Building Intelligent Machines that Learn from Human Speech

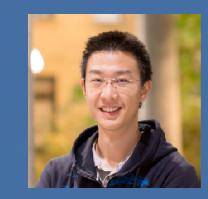
Michael Auli

FAIR California

Arun Babu

Alexis Conneau

Steffen Schneider



Henry Zhou

Abdelrahman Mohamed

Jiatao Gu

Naman Goyal

Wei-Ning Hsu

Alexei Baevski

Michael Auli

Kushal Lakhotia

Andros Tjandra

Kritika Singh

Yatharth Saraf

Geoffrey Zweig

Qiantong Xu

Tatiana Likhomanenko

Paden Tomasello

Ronan Collobert

Gabriel Synnaeve

Speech is Rich in Information

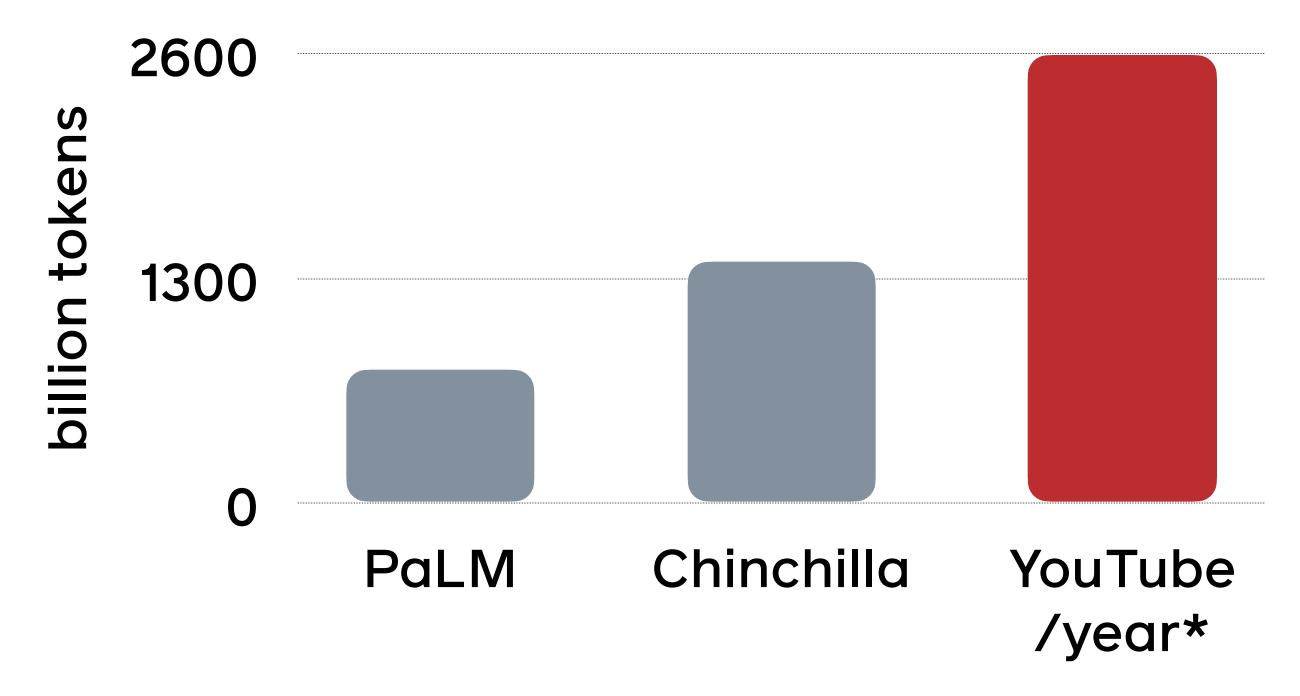
- Voice carries a lot of information: what you say/how you say it.
- Stress in our voice, intonation, and other paralinguistic features.
- Children learn a lot by listening to others.

Speech is Natural & Interactive

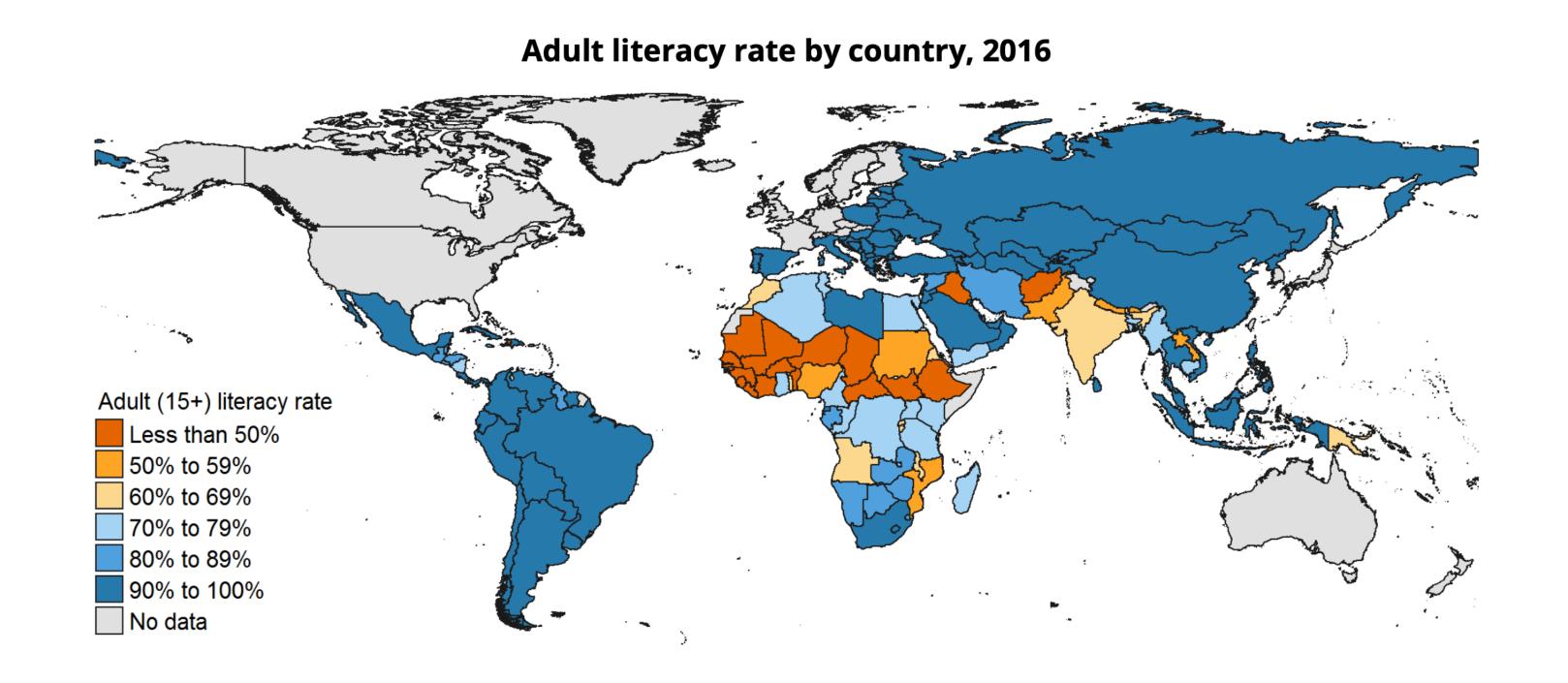
- Intelligent machine communicating using speech.
- High-latency (text) vs. low-latency (speech).
- We speak faster than we can type (2-3 words/sec).

Speech is Ubiquitous

- Large language models are trained on a lot of data
- YouTube adds 500 hours of video data/minute. Up to 2.6T tokens/year.



Access to Technology and Information

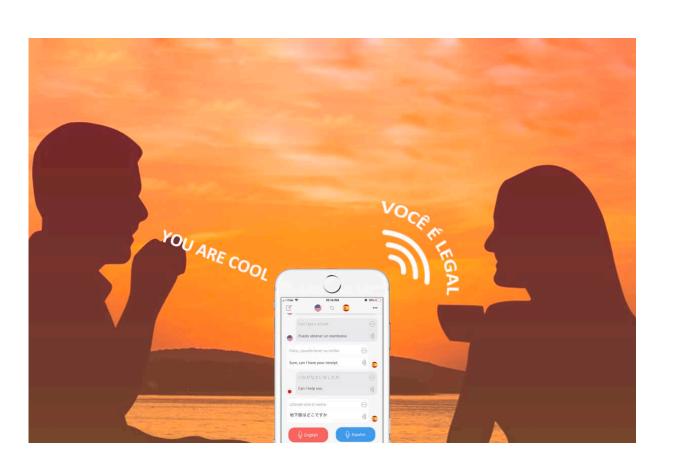


Language Diversity

The New York Times

Speech Applications

- Speech to text/speech recognition dictation etc.
- Text to speech reading out aloud
- Keyword spotting "Hey Alexa/Portal"
- Speaker identification is it your voice?
- Language identification
- Speech translation

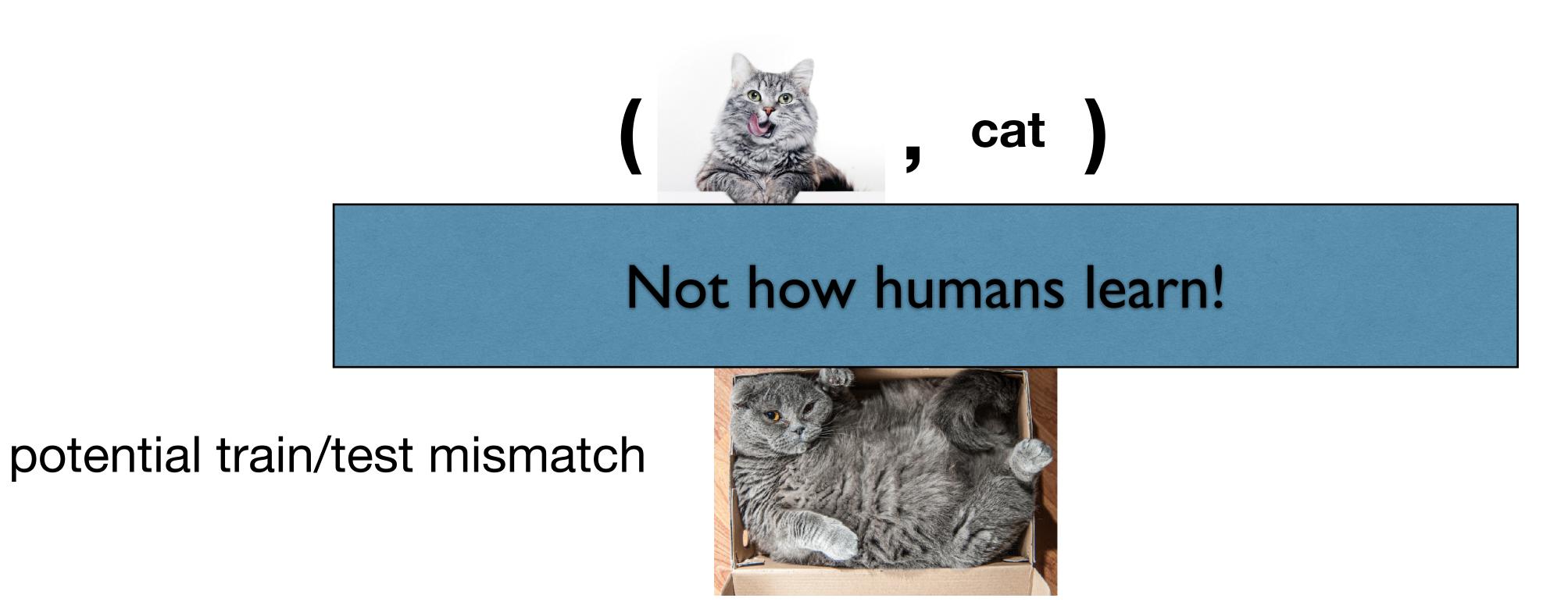


This Talk

- wav2vec: a self-supervised algorithm for speech representations.
- wav2vec-U: self-supervised learning enables unsupervised speech recognition.
- data2vec: unified objective for self-supervised learning in multiple modalities.

Self-supervised Speech Representation Learning

Supervised Machine Learning

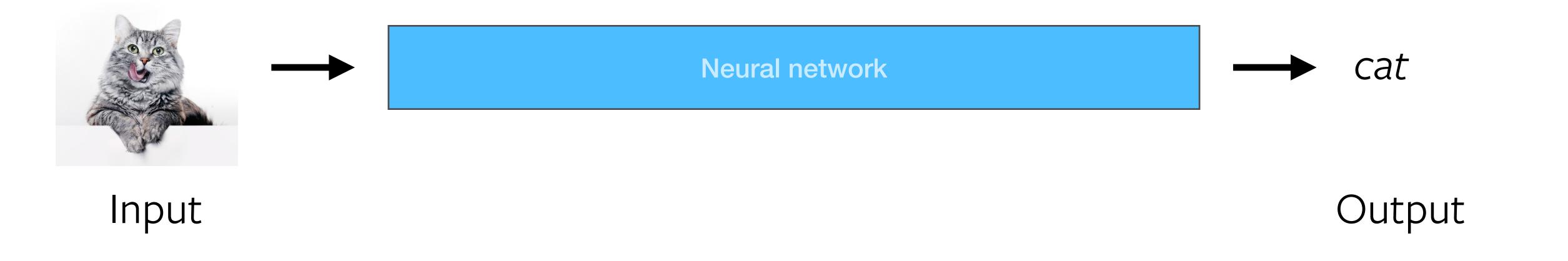


Need to annotate lots of data!

Supervised Machine Learning

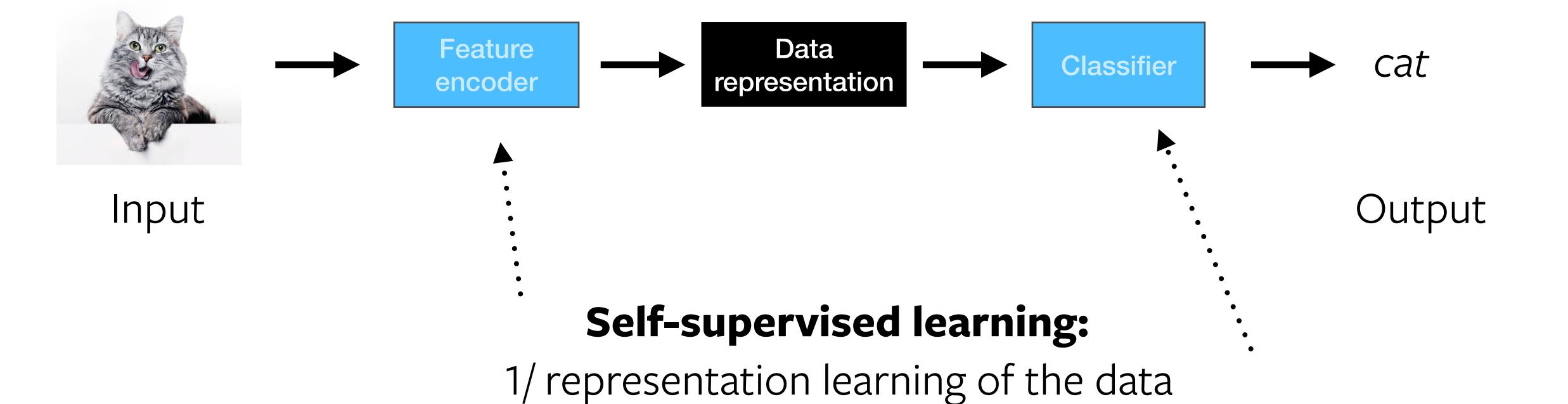
Self-supervised Learning

- Learn good data representations (structure, features etc.) without labels
- Unlabeled data | >> |Labeled data |
- Use representations to solve the task



Supervised learning simultaneously performs representation learning of the data and associating these features with labels

Limitation: relies on labeled data to learn feature encoding



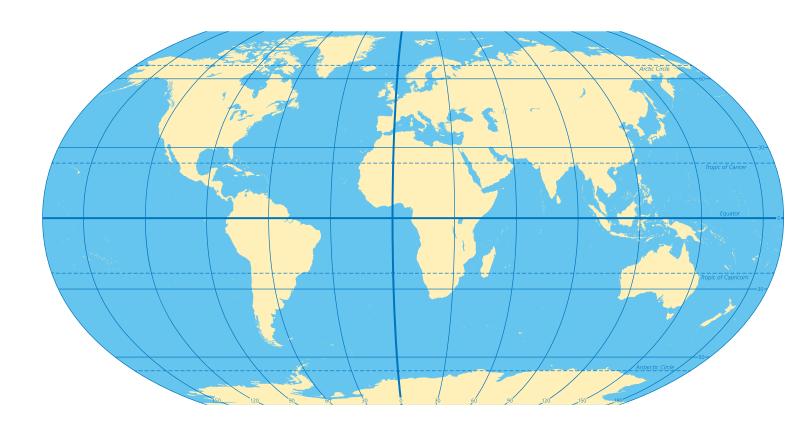
Reduces reliance on labeled data!

