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Speech is Rich in Information

e \Voice carries a lot of information: what you say/how you say it.
e Stress in our voice, intonation, and other paralinguistic features.

e Children learn a lot by listening to others.




Speech is Natural & Interactive

e Intelligent machine communicating using speech.

e High-latency (text) vs. low-latency (speech).

e We speak faster than we can type (2-3 words/sec).



Speech is Ubiquitous

e Large language models are trained on a lot of data

e YouTube adds 500 hours of video data/minute. Up to 2.6T tokens/year.

2600

billion tokens
X!
o
o

PaLM Chinchilla YouTube
/year*
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Access to Technology and Information

Adult literacy rate by country, 2016

Adult (15+) literacy rate
] Less than 50%

50% to 59%

60% to 69%

70% to 79%
[180% to 89%

I 90% to 100%

No data




Language Diversity

Che New Hork Times

World’s Languages Dying Off Rapidly

7 Give this article = A

By John Noble Wilford
Sept. 18, 2007

Of the estimated 7,000 languages spoken in the world today,
linguists say, nearly half are in danger of extinction and are likely
to disappear in this century. In fact, they are now falling out of use
at a rate of about one every two weeks.



Speech Applications

Speech to text/speech recognition - dictation etc.
Text to speech - reading out aloud

Keyword spotting - “"Hey Alexa/Portal”

Speaker identification - is it your voice?

Language identification

Speech translation




This Talk

e wav2vec: a self-supervised algorithm for speech representations.

e wav2vec-U: self-supervised learning enables unsupervised speech
recognition.

e data2vec: unified objective tor selt-supervised learning in multiple modalities.



Selt-supervised Speech
Representation Learning



Supervised Machine Learning

potential train/test mismatch

Need to annotate lots of datal
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Supervised Machine Learning
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Self-supervised Learning

e Learn good data representations (structure, features etc.) without labels
e |Unlabeled data| >> |Labeled data|

e Use representations to solve the task
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Output

Supervised learning simultaneously performs representation learning of the data
and associating these features with labels

Limitation: relies on labeled data to learn feature encoding
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) ) Data ) )

Output

Self-supervised learning:
1/ representation learning of the data
2/ learn to associate labels with the representations

Reduces reliance on labeled data!
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Training Speech Recognition Models

| ike Dblack tea with milk

e Train on 1,000s of hours of data for good systems.
e Many languages, dialects, domains etc.
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Audio event detection

MUSIC
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wav2vec 2.0

Latent speech Z
representations

CNN

raw waveform X
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e Masked prediction with transformet, bi-
directional contextualized representations
(similar to BERT).

e But predict what? Learn an inventory of
speech units with vector quantization via
Gumbel softmax.

e Learning task: Joint VQ & context
representation learning.

e Contrast true quantized latent with
distractor latents.



wav2vec 2.0
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wav2vec 2.0

Contrastive loss
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Objective

Context
representations
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Masking

e Sample starting points for masks without replacement, then expand to 10 time-steps
e Spans can overlap

e Fora15ssample, ~49% of the time-steps masked with an average span length of ~300ms

Context C
representations £ } 3 3 1
Transformer
n R i —
o ] ] ] = =
Latent speech = ! { ! ﬂn
representations
Mask span start
CNN

Masked time-step

Unmasked time-step
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FIne-tuning

e Fine-tune model on labeled data for ASR with CTC (or other speech tasks)
e SpecAugment-style regularization & remove quantization
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Resu ‘tS 10 min labeled data

High resource Low resource setup
(Librispeech 960h labeled) (Librispeech 10min - 100h labeled)
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2 3.0 %
S S
o s 5.5
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g 1.5
0.0 | y % T 4
test other test other
"l ContextNet (supervised) B Noisy Student 100h
B Noisy Student (60k-h unlabeled) " wav2vec 100h .+ 060N unlabeled
1 wav2vec (60k-h unlabeled) ~ wav2vec 1h

B wav2vec 10m
B wav2vec 10m + (60k-h unlabeled)



Results

Effects of model size and amount of unlabeled data

o 13 — Base (100m)
= — Large (300m)
-Icl,') 9 .75 + 60k-h
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Examples (10 min Labeled Data)

HYP (no LM): she SESED and LUCHMAN GAIVE A SENT won by her GENTAL argument
HYP (w/ LM): she ceased and LUCAN gave assent won by her gentle argument
REF: she ceased and lakshman gave assent won by her gentle argument

HYP (no LM): but NOT WITH STANDING this boris EMBRAED him in a QUIAT FRENDLY
way and CISED him THRE times

HYP (w/ LM): but NOT WITHSTANDING this boris embraced him in a quiet friendly way
and kissed him three times

REF: but notwithstanding this boris embraced him in a quiet friendly way and kissed him
three times
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Summary

e For the first time, pre-training for speech works very well in both low-resource and
high-resource setup.

e Using only 10 minutes (48 utterances) of transcribed data rivals best system trained
on 960h from 1 year ago.

e (Code and models are available in the fairseq GitHub repo + Hugging Face.

