Topics:

* Reinforcement Learning Part 2
* Q-Learning
* Deep Q-Learning
* Policy Gradient

CS 4803-DL / 7643-A
ZSOLT KIRA

Admin

 HWA4
* See OH on Attention/Seq2seq and HW4

 Paperreading OH April 4rd at 9 pm ET
e Vision Transformers https://arxiv.org/abs/2010.11929

e Upcoming last Meta OH on translation & speech
(TBA)

RL: Sequential decision making in an environment with evaluative feedback.

Agent

a

.State, Reward, Action,
St!mulgs, Gain, Payoff, Response,
Situation Cost Control

Environment ||
(world)

Figure Credit: Rich Sutton

Environment may be unknown, non-linear, stochastic and complex.
Agent learns a policy to map states of the environments to actions.
Seeking to maximize cumulative reward in the long run.

—

) What is Reinforcement Learning? Secrowt

MDPs: Theoretical framework underlying RL
An MDP is defined as a tuple (S, A, R, T,)
S : Set of possible states
A : Set of possible actions
R(s,a,s") : Distribution of reward
T(s,a, s’) . Transition probability distribution, also written as p(s’|s,a)
“Y : Discount factor

Markov Decision Processes (MDPs) Secrowt

—

MDPs: Theoretical framework underlying RL
An MDP is defined as a tuple (S, A, R, T,)
S : Set of possible states
A : Set of possible actions
R(s,a,s") : Distribution of reward
T(s,a, s’) . Transition probability distribution, also written as p(s’|s,a)
“Y : Discount factor
Interaction trajectory: ... S¢, Q¢, Tt41, St+1,A¢t+15T¢4+2, St4+2,5 - - -

Markov Decision Processes (MDPs) Secrowt

—

What we want Some intermediate concepts and terms
A Value function (how good is a state?)

State Action A\ policyﬂ'
V:S§—=R V'(s)=E Z’YHlSo—SW]

t>0
A Q-Value function (how good is a state-action pair?)

Q:SxA—->R Q(s,a)= [Z'yrtso—sao]

t=0

*=arg mEXE Zytmhr

L Q"(s,a)= E [r(s,a) +yV*(s')] (Mathin previous
Definition of optimal policy “ple’ie:e) lecture)

Equalities relating optimal quantities = We can then derive the Bellman Equation

V*(s) :maaxQ*(S,a) Q*(s,a) = Zp(s, |5, a) [(s,a) + ymax Q*(H’?m")]

This must hold true for an optimal Q-Value!
-> Leads to dynamic programming algorithm to find it

) Summary of Last Time Georgia @J

7 (s) = argmax Q*(s,a)

Equations relating optimal quantities

V*(s) = max Q" (s, a) " (s) = argmax Q" (s, a)
a a

Recursive Bellman optimality equation NOTE: I the
- | lecture video for
9 ine) = ,gfmpgws a) [r (s, a) + 7V" ()] these slides, there
/ o was a typo having

=2 _p(&ls,a)[r (s,0) +9V" (6] V(s) instead of
5 V(S’)

= Z;p (s']s,a) [fr (s,a) + ymax Q" (s, n."}]
S.l"

) Bellman Optimality Equations Gegrota |

—

Based on the bellman optimality equation
ma,XZp "Is,a) [r(s,a) + V™ (s)]

Algorithm
Initialize values of all states
While not converged:

For each state: | **!(s) <~ max Zp(s’|s, a) [r(s,a) +yV*(s')]
a
8/
Repeat until convergence (no change in values)

VO Lyl a2 L SV
‘ Time complexity per iteration O(‘5‘2 |.AD ‘

) Value Iteration Gegianl

Value Iteration Update:

Vi—l—l(s) “ mC?X Zp(8/|87 a) [T(S, CL) =+ ’Yvi(sl)]

Q-lteration Update:

Q" (s,a %Zp 'Is,a [(S,a)+7HZ@XQ"'(S’,a’)}

The algorithm is same as value iteration, but it loops over
actions as well as states

) Q-Iteration Gegtanll

For Value lteration:

Theorem: will converge to unique optimal values
Basic idea: approximations get refined towards optimal values
Policy may converge long before values do

Time complexity per iteration O (‘S ‘ 2 ‘A‘)

Feasible for:
3x4 Grid world?
Chess/Go?

Atari Games with integer image pixel values [0, 255] of size
16x16 as state?

) State Spaces & Time Complexity

Summary: MDP Algorithms

Value Iteration

Bellman update to state value
estimates

Q-Value Iteration

Bellman update to (state,
action) value estimates

Reinforcement

Learning,
Deep RL

Georgia
orgla |

—

Recall RL assumptions:
T(s,a, s") unknown, how actions affect the environment.
!
R(s,a,s’) unknown, what/when are the good actions?