2/ learn to associate labels with the representations

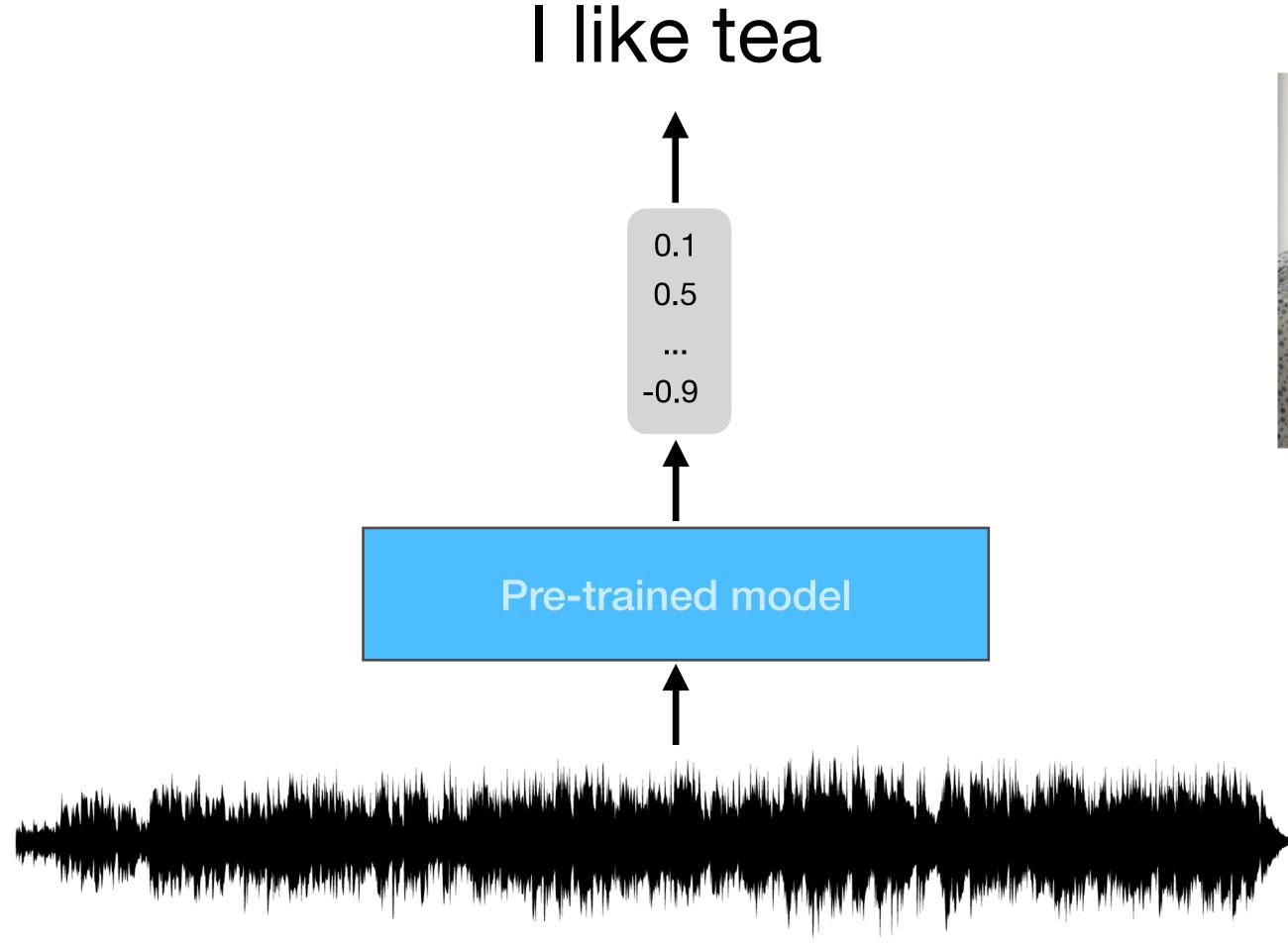
Training Speech Recognition Models

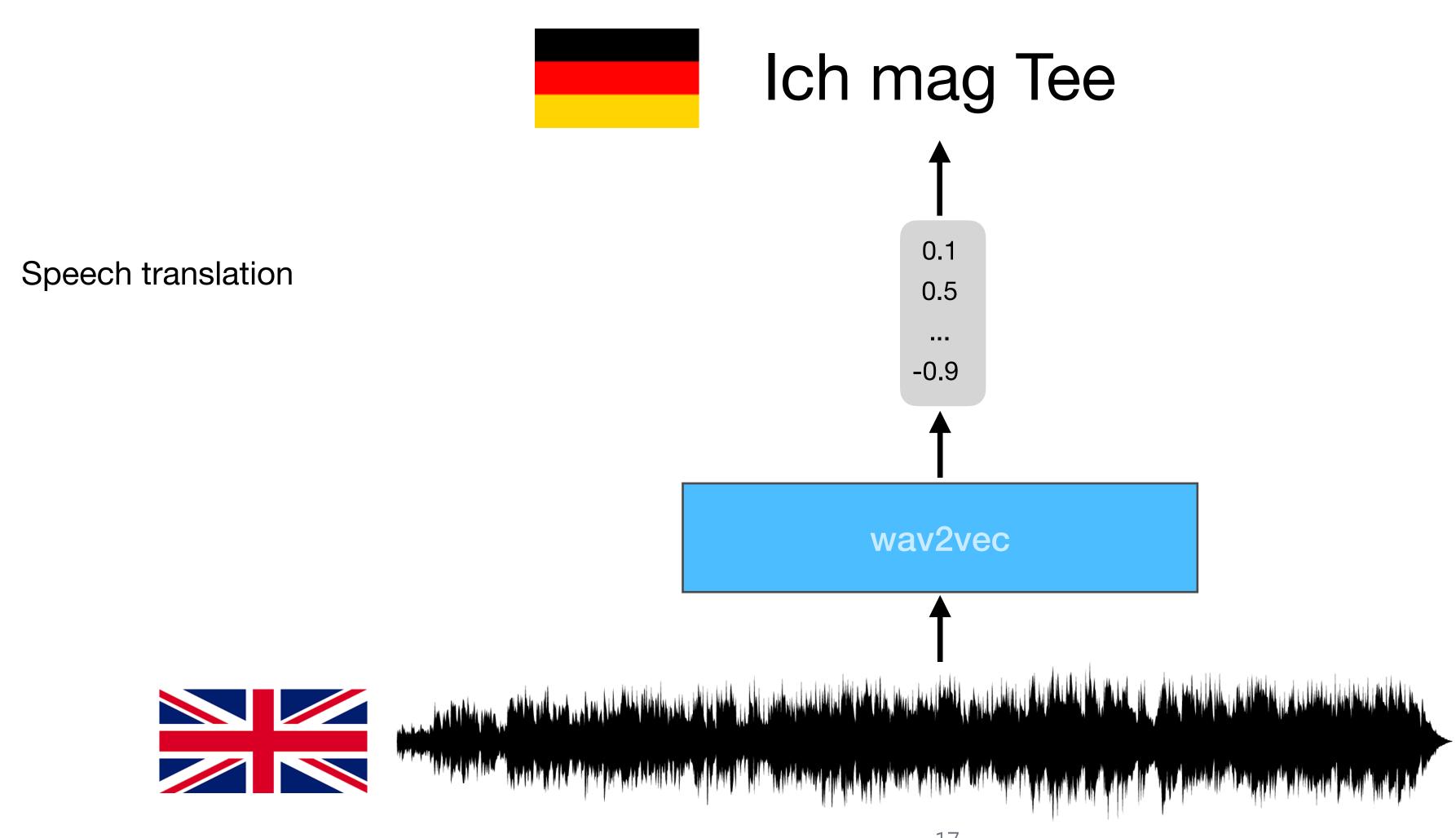
l like black tea with milk

- Train on 1,000s of hours of data for good systems.
- Many languages, dialects, domains etc.

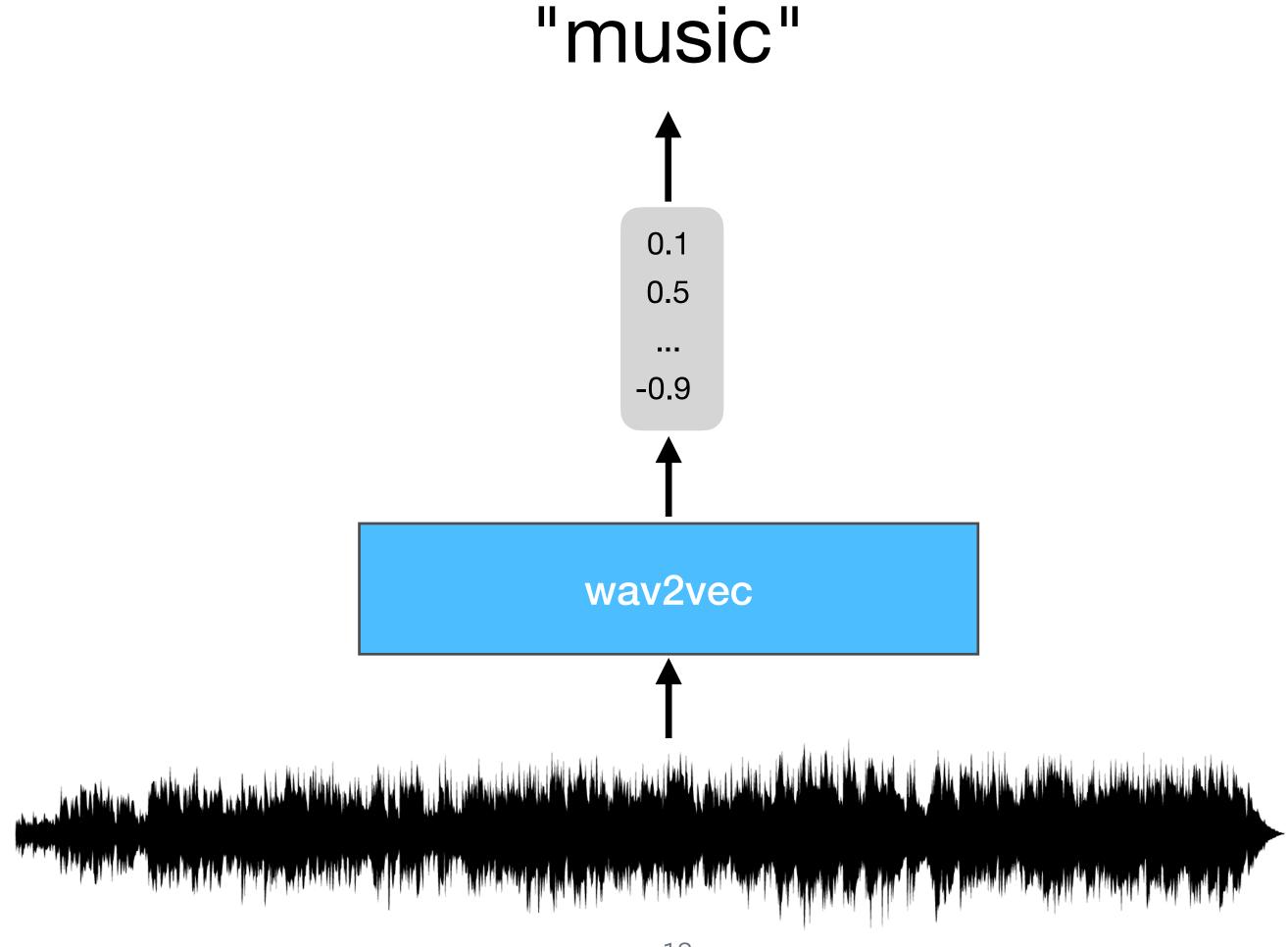


Speech recognition

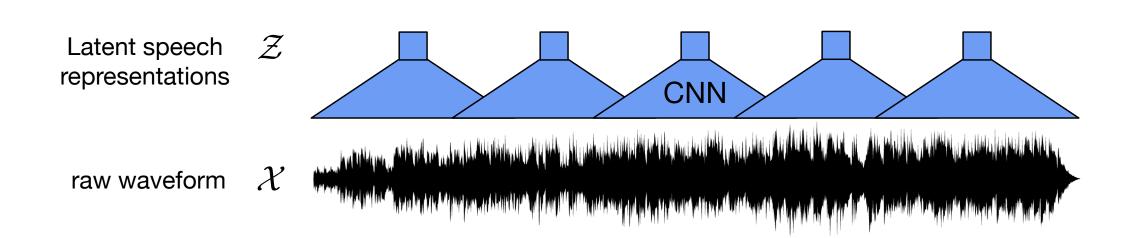




Audio event detection

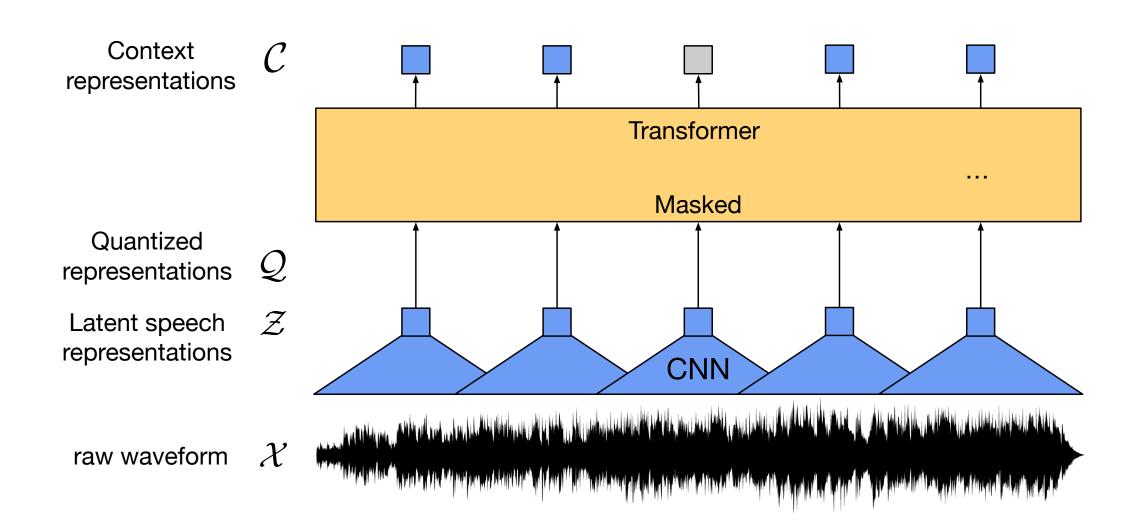


wav2vec 2.0



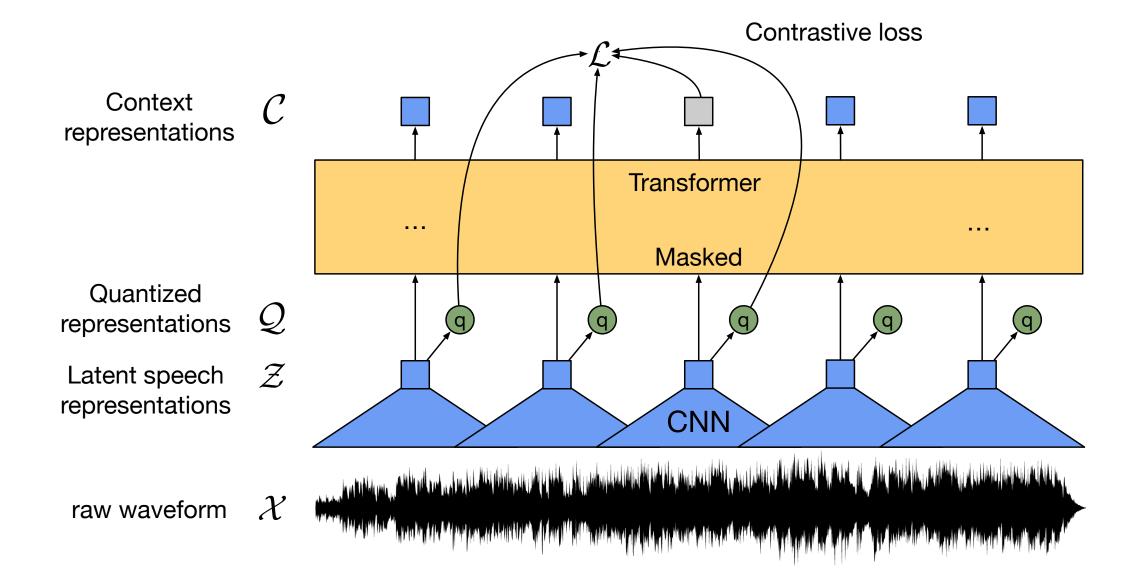
- Masked prediction with transformer, bidirectional contextualized representations (similar to BERT).
- But predict what? Learn an inventory of speech units with vector quantization via Gumbel softmax.
- Learning task: Joint VQ & context representation learning.
- Contrast true quantized latent with distractor latents.

wav2vec 2.0



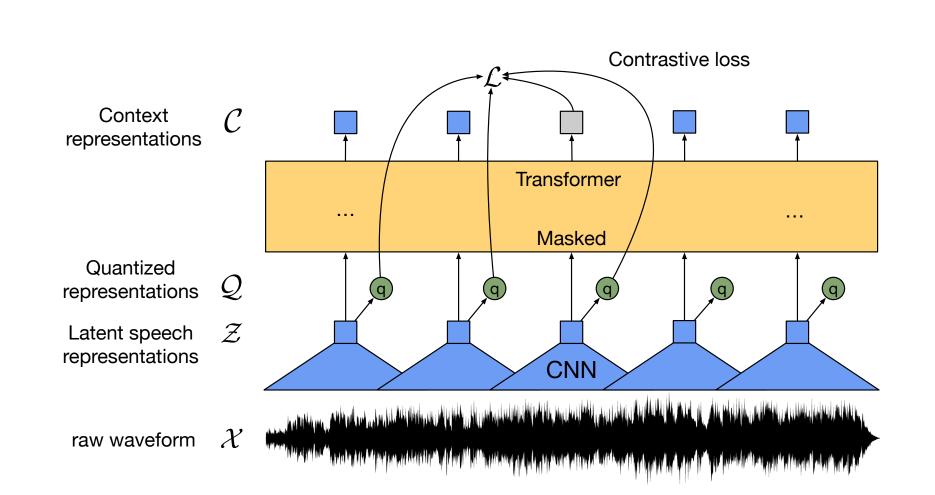
- Masked prediction with transformer, bidirectional contextualized representations (similar to BERT).
- But predict what? Learn an inventory of speech units with vector quantization via Gumbel softmax.
- Learning task: Joint VQ & context representation learning.
- Contrast true quantized latent with distractor latents.

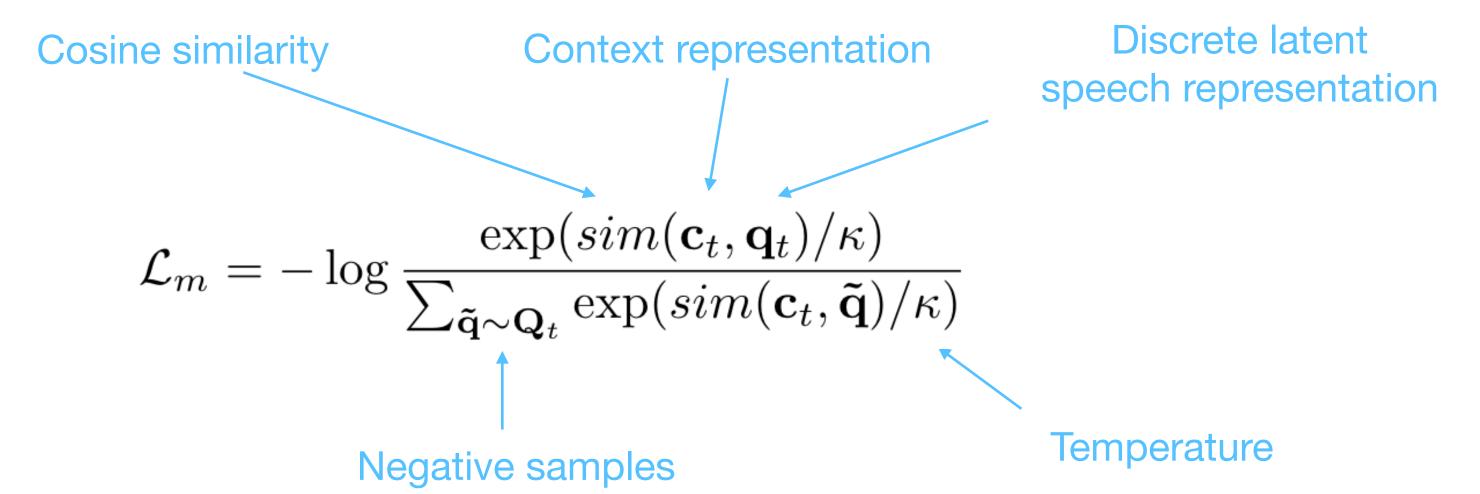
wav2vec 2.0



- Masked prediction with transformer, bidirectional contextualized representations (similar to BERT).
- But predict what? Learn an inventory of speech units with vector quantization via Gumbel softmax.
- Learning task: Joint VQ & context representation learning.
- Contrast true quantized latent with distractor latents.

