU25 I0US50 5°5c¢m 5°10 em 10°5 em 10°10 cm IOU25 IOUS0 5°5em 5°10 em 10°5em 10°10 em
1 NOCS [41] 91.1 83.9 409 38.6 64.6 65.1 84.8 78.0 10.0 9.8 25.2 25.8
2 Synthesis® (3] - - - - - - - - 0.9 1.4 2.4 5.5
3 Metric Scale [23] 93.8 90.7  20.2 28.2 55.4 58.9 81.6 68.1 5.3 5.5 24.7 26.5
4 ShapePrior [37] 81.6 72.4 59.0 59.6 81.0 81.3 81.2 773 214 21.4 54.1 54.1

5 CASS [2] - - - - - 84.2 .7 23.5 23.8 58.0 58.3

6 CenterSnap [15] 93.2 92.3 63.0 69.5 79.5 87.9 83.5 80.2 27.2 29.2 58.8 64.4
7 CenterSnap-R [15] 93.2 92.5 66.2 71.7 81.3 87.9 83.5 80.2 29.1 31.6 64.3 70.9

I 8 ShAPO (Ours) 94.5 93.5 66.6 75.9 81.9 89.2 85.3 79.0 48.8 57.0 66.8 78.0 I

Table 3: Quantitative comparison of 3D shape reconstruction on NOCS [41]:
Evaluated with CD metric (10™2). Lower is better.

CAMERAZ25 REAL275

Method Bottle Bowl Camera Can Laptop Mug Mean Bottle Bowl Camera Can Laptop Mug Mean

1 Reconstruction [37] 0.18 0.16 0.40  0.097  0.20 0.14 0.20 0.34 0.12 0.89 0.15 0.29 0.10 0.32
2 ShapePrior [37] 0.34 0.22 090 022 033 021 037 050 0.12 099 0.24 0.71 0.097 0.44
3 CenterSnap 0.11  0.10 0.29 0.13  0.07 0.12 0.14 0.13 0.10 0.43 0.09  0.07 0.06 0.15

IBShAPO (Ours) 0.14  0.08 0.2 0.14 0.07 0.11 0.16 0.1 0.08 0.4 0.07 0.08 0.06 0.13 I




ShAPO : Quantitative Results

Compared CD, PSNR and
Sample Efficiency of different
level of details (LoDs)

LoD7 has the higher accuracy
while LoD6 gives the best
speed/accuracy trad-off
PSNR for novel real-world
scenes after inference,

optimization and fine-tuning

Table 4: Generalizable Implicit Representation Ablation: We evaluate the effi-
ciency (point sampling/time(s)/memory(MB)) and generalization (shape(CD) and tex-
ture(PSNR) reconstruction) capabilities of our implicit object representation as well
as its sampling efficiency for different levels of detail (LoDs) and compare it to the
ordinary grid sampling. All ablations were executed on NVIDIA RTX A6000 GPU.

| | Point Sampling | Efficiency (per object) | Reconstruction

Grid type | Resoluti
b i | S | Input Output | Time (s)  Memory (MB) | Shape (CD)  Texture (PSNR)

40 64000 412 10.96 3994 0.30 10.08
Oy 50 125000 835 18.78 5570 0.19 12.83
60 216000 1400 30.51 7850 0.33 19.52
LoD5 1521 704 5.53 2376 | 0.19 9.27
OctGrid LoD6 5192 3228 6.88 2880 L_o.18 13.63 |
LoD7 20246 13023 12.29 5848 0.24 16.14

Table 1: Texture quality ablation. We compare texture quality using the PSNR
metric between three modalities: network prediction, optimization, and fine-tuning of
the ty network.

| Inference Optimization Fine-tuning

PSNR | 11.41 20.64 24.32
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Thank you!

Question?

CenterSnap: 3D geometry
prior for fast, multi-object 3D
object-centric learning

& ‘!Aﬂe‘ ae

 [MSRTAZ ECCV-22] ~

.

ShAPO: 3D shape and
appearance prior for
accurate object-centric
scene reconstruction