But, we can learn by trial and error.
Gather experience (data) by performing actions.

Approximate unknown quantities from data.

Reinforcement Learning

Learning Based Methods: RL Gograla |

—

Old Dynamic Programming Demo
https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld dp.html

RL Demo
https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld td.html

Slide credit: Dhruv Batra

Learning Based Methods: RL Gograla |

—

Sample-Based Policy Evaluation?

* We want to improve our estimate of V by computing these averages:
Vil 1(s) < Y T(s,m(s),s)[R(s,7(s),s") + V()]

* |dea: Take samples of outcomes s’ (by doing the action!) and average
sample; = R(s,m(s),s7) + vV (s]) —
sampley = R(s,m(s), sb) + Vi (sh) | q\ TR
samplen, = R(s,7(s), s},) + YV (s7,) f 5 £ 7 ‘:: =l

] . -
Vig1(8) < - >~ sample;

1
What’s the difficulty of this algorithm?

Georgia ,"|

Tech M

Temporal Difference Learning

* Bigidea: learn from every experience!

— Update V(s) each time we experience a transition (s, a, s’, r) S
— Likely outcomes s’ will contribute updates more often 7(s)
. . S,
* Temporal difference learning of values (s)
— Policy still fixed, still doing evaluation!
— Move values toward value of whatever successor occurs: running average As

Sample of V(s): sample = R(s,n(s),s") +~yV™(s")

Updateto V(s): V7 (s) + (1 —a)V™(s) 4+ (a)sample

Same update: VT(s) + V™(s) + a(sample — V" (s))

Q-Learning

* We'd like to do Q-value updates to each Q-state:
Qt1(s:0) & Y T(s,0,5) |R(s,a,8) +7 maxQu(s',a")
/ a

— But can’t compute this update without knowing T, R

* Instead, compute average as we go
— Receive a sample transition (s,a,r,s’)
— This sample suggests

Q(s,a) m v+ maxQ(s, a')

— But we want to average over results from (s,a)
— So keep a running average

Qs,0) — (1 -)Q(5,0) + (o) |r + ¥ MaxQ(s', 0"

Q-Learning Properties

* Amazing result: Q-learning converges to optimal policy -- even if you’re acting suboptimally!
* This is called off-policy learning

* (Caveats:
— You have to explore enough
— You have to eventually make the learning rate
small enough
— ... but not decrease it too quickly

— Basically, in the limit, it doesn’t matter how you select action e

Deep
Q-Learning

Georgia
Toch ||

Generalizing Across States

* Basic Q-Learning keeps a table of all g-values

* Inrealistic situations, we cannot possibly learn about every single state
— Too many states to visit them all in training
— Too many states to hold the g-tables in memory

* Instead, we want to generalize:
— Learn about some small number of training states from experience
— Generalize that experience to new, similar situations
— This is the fundamental idea in machine learning!

[demo — RL pacman]

Georgia ,"|

Tech M

Example: Pacman

Let’s say we In naive g-learning, Or even this one!
discover through we know nothing
experience that this about this state:

state is bad:

Feature-Based Representations

Solution: describe a state using a vector of features (properties)
— Features are functions from states to real numbers (often 0/1) that capture important properties of the state
— Example features:

* Distance to closest ghost

e Distance to closest dot

* Number of ghosts

e 1/ (dist to dot)?

* IsPacmanin atunnel? (0/1)

* Isit the exact state on this slide?
— Can also describe a g-state (s, a) with features (e.g. action moves closer to food)

Linear Value Functions

* Using a feature representation, we can write a g function (or value function) for any state using a few weights:
V(s) = wif1(s) +wafa(s) + ...+ wnfn(s)
Q(87 CI,) — wlfl(sa a’)+w2f2(37 a/)_l_ . -+wnfn(37 a)

* Advantage: our experience is summed up in a few powerful numbers

* Disadvantage: states may share features but can actually be very different in value!

Georgia "|
Tech)

State space is too large and complicated for feature engineering though!
Recall: Value iteration not scalable (chess, RGB images as state space, etc)
Solution: Deep Learning! ... more precisely, function approximation.

Use deep neural networks to learn state representations
Useful for continuous action spaces as well

Deep Reinforcement Learning

—

) Learning Based Methods: Deep RL Gograla |

Value-based RL
(Deep) Q-Learning, approximating Q" (s, a) with a deep Q-network

Policy-based RL

Directly approximate optimal policy 7" with a parametrized policy 7 p

Model-based RL

Approximate transition function T(S’, a, S) and reward function R(S, a)
Plan by looking ahead in the (approx.) future!