Objective

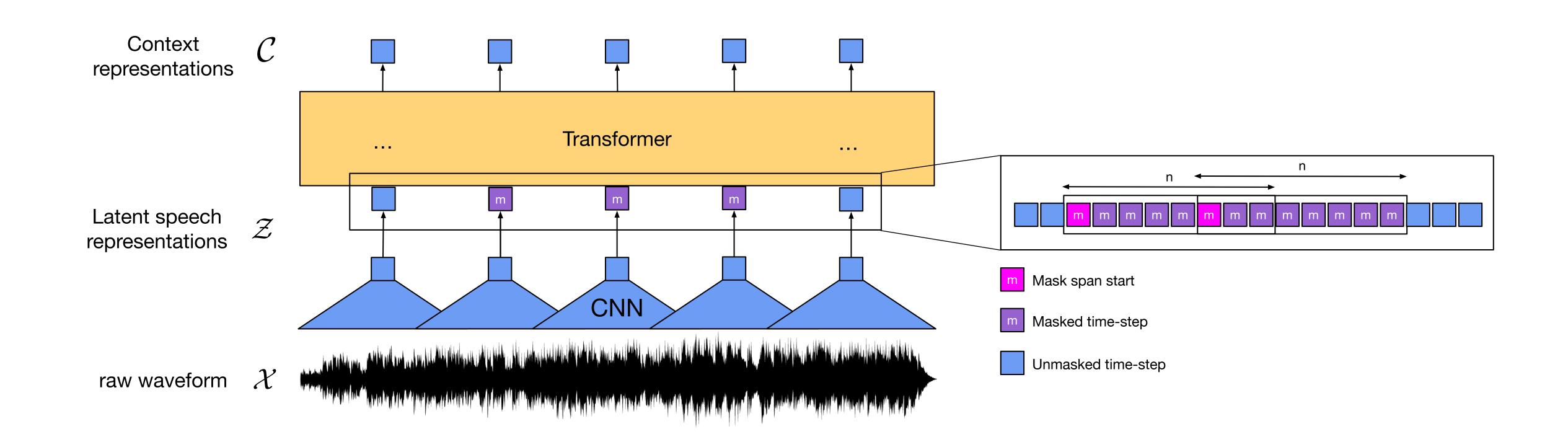




Codebook diversity penalty to encourage more codes to be used

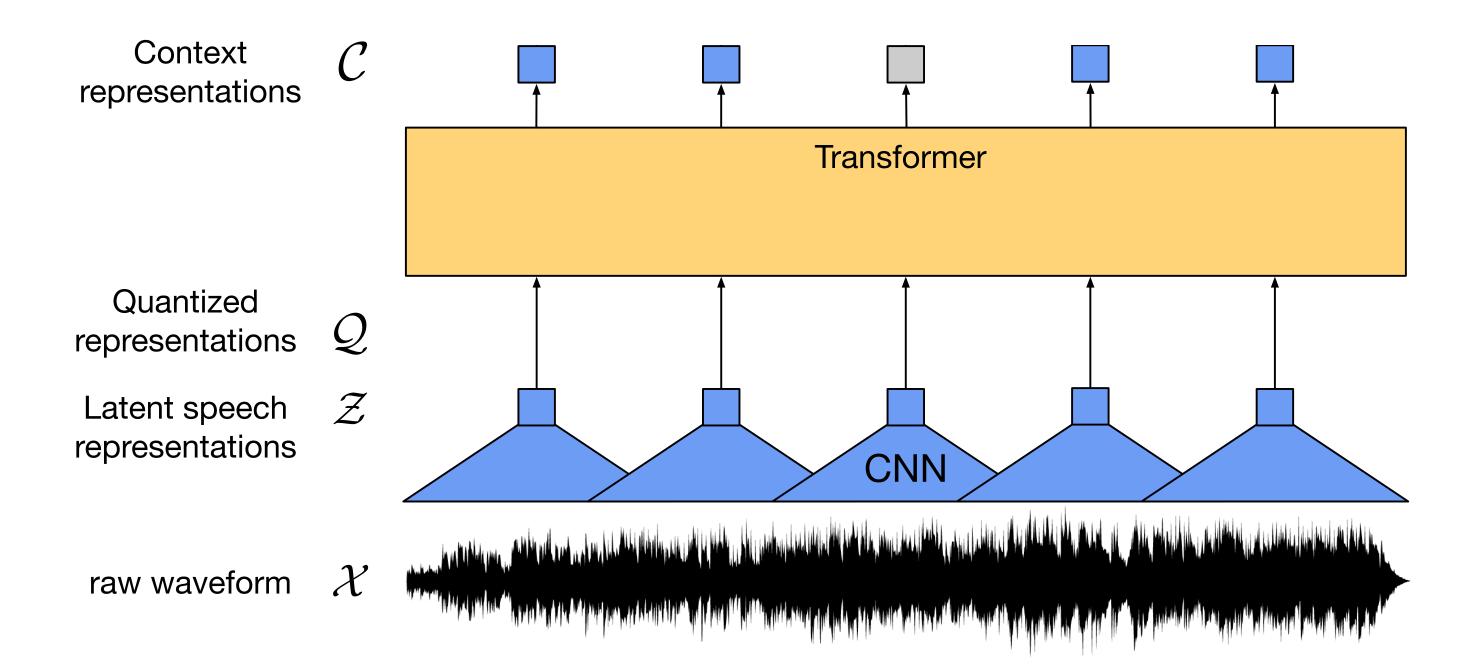
Masking

- Sample starting points for masks without replacement, then expand to 10 time-steps
- Spans can overlap
- For a 15s sample, ~49% of the time-steps masked with an average span length of ~300ms

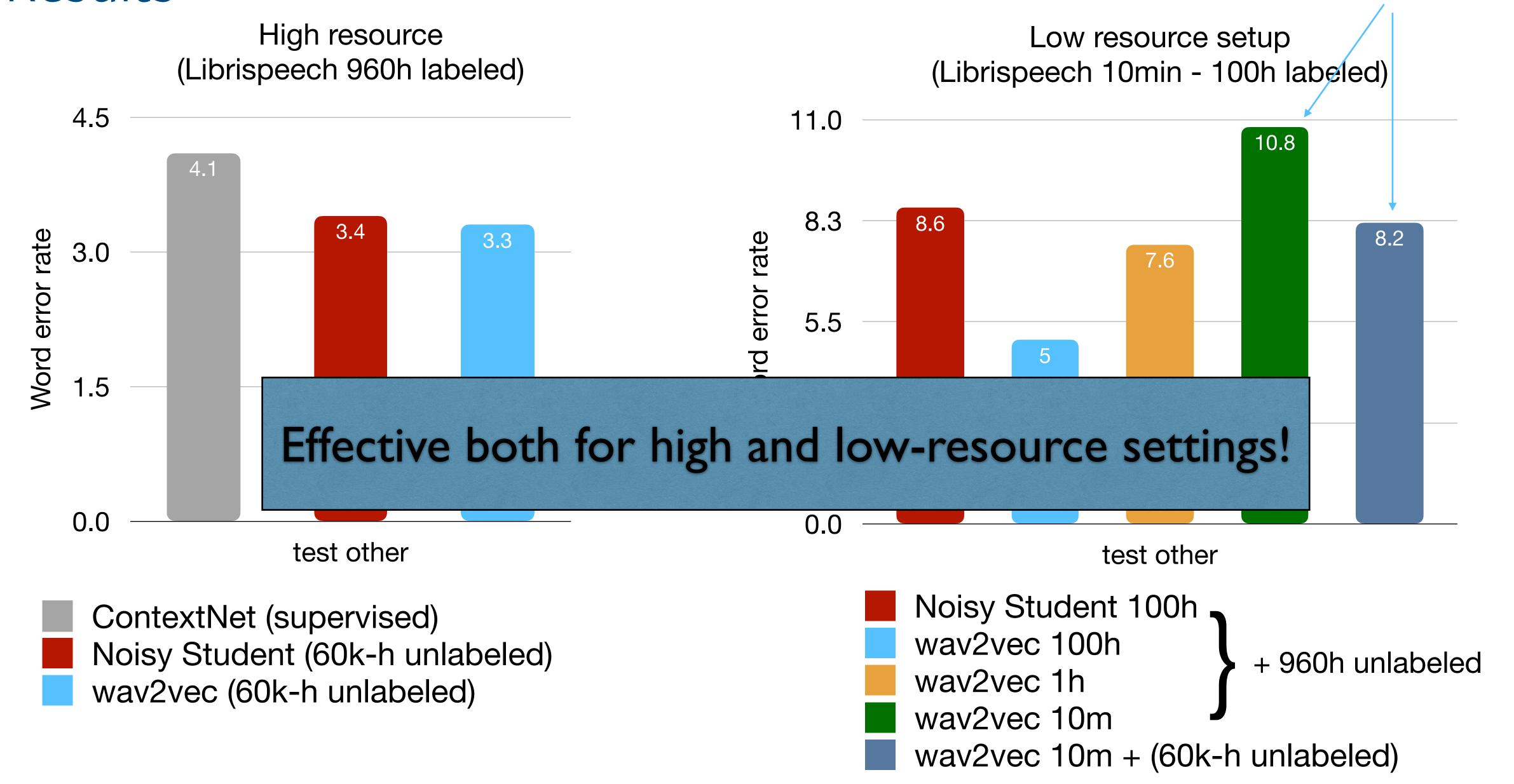


Fine-tuning

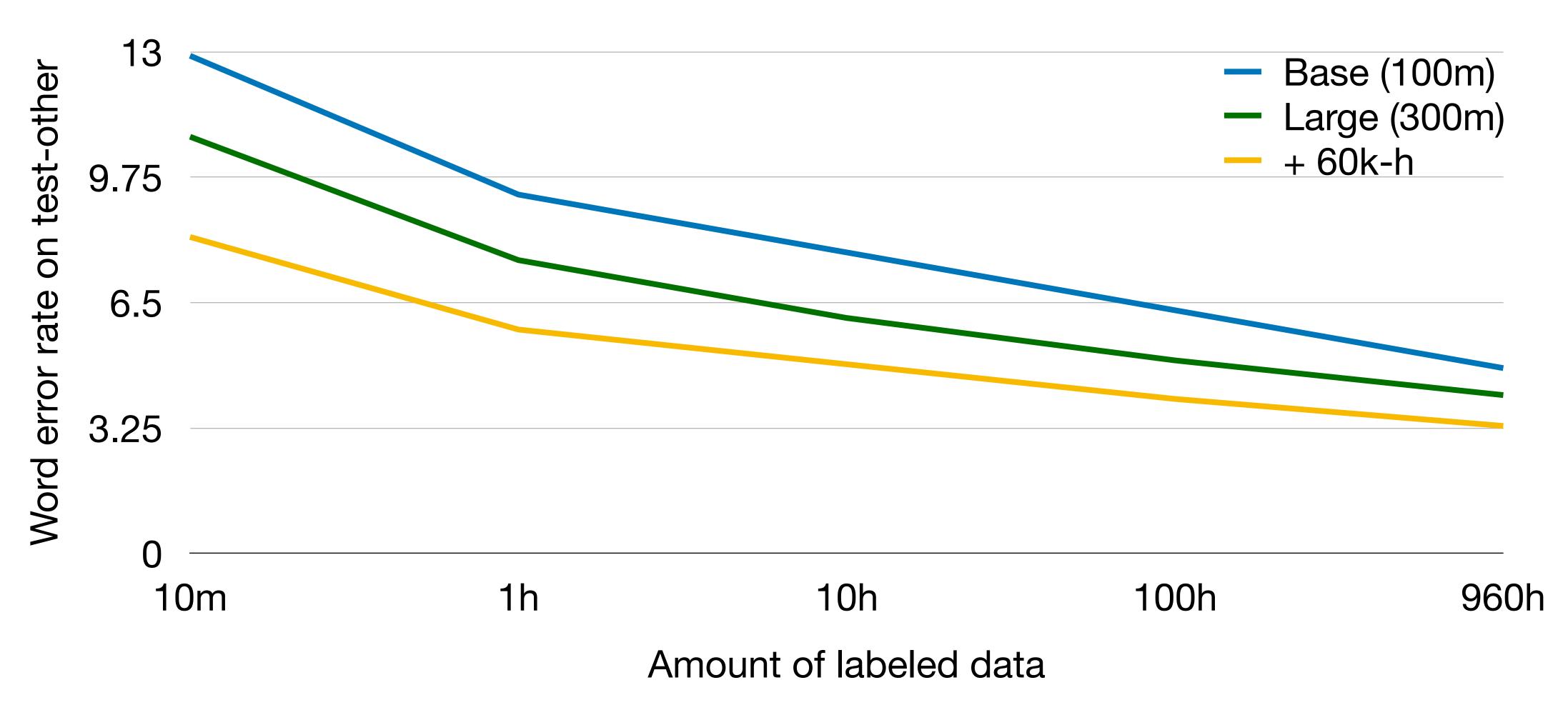
- Fine-tune model on labeled data for ASR with CTC (or other speech tasks)
- SpecAugment-style regularization & remove quantization



Results



Results



Examples (10 min Labeled Data)

HYP (no LM): she SESED and LUCHMAN GAIVE A SENT won by her GENTAL argument

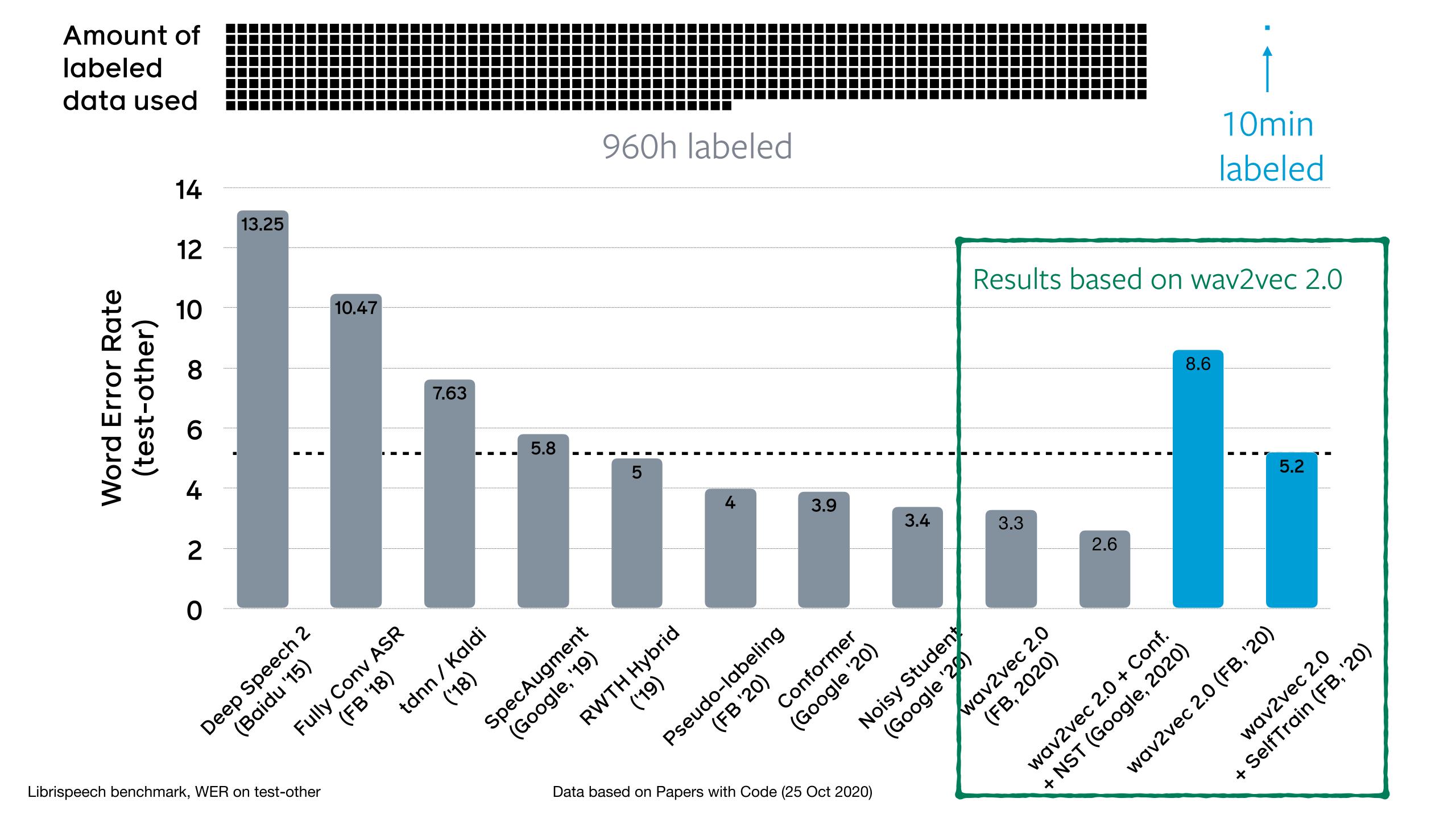
HYP (w/LM): she ceased and LUCAN gave assent won by her gentle argument

REF: she ceased and lakshman gave assent won by her gentle argument

HYP (no LM): but NOT WITH STANDING this boris EMBRAED him in a QUIAT FRENDLY way and CISED him THRE times

HYP (w/LM): but NOT WITHSTANDING this boris embraced him in a quiet friendly way and kissed him three times

REF: but notwithstanding this boris embraced him in a quiet friendly way and kissed him three times



Summary

- For the first time, pre-training for speech works very well in both low-resource and high-resource setup.
- Using only 10 minutes (48 utterances) of transcribed data rivals best system trained on 960h from 1 year ago.
- Code and models are available in the fairseq GitHub repo + Hugging Face.