FAIRSEQ
ﬁ o
(] -

< —.



Unsupervised Speech Recognition



Unsupervised Speech Recognition

e Important step towards agents that can learn without supervision.
e Unsupervised machine translation exists, what about speech?

e Key problem: what are the units in the speech audio?
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wav2vec Unsupervised: Key ldeas

e Learn good representations of speech audio
e Unsupervised segmentation of the speech audio into phonemic units

e Learn mapping between speech segments and phonemes using adversarial
learning
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wav2vec Unsupervised
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Text Data Pre-processing

N
Unlabeled text
\_ Y,
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GAN Inputs

Unlabeled phonemized text
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Generator / Discriminator

e Generator: 1 layer CNN with 90k parameters

w2v features frozen
e Discriminator: 3 layer CNN

e Traintime: 12-15h on a single V100
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Training Details

e Unsupervised metric for early stopping, hyper-parameter selection

e Self-training after GAN training (HMM and fine-tuning w2v)
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Comparison to Prior Unsupervised Work

Phoneme error rate

38
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Comparison to Best Supervised Systems

Amount of labeled data used

960 hrs.+ ME=1hr.
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Word error rate
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PER

Low-resource Languages

" Feretal. '17 B Riviere et al. '20
Conneau et al. '21 - wav2vec-U
50
37.5
25
12.5 .
0

Tatar Kyrgyz

*wav2vec-U uses much less speech audio than prior work:
1.8h vs. 17h for Kyrgyz, 4.6h vs. 17h for Tatar
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Discussion

e Very lightweight approach (except for wav2vec 2.0)
e Why does it work? Good audio features are main driver of performance
e Phonemizer still required

e Segment construction
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data2vec: A Unified Objective for
Self-supervised Learning



Natural Language Processing
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Computer Vision

SIMCLR, BYOL, Masked AutoEncoders (MAE), ...
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Speech: Unsupervised Speech Recognition

CPC, wav2vec 2.0, wav2vec Unsupervised, WavLM, w2v-BERT, HUBERT, ...

Amount of labeled data used

960 hrs.+ ME=1hr.
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Librispeech benchmark (test-other) compared with the best
systems over time. Source: paperswithcode.com
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Two Challenges



Modality-specific Learning Algorithms

e Most algorithms developed for one modality - specific
designs and learning biases.

e General idea of SSL. Biology of learning (Friston,’10).

e This talk: single objective for vision, speech and text.
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Little Focus on Efficiency

e Great progress but model sizes and compute requirements are ever growing,
e Are we using the best algorithms to push the boundaries?

e Scaling an efficient learner may ultimately get you further than an inefficient
one.

E nergy Fridge-Freezer

Manufacturer
Model

e This talk: compute efficient SSL YA
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A Single Learning Objective



data2vec

e General algorithm that works very well across modalities.
e Same learning objective for each modality.

e How: self-distillation of contextualized representations in a masked prediction
setup.
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data2vec

Original
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Images
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| like tea with milk

| like tea- milk
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data2vec
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Images
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Model in student-mode




data2vec

Speech Language
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data2vec
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data2vec
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data2vec

Modality specific feat
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Related Work

e Momentum teacher
(Grill et al,, 20, Caron et al.,21)
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o Contextualized targets
(Hsu et al.,21)
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Vision Results
ViT-L on ImageNet-1K

top-1 accuracy on valid

MAE MaskFeat data2vec

Multiple models Single models
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Speech & NLP Results

Librispeech test-other, Large models
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Target Context Size

Speech Language

Model in teacher-mode
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Limitations

e Modality specific feature encoder -> Perceiver work!

e Requires two forward-passes -> data2vec 2.0
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Efficient Selfr-supervised Learning



data2vec 2.0

e MAE: Do not encode masked time-steps.

e Multi-masking: Learn from different views & share target representation.
« Amortizes the cost of the teacher.

e Result: train with less compute, fewer epochs & smaller batch size.
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Example
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Compute Efficiency in Vision
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Compute Efficiency in Speech
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Compute Efticiency in NLP
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Vision Results - ViT-L accuracy vs. epochs Multiple models/

external data
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Conclusion

e Asingle learning objective can perform very well compared to the best modality-
specific algorithms for vision/speech/NLP.

e C(Contextualized targets lead to a rich learning task which enables efficient training.

e Think about multiple modalities from the outset.
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