) Deep RL: Algorithm Categories Gograla |

—

Q-Learning with linear function approximators

Q(s,a;w,b) = w, 5+ b

Has some theoretical guarantees FC-4 (Q-values)

FC-256

Deep Q-Learning: Fit a deep Q-Network Q (3, a, (9)

Works well in practice

11—
Q-Network can take RGB images JJJ

Image Credits: Fei-Fei Li, Justin Johnson,
Serena Yeung, CS 231n

Deep Q-Learning Gograla |

—

Assume we have collected a dataset:

{(37 a, 8,7 T)i 715\;1

We want a Q-function that satisfies bellman optimality (Q-value)

Q*(s,a)= | E |r(s,a)+ymaxQ(s',a')]

s'~p(s’|s,a)

Loss for a single data point:

MSE Loss := (Qnew(s, a) — (r+ YInEEE Qota(s’, a)))2
_ ‘—

Predicted Q-Value Target Q-Value

—

) Deep Q-Learning Gograla |

Minibatchof {(s, a, s",7); Z-le

Forward pass:

State — Q-Network » Q-Values per action
B x D B x Nactions
2
Compute loss: (Qnew(sa a) — (fr + ymax Qold(s,a a,)))
\ Y J @ \ Y J
HTL ew 90[d FC-4 (Q-values)

FC-256

Backward pass:)],08S Q-Networ

aenew

i { ||

) Deep Q-Learning Gegroa

|

—

MSE Loss := (Qnew(s, a)— (r+ max Qota(s’, a,)))2

In practice, for stability:
Freeze Qold and update Qnew parameters

Set Qoid ¢ new atregularintervals

) Deep Q-Learning Gograla |

—

How to gather experience?

{(37 a, 8,7 T)i 715\;1

This is why RL is hard

—

) Deep Q-Learning Gograla |

Wgather — Environment > Data {(s, a, 3',7“),,; ,fil

Train

Update

Toather Ttrained

Challenge 1: Exploration vs Exploitation

Challenge 2: Non iid, highly correlated data

) How to gather experience? Gograla |

—

What should TTgather be?

Greedy? -> Local minimas, no exploration

arg max (s, a; 0)
a
An exploration strategy:
e-greedy

Jarg max (Q(s,a) with probability 1 — €
ay — Z

Irandom action with probability €

) Exploration Problem Gegrata)

—

Samples are correlated => high variance gradients => inefficient learning

Current Q-network parameters determines next training samples => can lead
to bad feedback loops

e.g. if maximizing action is to move right, training samples will be
dominated by samples going right, may fall into local minima

start

—

) Correlated Data Problem Gegrgia |

Correlated data: addressed by using experience replay
n /
A replay buffer stores transitions (S, a,s , 7“)

Continually update replay buffer as game (experience) episodes are
played, older samples discarded

Train Q-network on random minibatches of transitions from the replay
memory, instead of consecutive samples

Larger the buffer, lower the correlation

—

) Experience Replay Gogrota |

Algorithm 1 Deep O-learning with Experience Replay
Initialize replay memory D to capacity N ,
Initialize action-value function) with random weights Experlence Replay
for episode = 1, M do
Initialise sequence s; = {z; } and preprocessed sequenced ¢, = ¢(s)
fort =1.7 do _
With probability € select a random action a, Epsﬂon-g reedy
otherwise select a; = max, Q*(d(s;),a; 6)
Execute action a; in emulator and observe reward r; and image x;
Set 8.1 = 84, a4, T¢.1 and preprocess ¢y = G(S41)
Store transition (¢;, as, 7y, $y41) in D
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D
Set y; = { T for terminal ‘?’j-}-l Q Update
J r; +ymax, Q(¢;+1,a’;0) for non-terminal ¢; .,

Perform a gradient descent step on (y; — Q(¢;, a;; 6’))2 according to equation 3
end for
end for

—

) Deep Q-Learning Algorithm Gograla |

Atari Games

Objective: Complete the game with the highest score
State: Raw pixel inputs of the game state

Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

Figures copyright Volodymyr Mnih et al., 2013. Reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Georgia &

Case study: Playing Atari Games Tech ||

Atari Games

S

R TR

S e

i
i
y

https://www.youtube.com/watch?v=V1eYniJORnk

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Case study: Playing Atari Games Gegrata)

—

In today’s class, we looked at
Dynamic Programming
Value, Q-Value lteration

Reinforcement Learning (RL)
The challenges of (deep) learning based methods
Value-based RL algorithms
Deep Q-Learning

Now:
Policy-based RL algorithms (policy gradients)

—

) Summary Gegrota |

Policy
Gradients,

Actor-Critic

Transition and
Reward Function

Yi N
°° Known? °
' Use Value/Policy l < (Estimate Transition & Estimate Q values from
lteration . Reward Function data (DQNS, etc)
Directly Optimize
Policy v

Obtain "optimal"
policy

Overview Gegrgia |

—

Class of policies defined by parameters 9

mo(als) : S — A

Eg: @ can be parameters of linear transformation, deep network, etc.