Unsupervised Speech Recognition

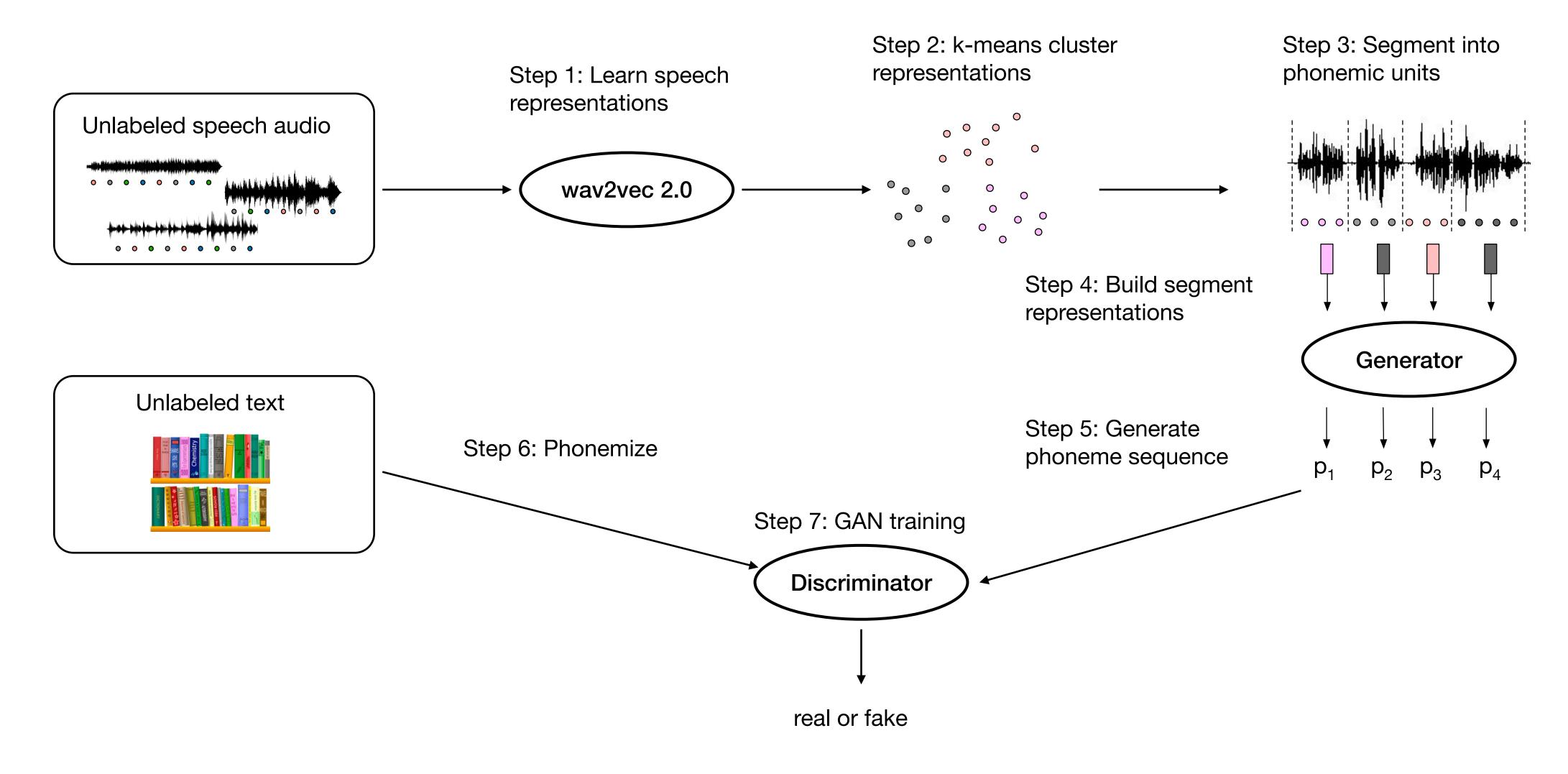
Unsupervised Speech Recognition

- Important step towards agents that can learn without supervision.
- Unsupervised machine translation exists, what about speech?
- Key problem: what are the units in the speech audio?

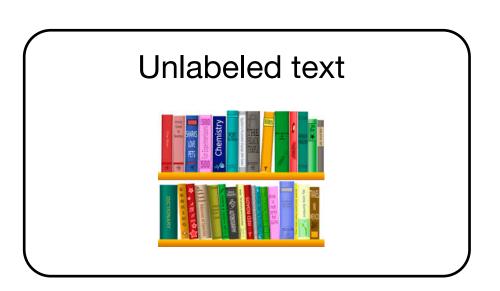
wav2vec Unsupervised: Key Ideas

- Learn good representations of speech audio
- Unsupervised segmentation of the speech audio into phonemic units
- Learn mapping between speech segments and phonemes using adversarial learning

wav2vec Unsupervised



Text Data Pre-processing

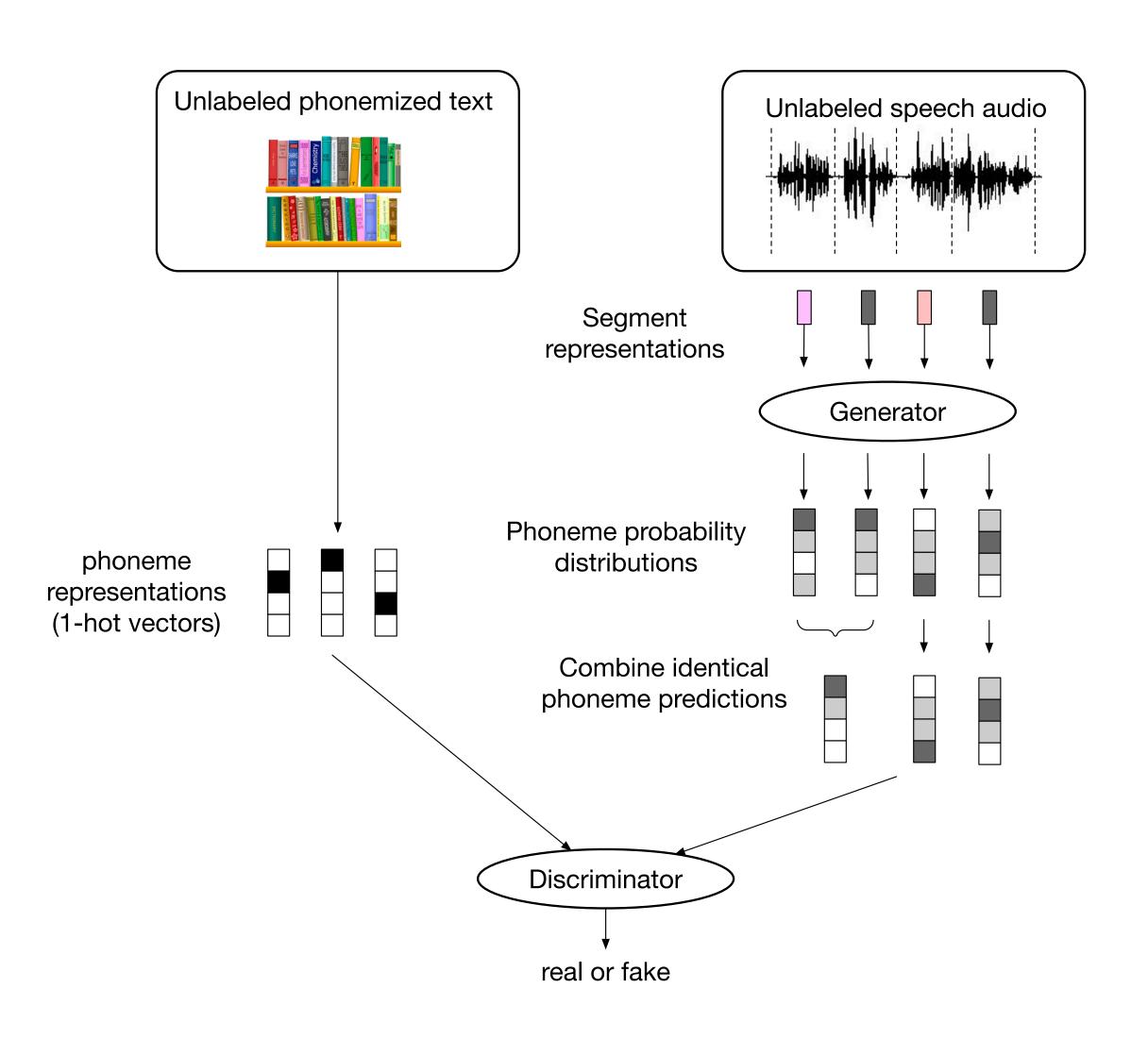


he spoke soothingly

Phonemize

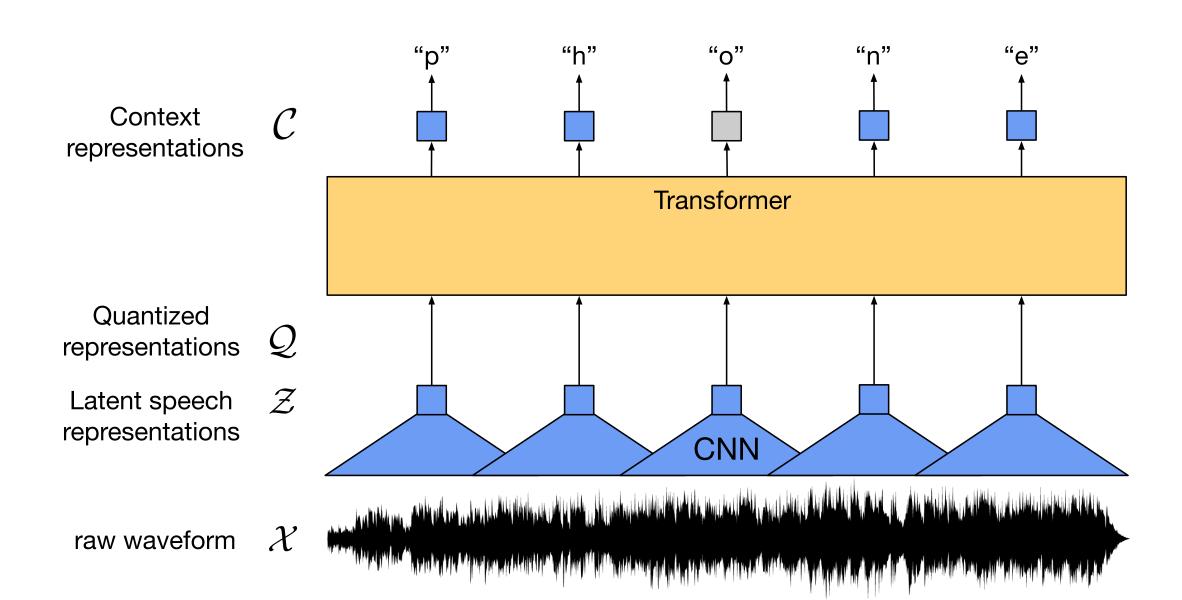
hh iy s ow k s uw dh ih ng l iy

GAN inputs



Generator / Discriminator

- Generator: 1 layer CNN with 90k parameters
 w2v features frozen
- Discriminator: 3 layer CNN
- Train time: 12-15h on a single V100

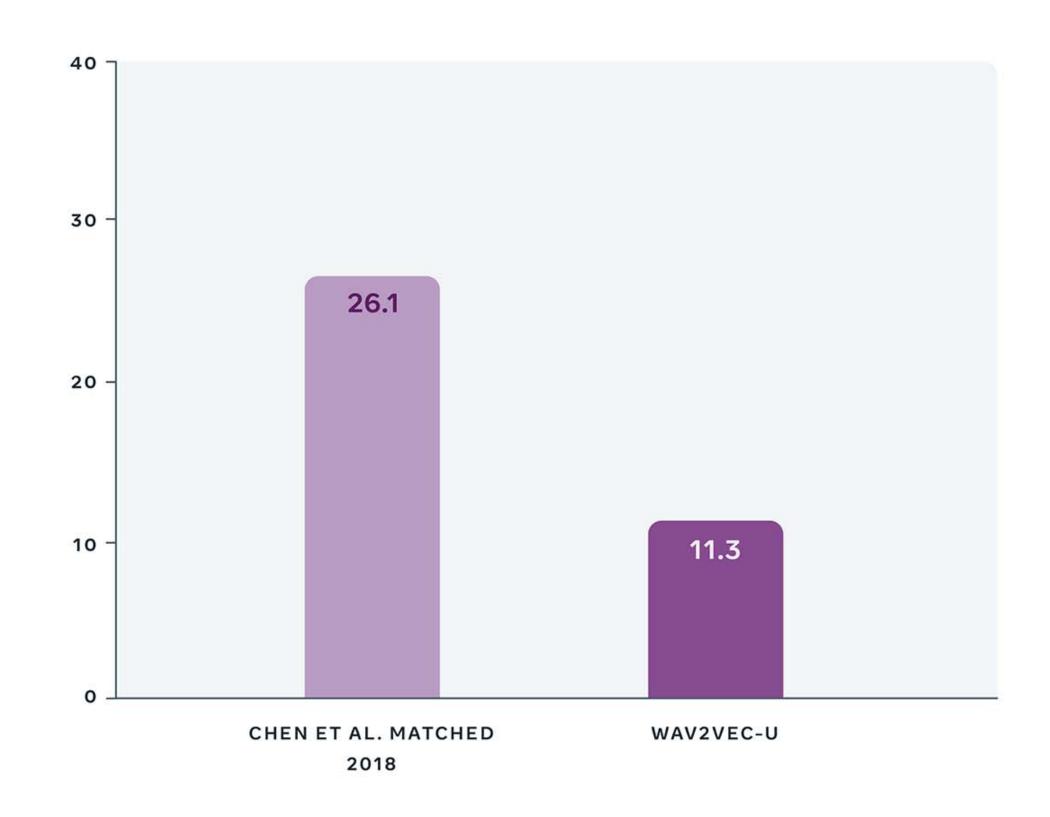


Training Details

- Unsupervised metric for early stopping, hyper-parameter selection
- Self-training after GAN training (HMM and fine-tuning w2v)

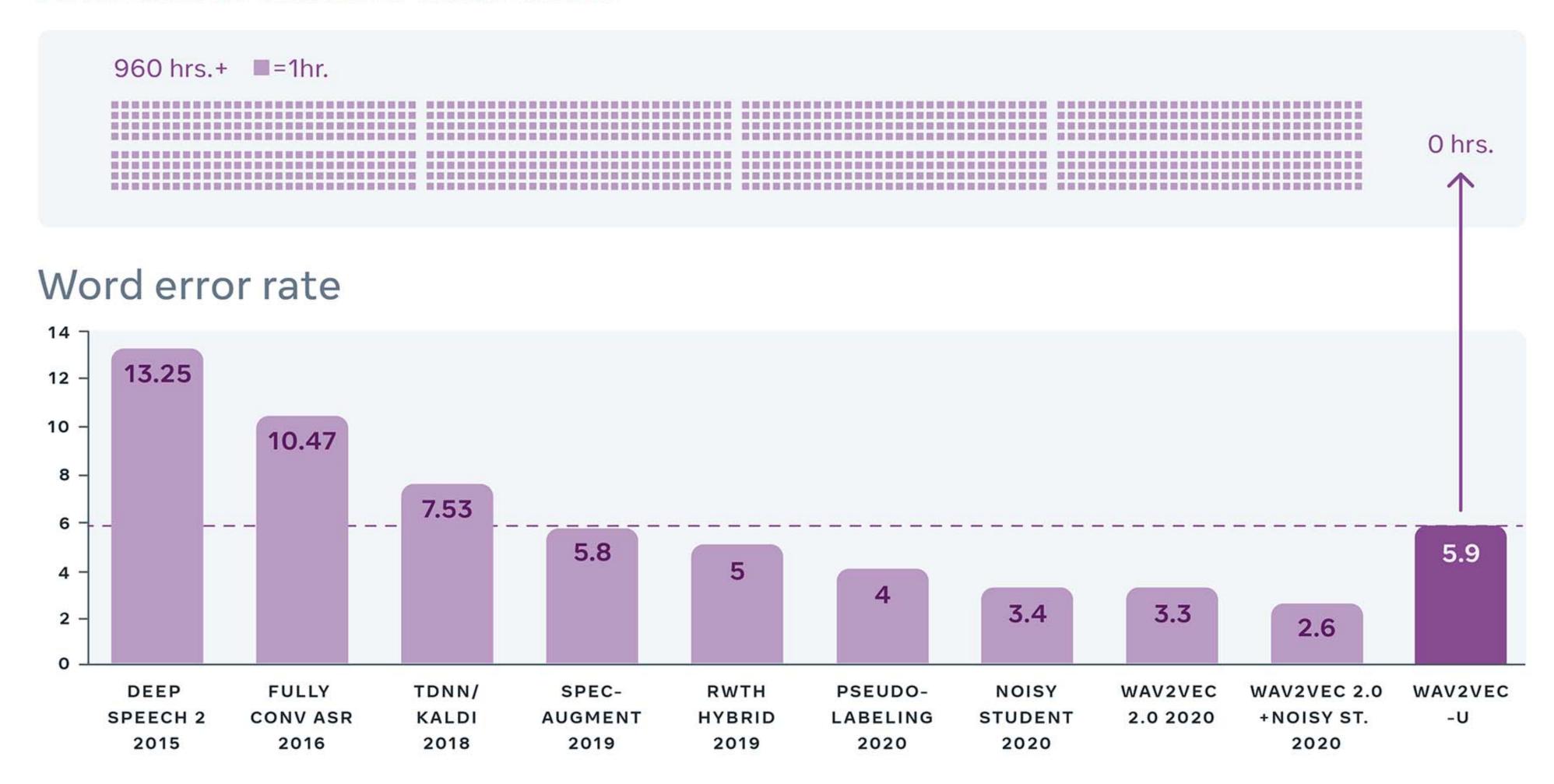
Comparison to Prior Unsupervised Work

Phoneme error rate

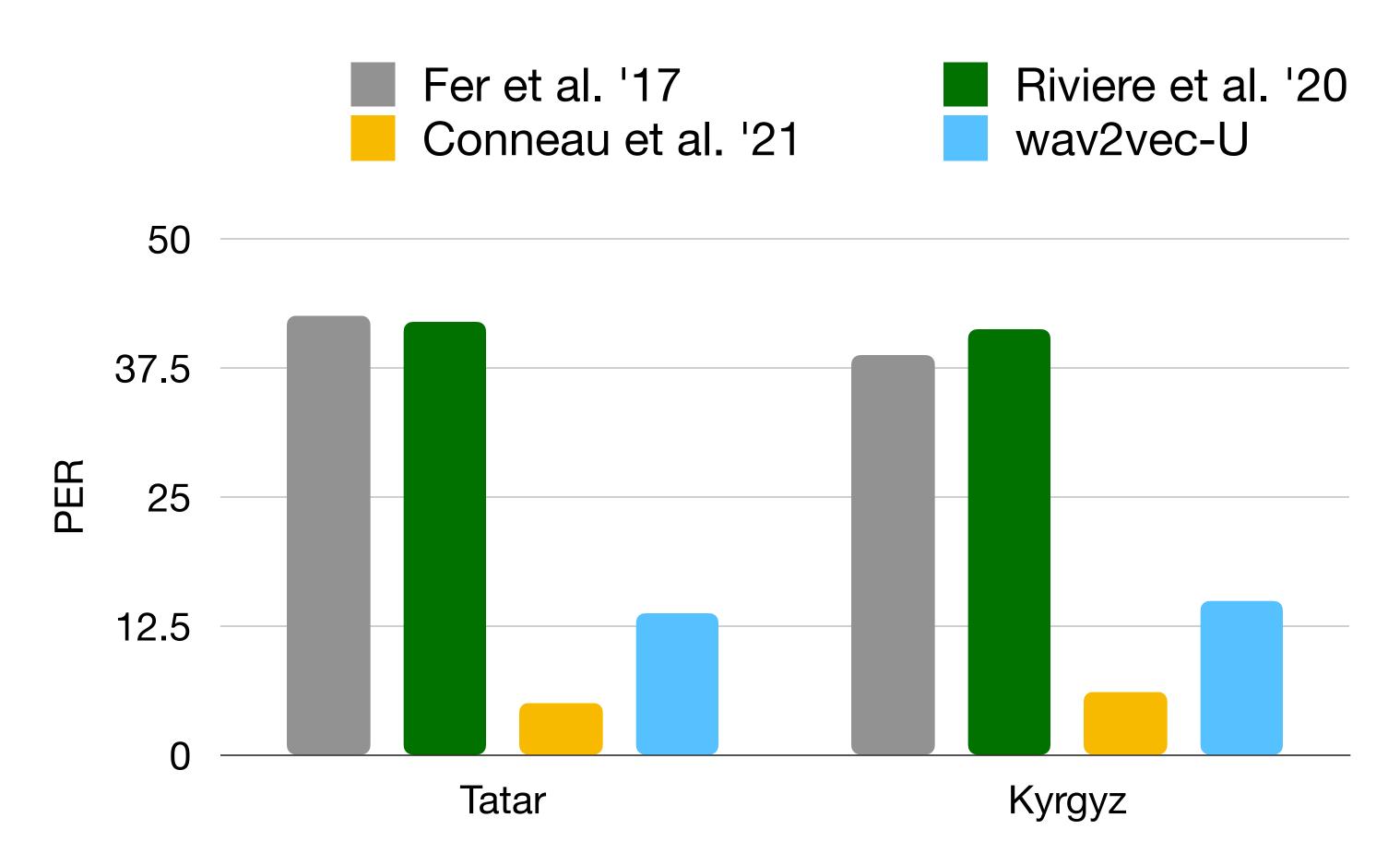


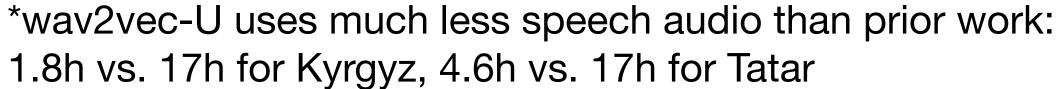
Comparison to Best Supervised Systems

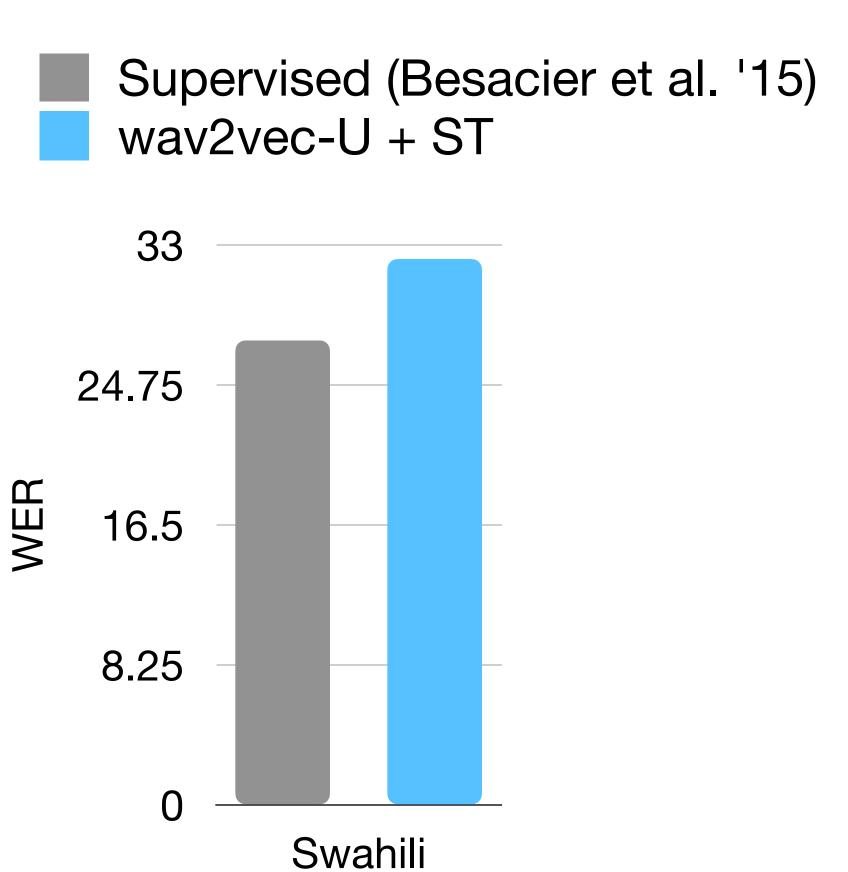
Amount of labeled data used



Low-resource Languages





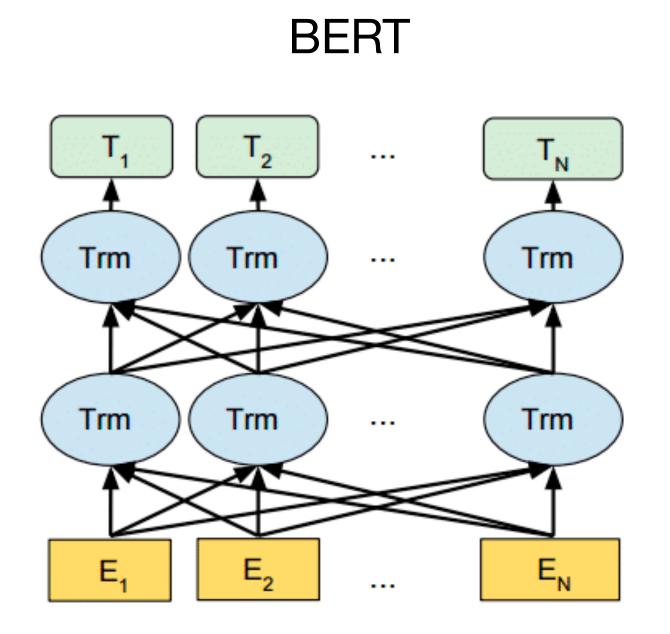


Discussion

- Very lightweight approach (except for wav2vec 2.0)
- Why does it work? Good audio features are main driver of performance
- Phonemizer still required
- Segment construction

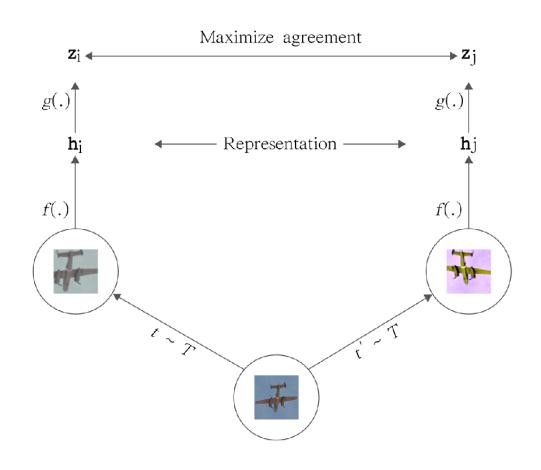
data2vec: A Unified Objective for Self-supervised Learning

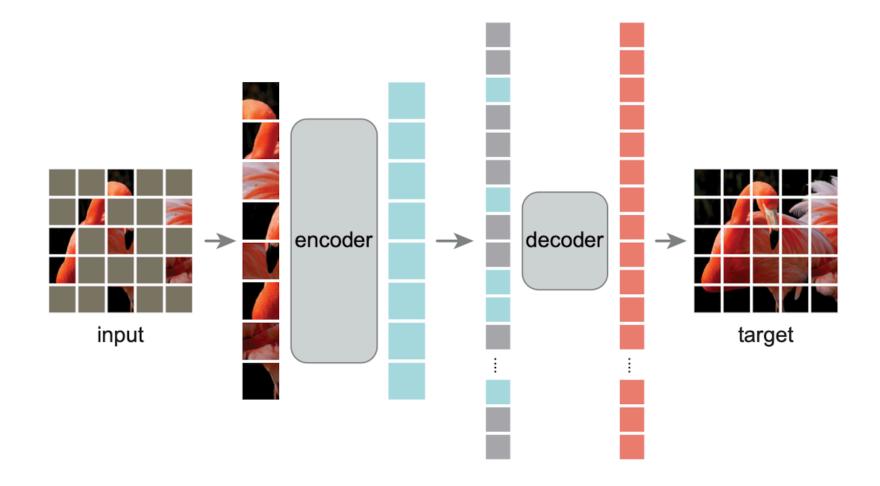
Natural Language Processing

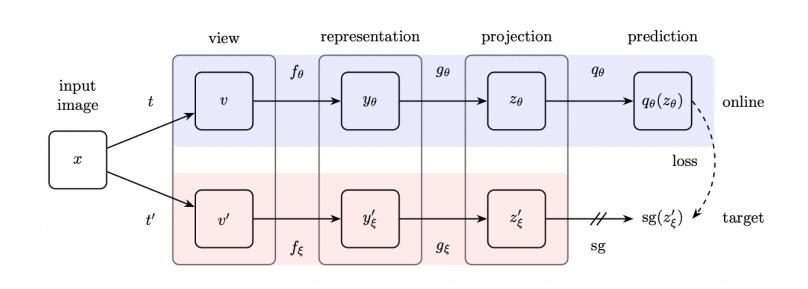


Computer Vision

SimCLR, BYOL, Masked AutoEncoders (MAE), ...



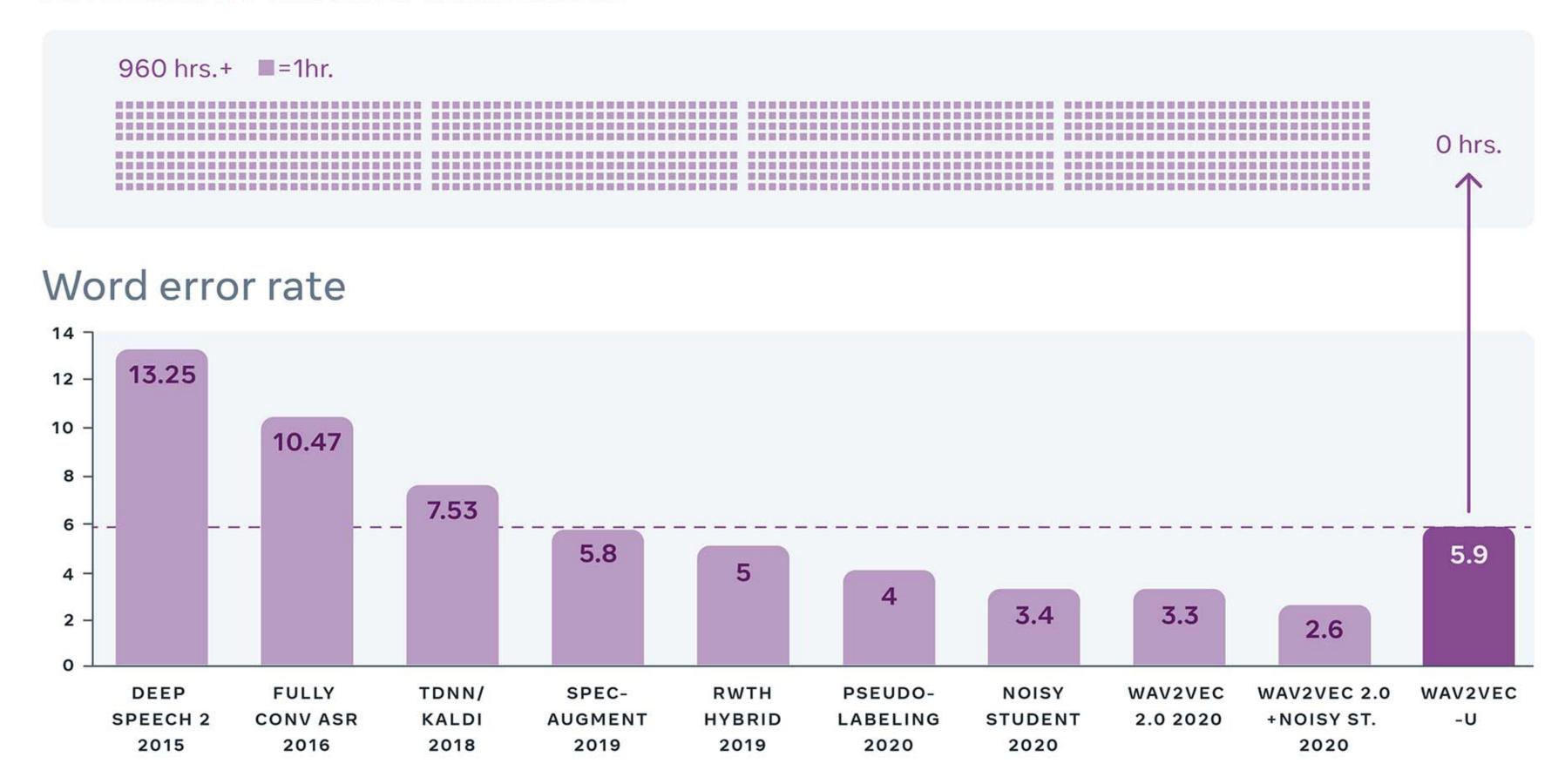




Speech: Unsupervised Speech Recognition

CPC, wav2vec 2.0, wav2vec Unsupervised, WavLM, w2v-BERT, HuBERT, ...

Amount of labeled data used



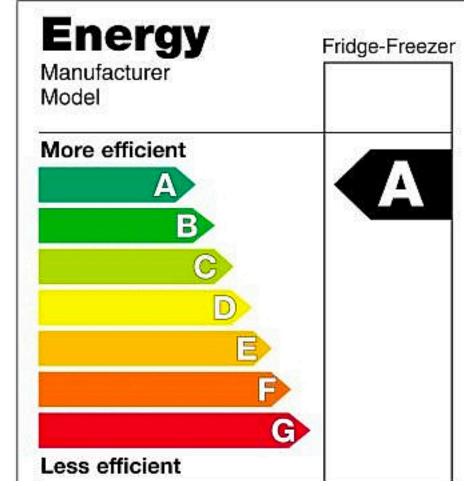
Two Challenges

Modality-specific Learning Algorithms

- Most algorithms developed for one modality specific designs and learning biases.
- General idea of SSL. Biology of learning (Friston, '10).
- This talk: single objective for vision, speech and text.