Want to maximize: A 7

J(m) =E | Y R(st,ar)

t=1

In other words,

7 = arg max |E

mS—A

T T
;R(st,at)]) 9*:argm§1xE ZR(St,CLt)

t=1

) Parametrized Policy Gogrota |

—

raw pixels hidden layer

—

) Pong from Pixels S o

forward pass R Supervised Learning
> log probabilities (correct label is provided)

-1.2 | -0.36
. block of differentiable compute ;
image (e.q. neural net) P gradients
1.0 0
backward pass
forward pass Reinforcement Learning
» log probabilities
-1.2 -0.36 | —— sample an action:
. block of differentiable compute .
Rags (e.g. neural net) i gradients
0 -1.0 -

A

eventual reward -1.0
backward pass

Image Source: http://karpathy.github.io/2016/05/31/rl/

Policy Gradient: Loss Function Gegraia |

—

Slightly re-writing the notation

Let 7T = (80, ag,...ST, CZT) denote a trajectory

7‘-9(7-) — pQ(T) — P (3070'07 R STya’T)

T
= p(so) HP9 (ai | 5¢) - p(Se41 | st,at)
t=0

arg m@ax Evape (1) [R(T)]

Gathering Data/Experience Gograla |

—

J(0) = Er py(r) R(7)]

T
— EatNW(‘|5t)>8t+1’*p('|8t,at) E R Staat
| t=0

How to gather data?

We already have a policy: 7T
Sample N trajectories{ﬂ‘}ﬁvzl by acting accordingto 7T@

Gathering Data/Experience Ge%gggg&

Sample trajectories 7, = {s1, a1, ... S7,ar}; by acting according to 7T¢

Compute policy gradient as

VoJ(0) = 7?

Update policy parameters: @ <— 6 + oV J(@)

Run the pc?licy apd I Comput.e policy
sample trajectories gradient

t |

e Update policy

Slide credit: Sergey Levine

) The REINFORCE Algorithm Gegraia |

—

= Vyg /WG(T)R(T)CZT Expectation as integral
= /V@W@(T)R(T)dT Exchange integral and gradient
:/v9770<7') mo(7) R(r)dr
mo(T)
\%
= /W@(T)V@ log mg (T)R(T)dT Vologn(r) = 73?7_(;)

Deriving The Policy Gradient Geqethn

|

—

mo(1) = p(so) | [po (ar |) - p (se41 | 84,)

VoI (0) = Erpy(r)[Vo log mo(T)R(7)

Doesn’t depend on

T T
Vo |legpter) + Z log o (at|st) + Z*ﬁ?@ﬂ»‘l"’?ﬁ%)] Transition probabilities!
t—1 t=1

] - _
=K po(r) ZV@ log g (a|st) ZR (s¢, a¢)
t=1

l t=1 _
4550 o
)
\ ¥ \ \ e
3 \ [\ \ —
5
‘\
h3 dense’| dens: a
\
a
e i “

Continuous Action Space?

Deriving The Policy Gradient Gogrota |

Sample trajectories 7, = {s1, a1, ... S7,ar}; by acting according to 7T¢

Compute policy gradient as

N T
1
VoJ(0) ~ ~ S S Vo logmg (aj | s}) g R (s} | af)
=1 t=1

7

Update policy parameters: @ <— 6 + oV J(@)

Run the pc?licy apd I Comput.e policy
sample trajectories gradient

t |

e Update policy

Slide credit: Sergey Levine

) The REINFORCE Algorithm Gogaia)

r r
Ld L

Slide credit: Dhruv Batra

Drawbacks of Policy Gradients

® -® -® -® UP ._.DDWNP. DOWNP. DOWN’. upP ~® WIN
P DOWN’. UP -® P -® DOWNP. UP -® UP -® LOSE
® UP »® UP »® DOWN... DOWN'.DOWN’. DOWN._. UP -® LOSE
® -0 0 .o "0 @ WIN

Georgla &