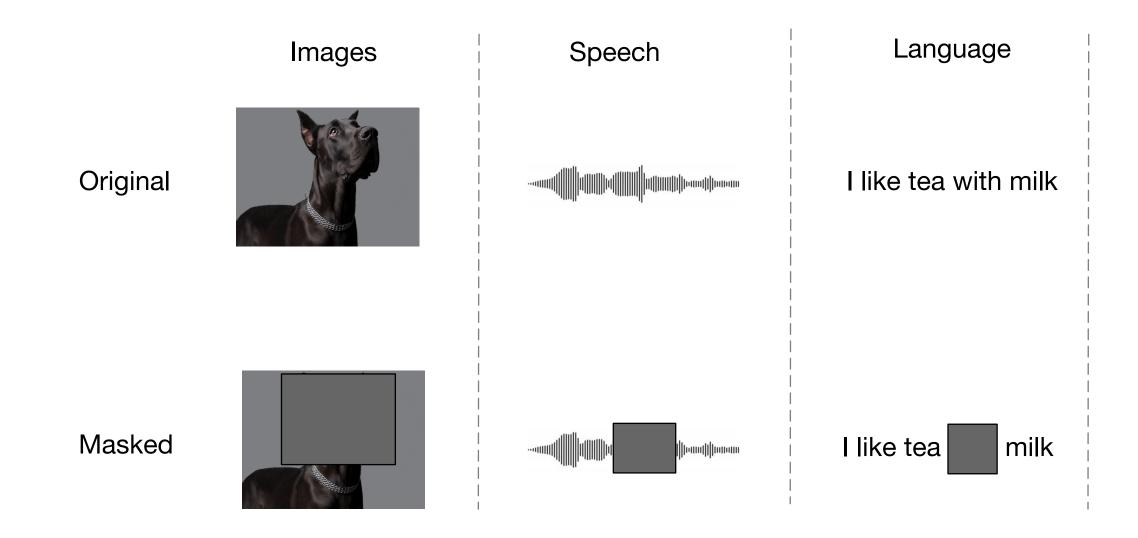
Little Focus on Efficiency

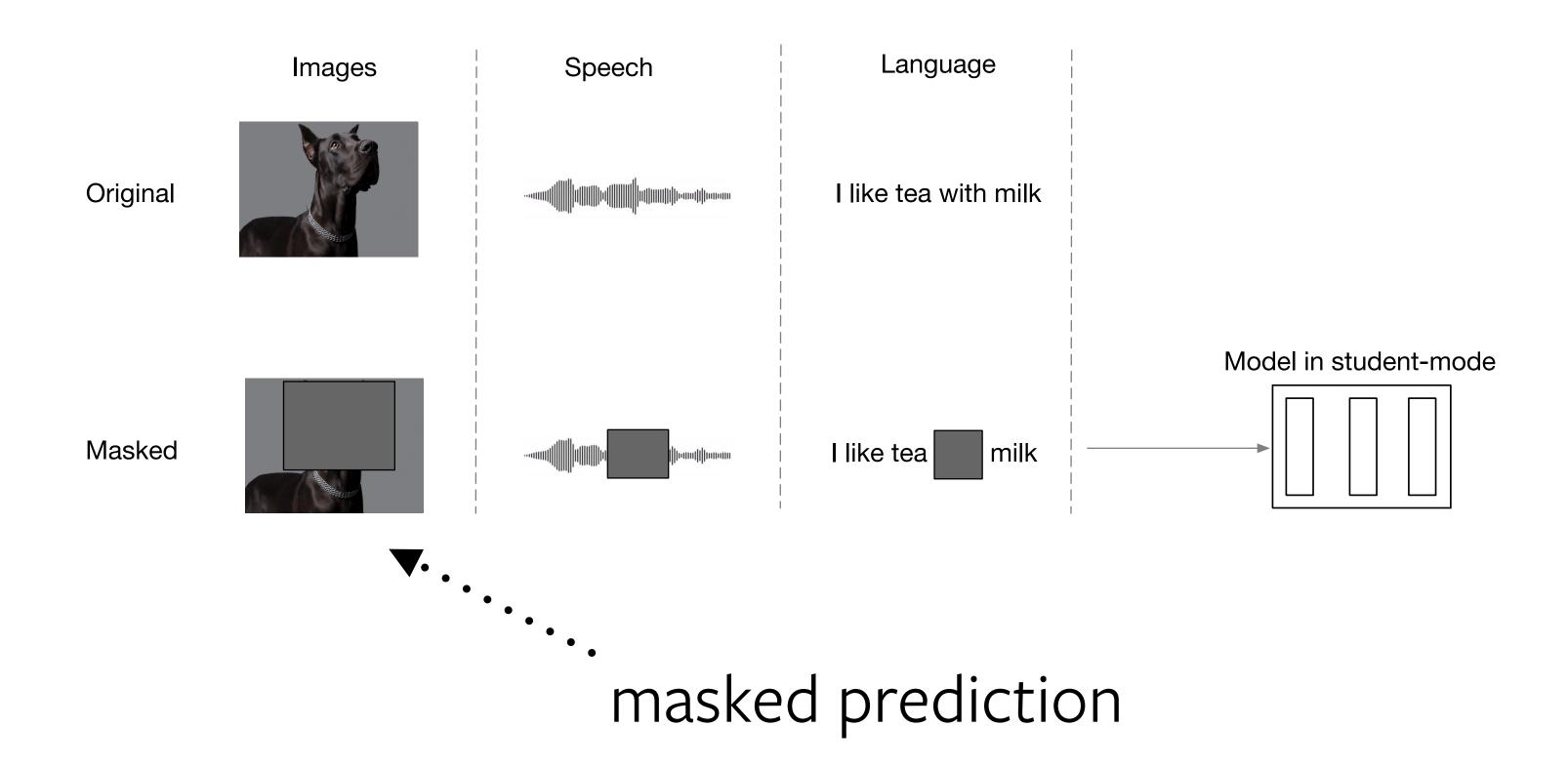
- Great progress but model sizes and compute requirements are ever growing.
- Are we using the best algorithms to push the boundaries?
- Scaling an efficient learner may ultimately get you further than an inefficient one.
- This talk: compute efficient SSL

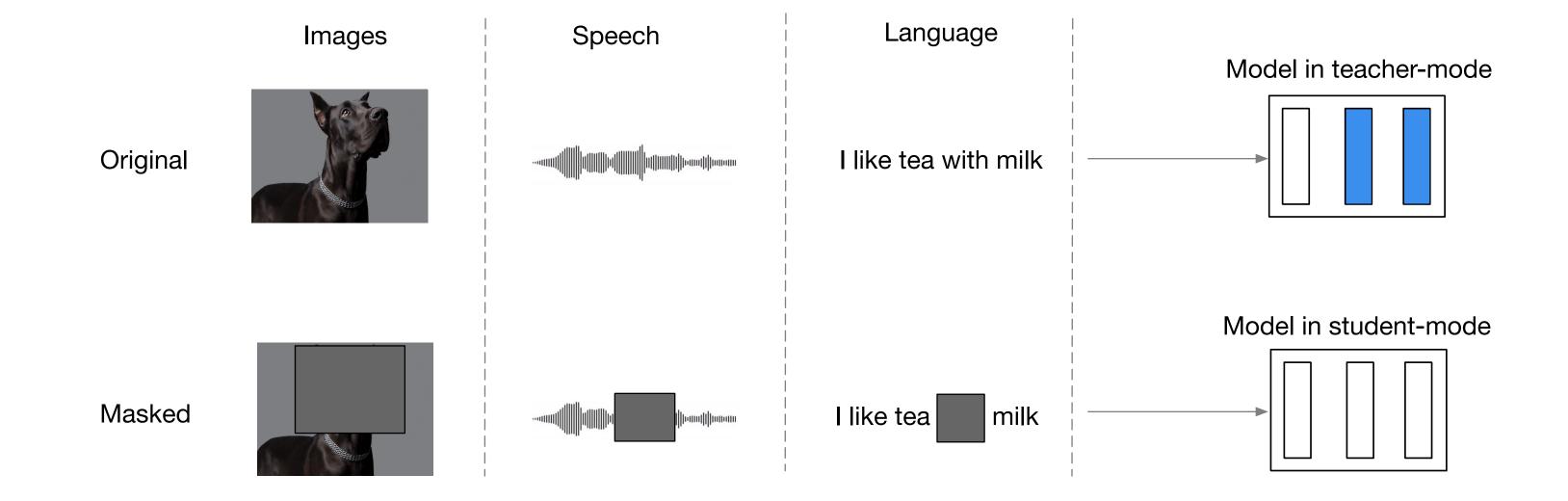


A Single Learning Objective

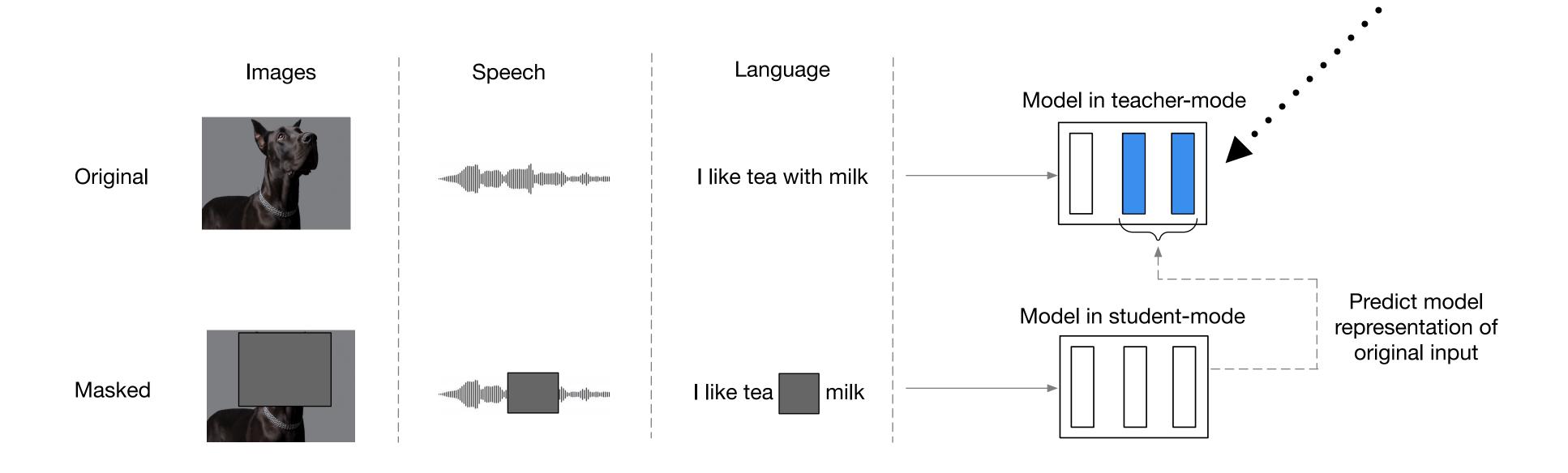
- General algorithm that works very well across modalities.
- Same learning objective for each modality.
- How: self-distillation of contextualized representations in a masked prediction setup.



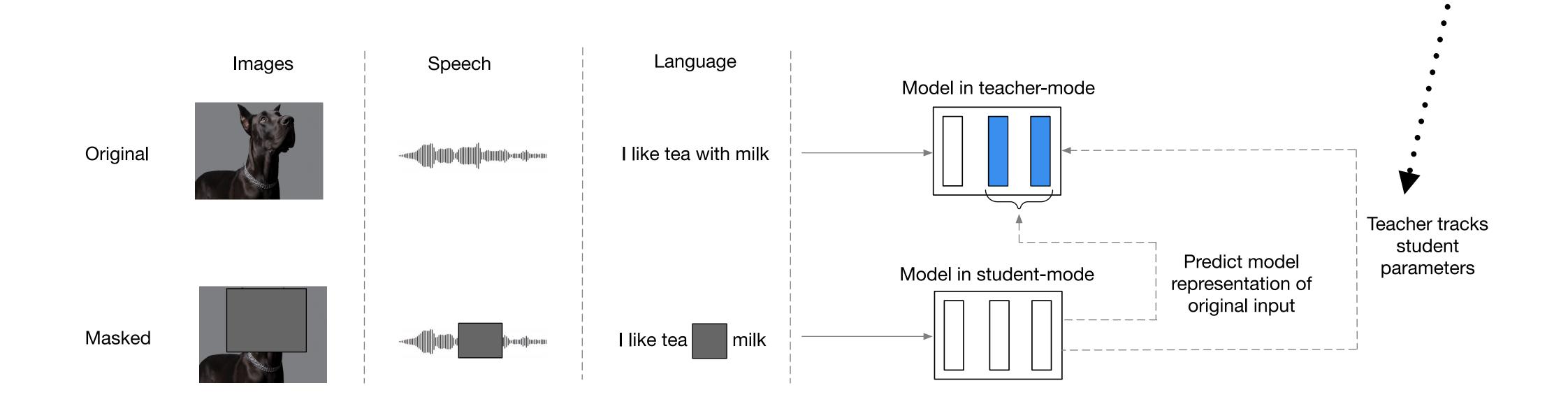


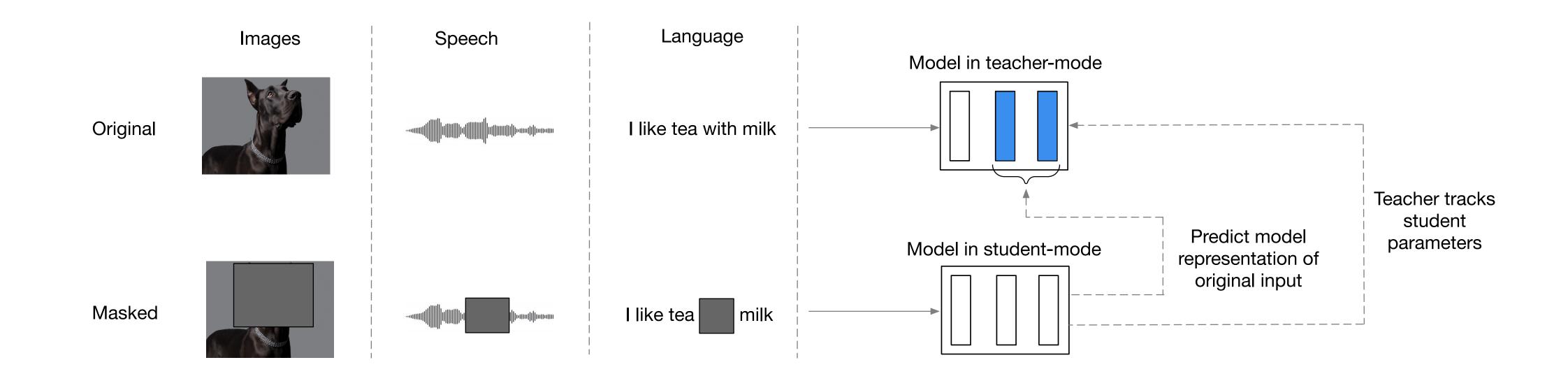


contextualized targets



self-distillation

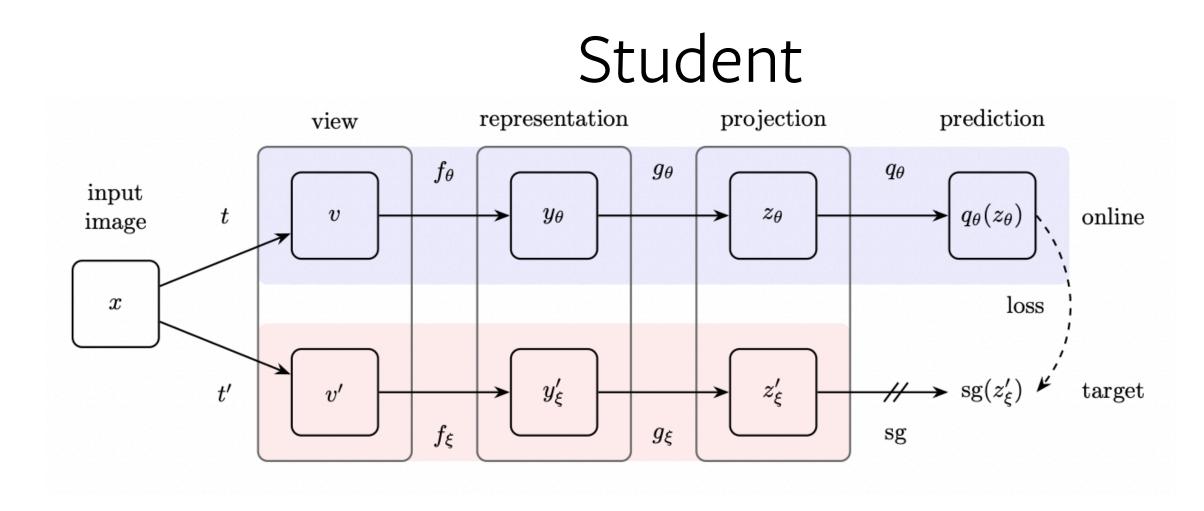




- Modality specific feature encoder (CNN, embedding table, patch mapping)
- Common masking policy, but modality/dataset specific parameterization
- Identical context encoder (Transformer)
- Identical learning task

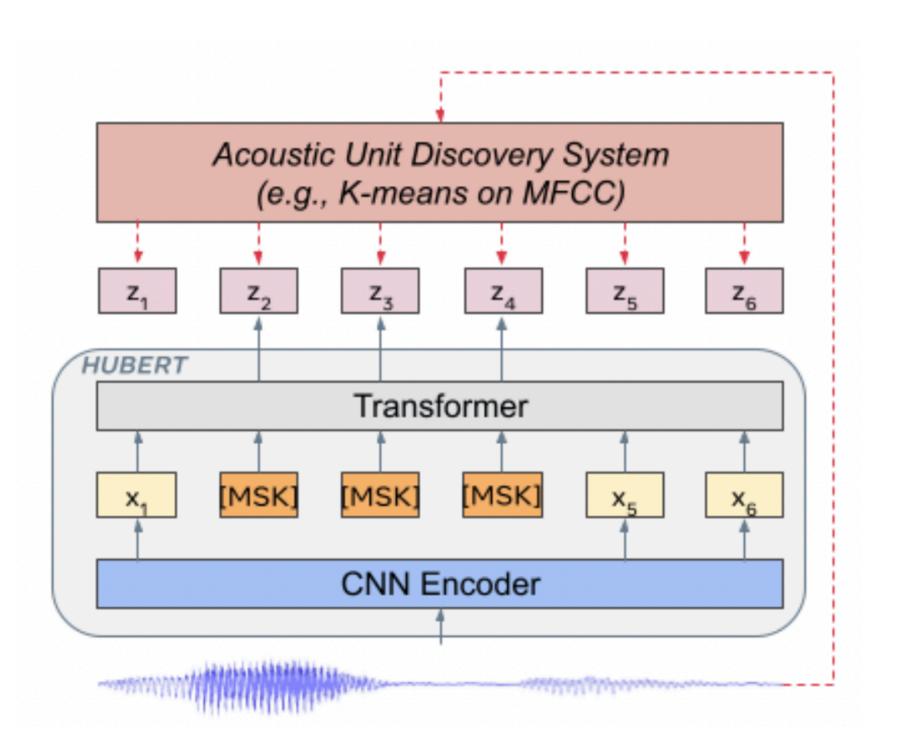
Related Work

Momentum teacher
 (Grill et al., '20, Caron et al., '21)

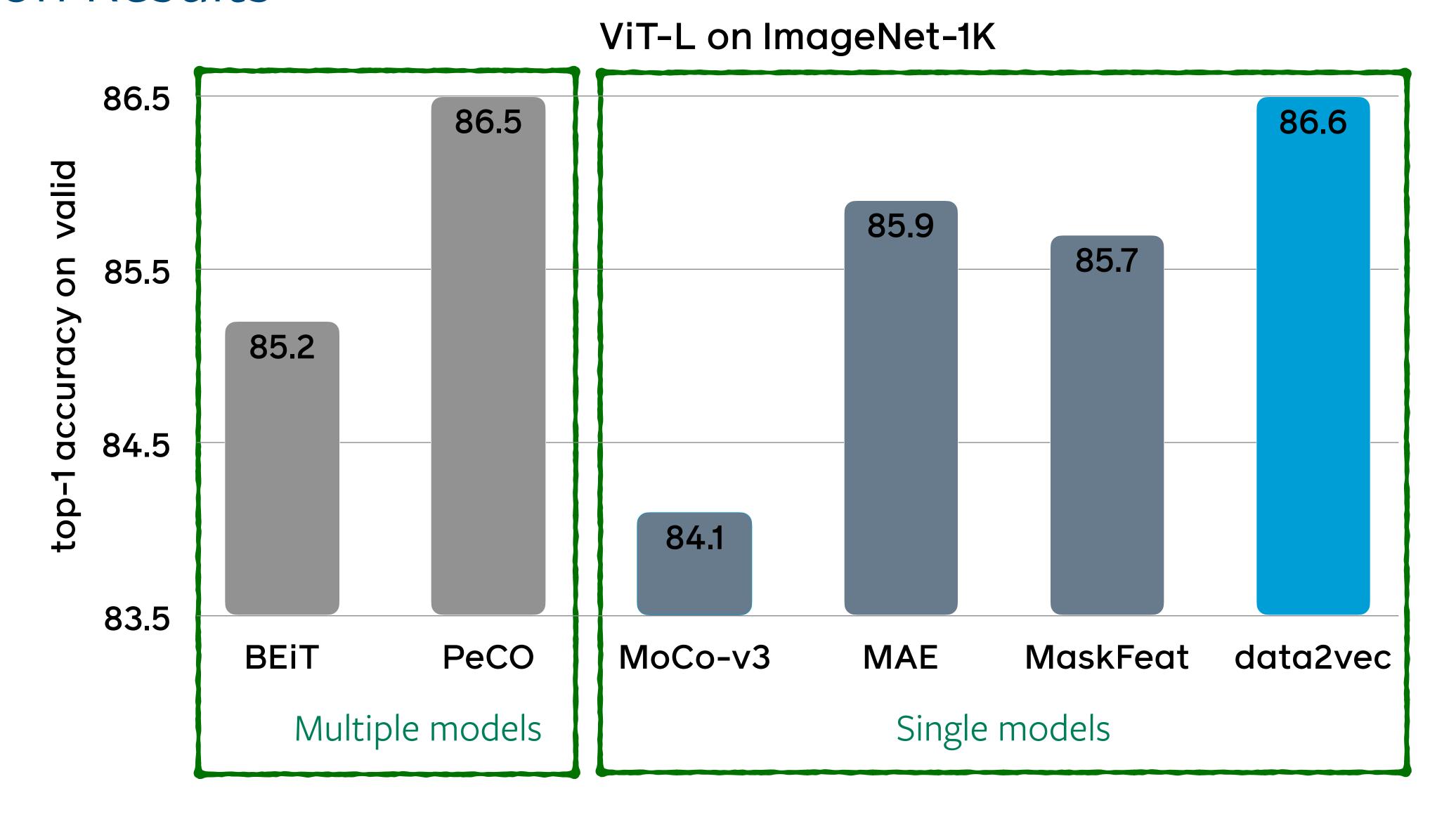


Teacher

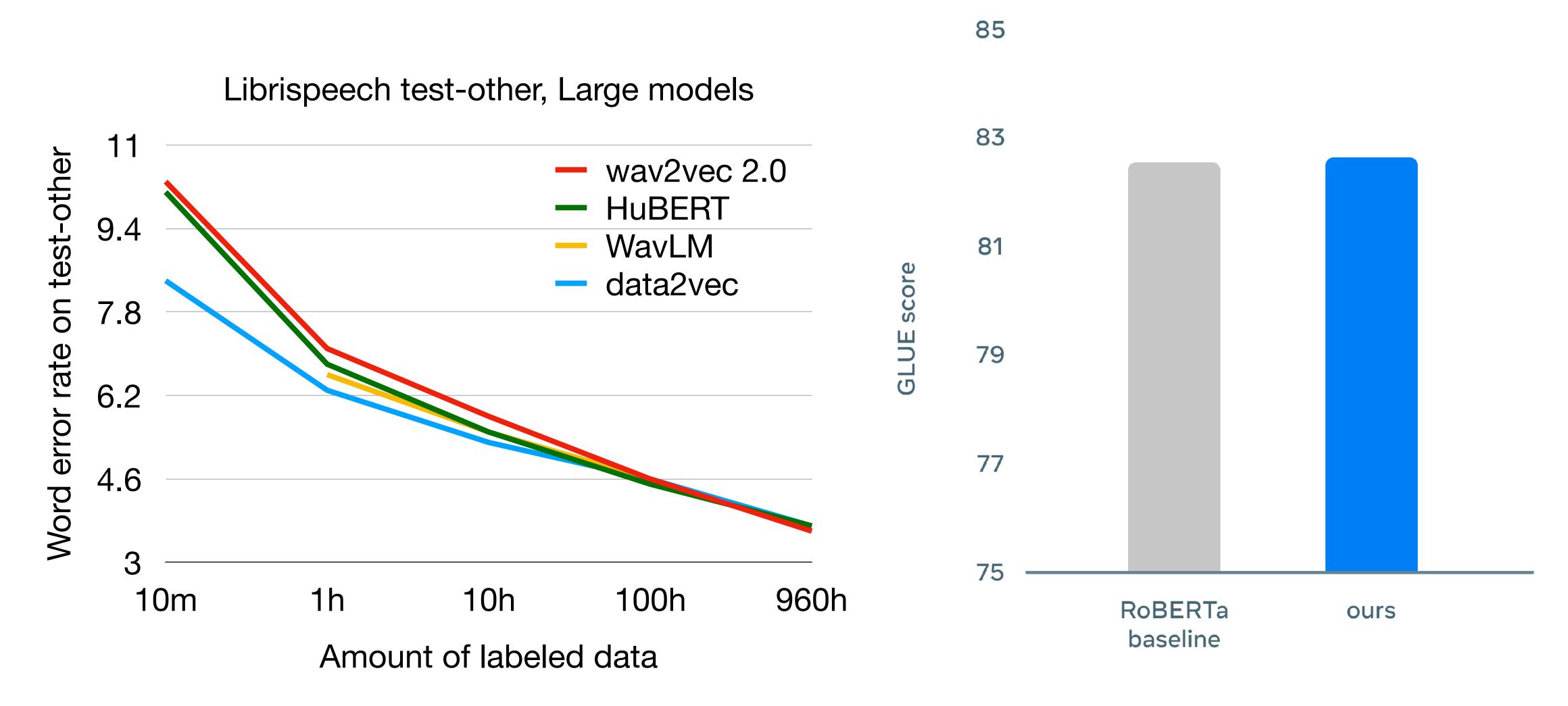
Contextualized targets
 (Hsu et al., '21)



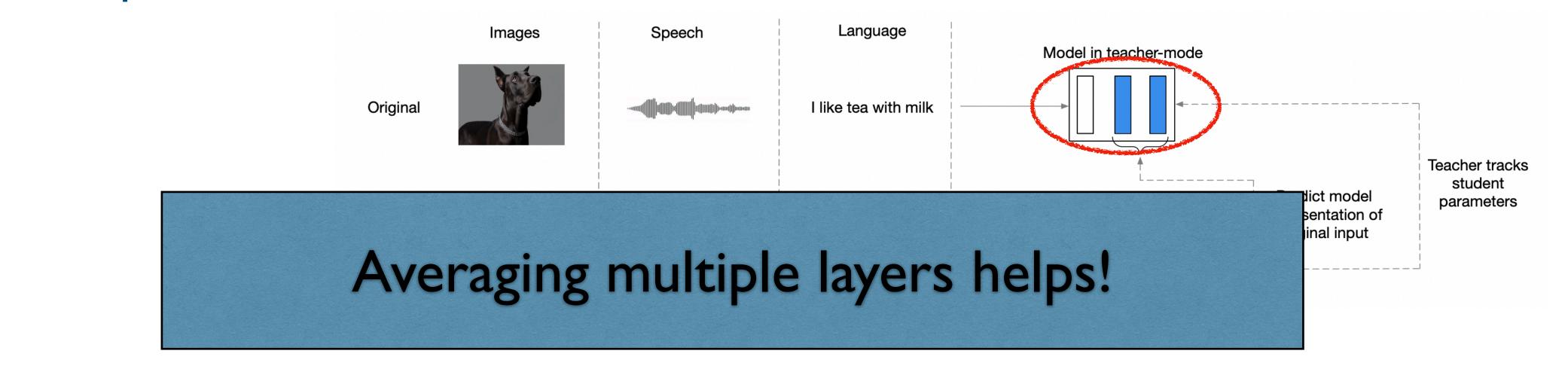
Vision Results

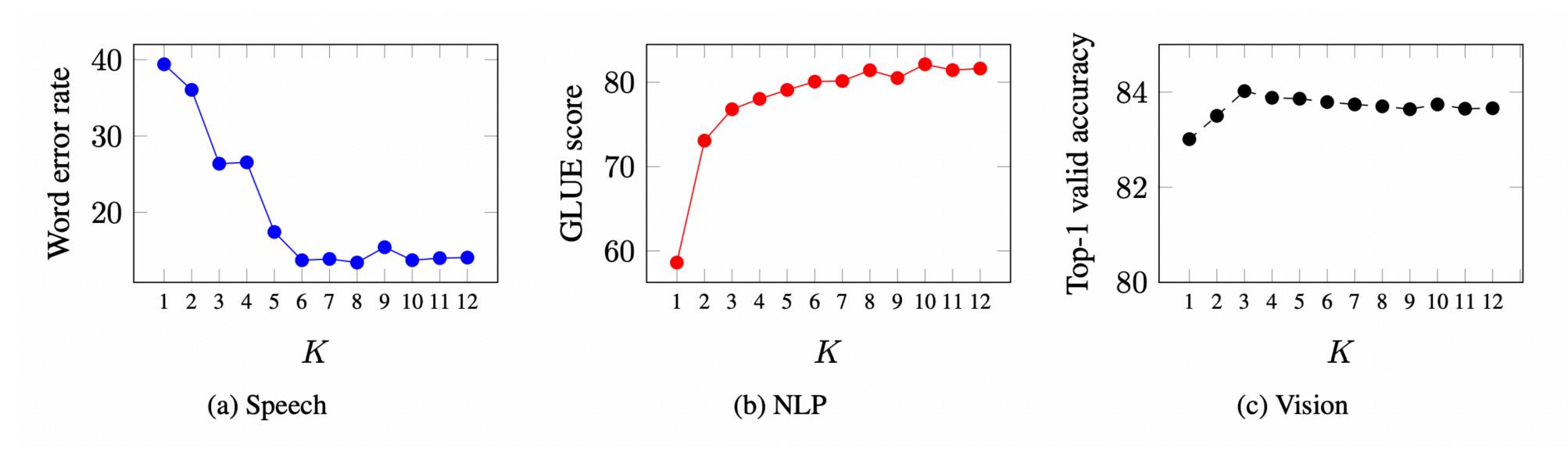


Speech & NLP Results

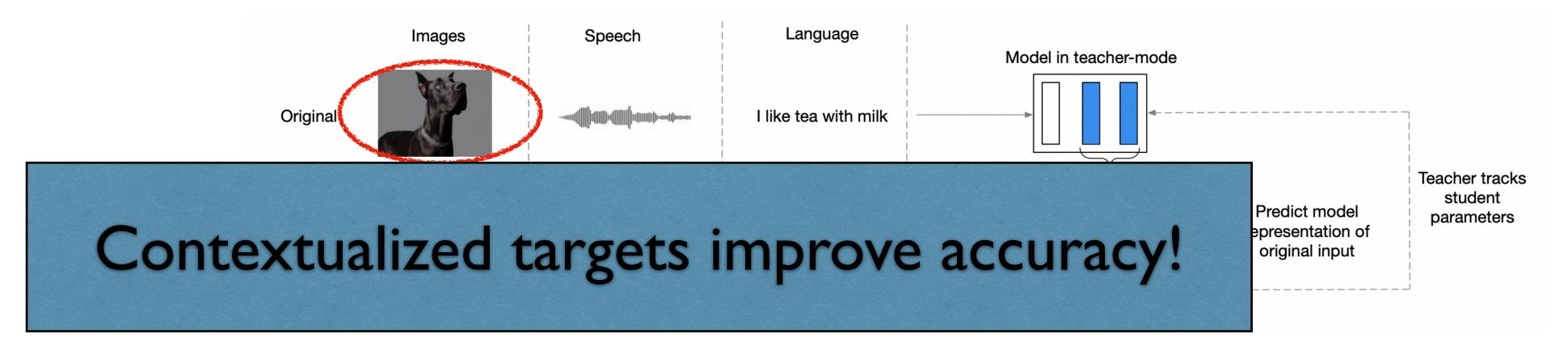


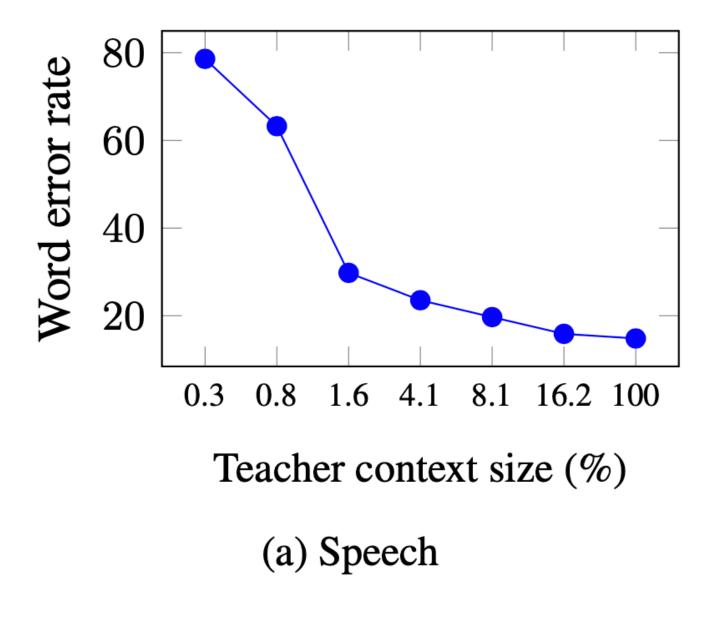
Teacher Representation Construction

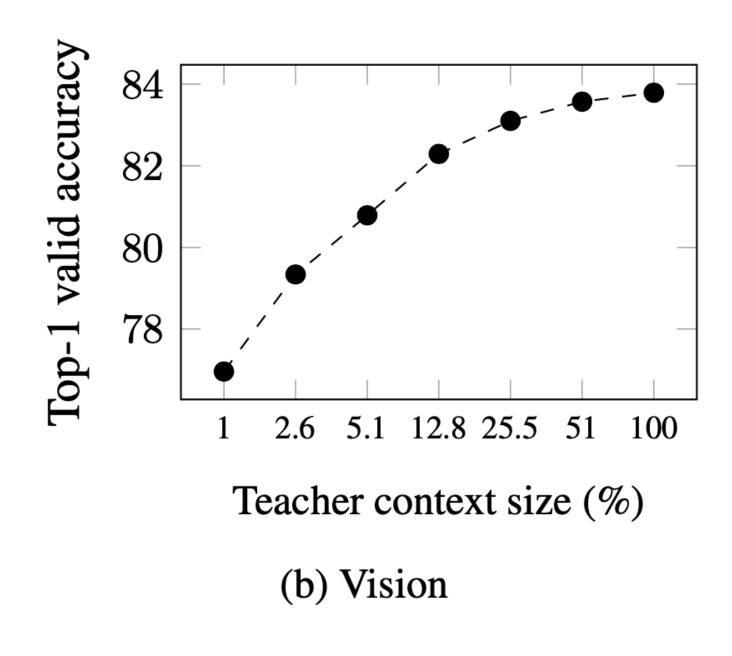




Target Context Size







Limitations

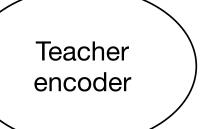
- Modality specific feature encoder -> Perceiver work!
- Requires two forward-passes -> data2vec 2.0

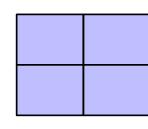
Efficient Self-supervised Learning

data2vec 2.0

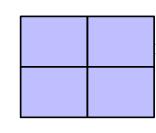
- MAE: Do not encode masked time-steps.
- Multi-masking: Learn from different views & share target representation.
 - Amortizes the cost of the teacher.
- Result: train with less compute, fewer epochs & smaller batch size.

Images

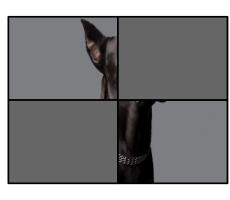


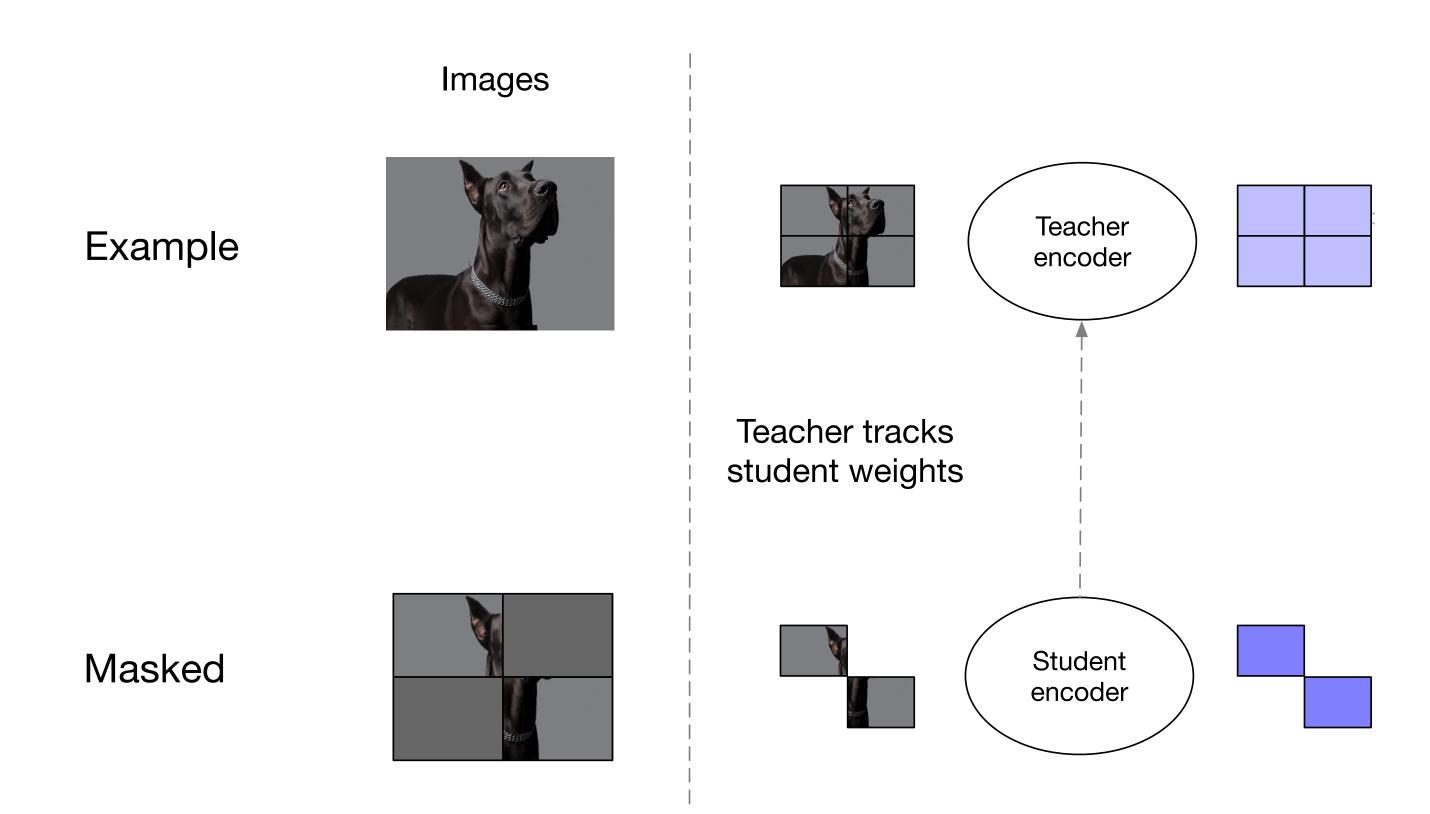


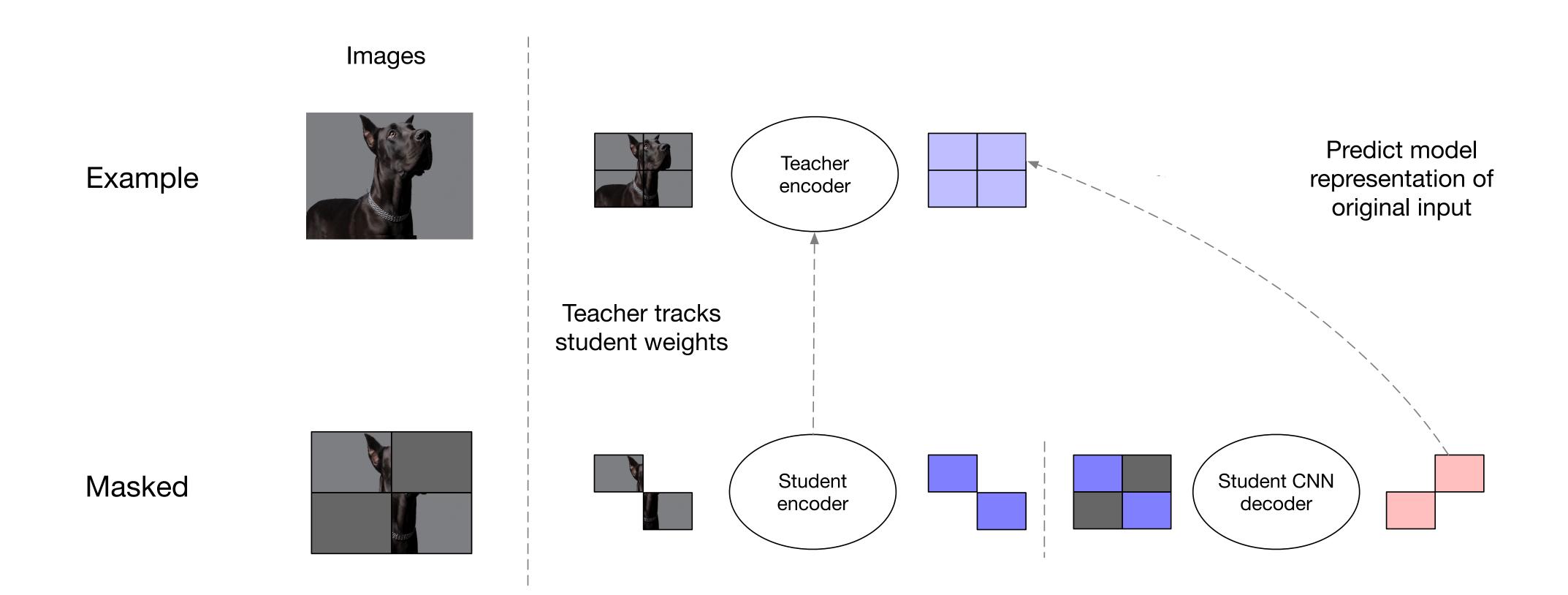
Teacher encoder

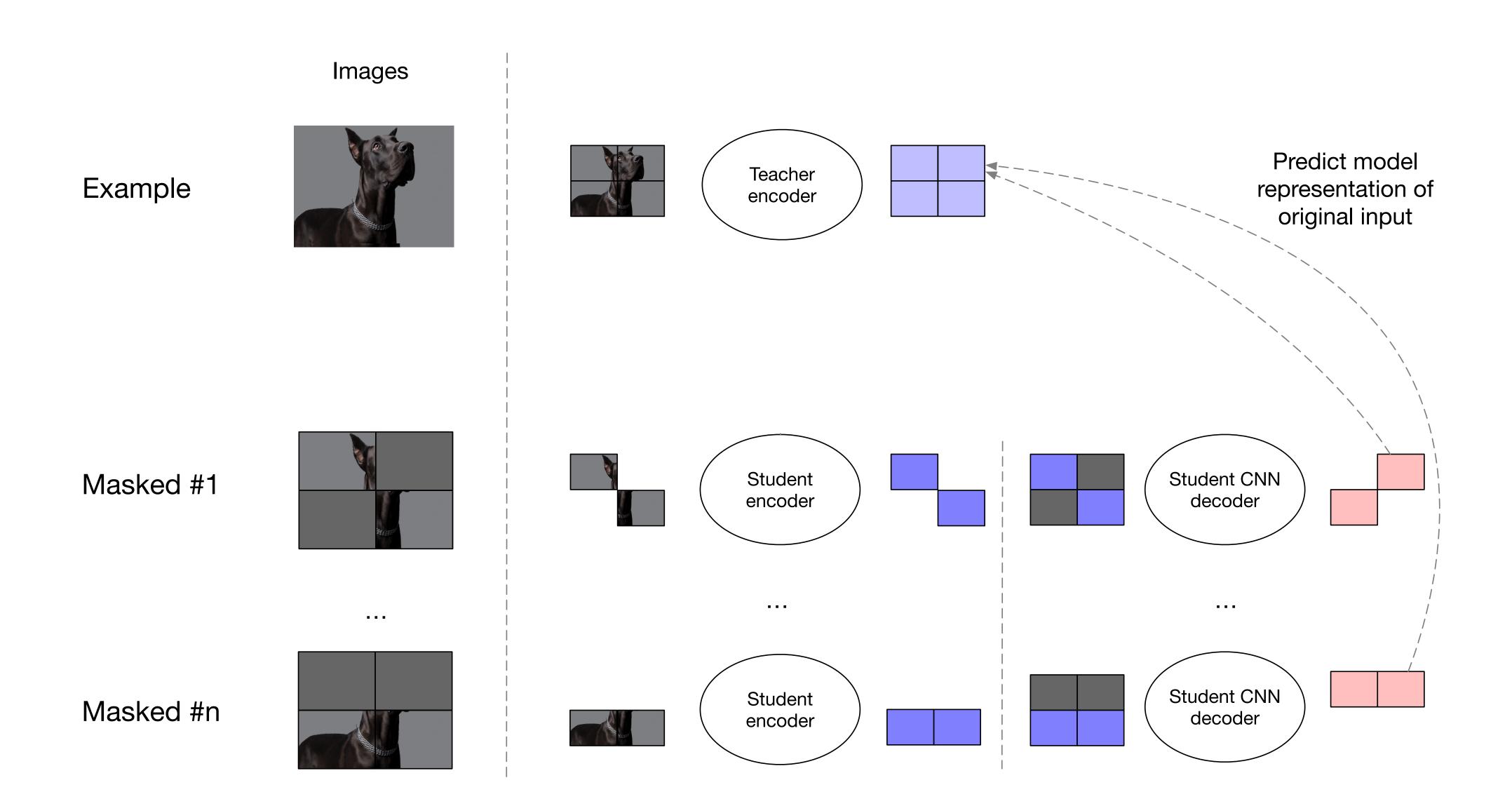


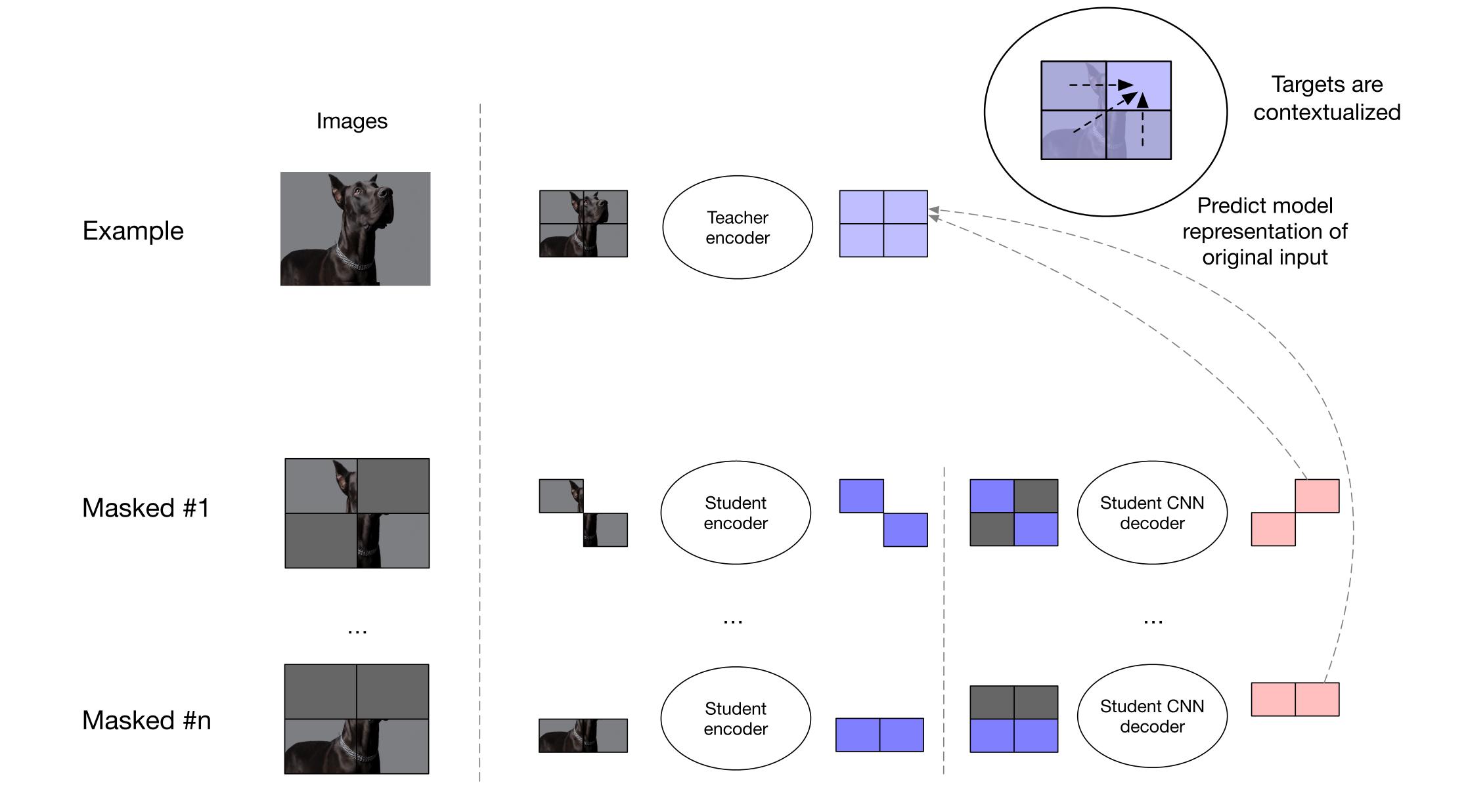
Masked



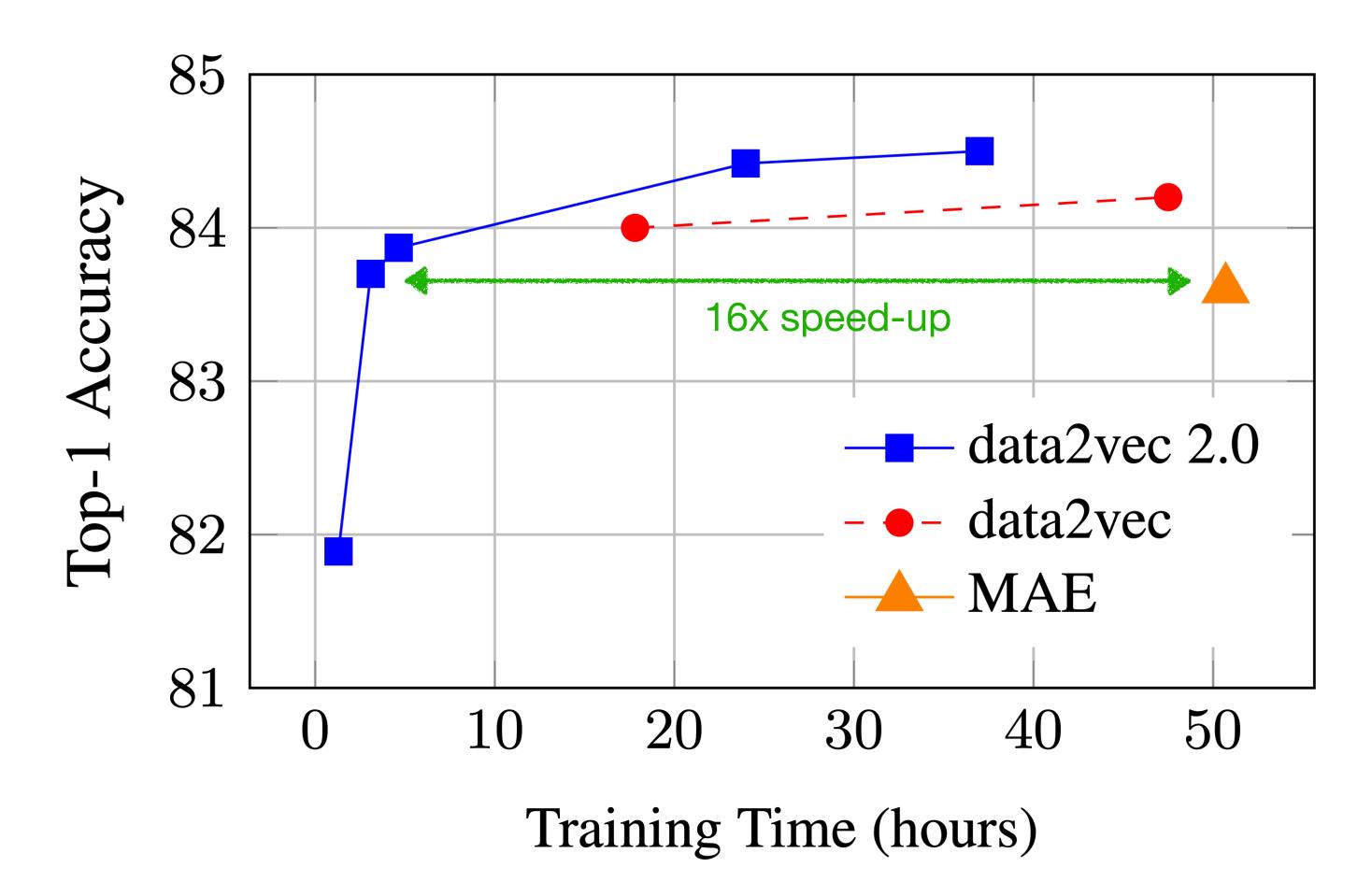








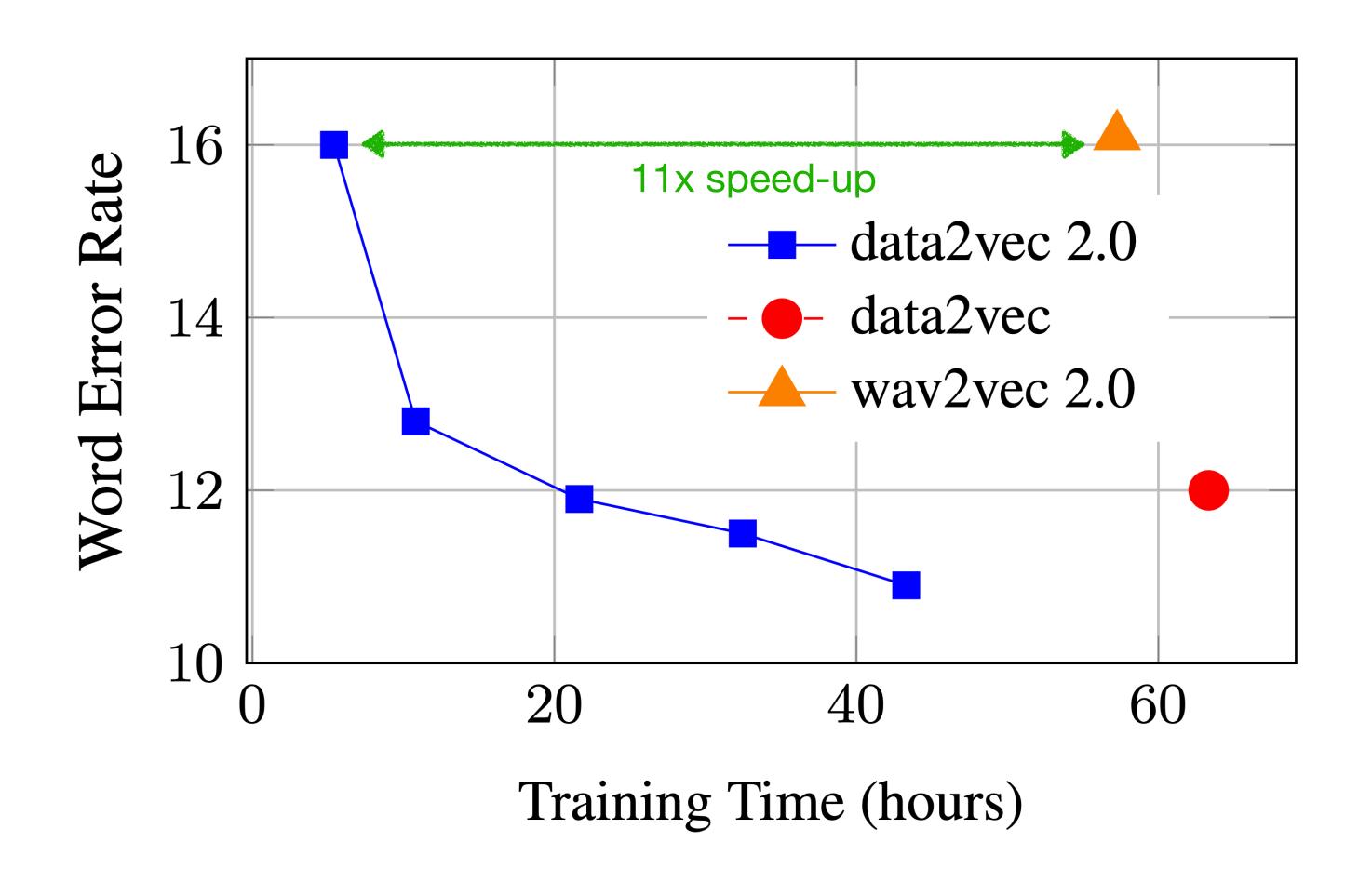
Compute Efficiency in Vision



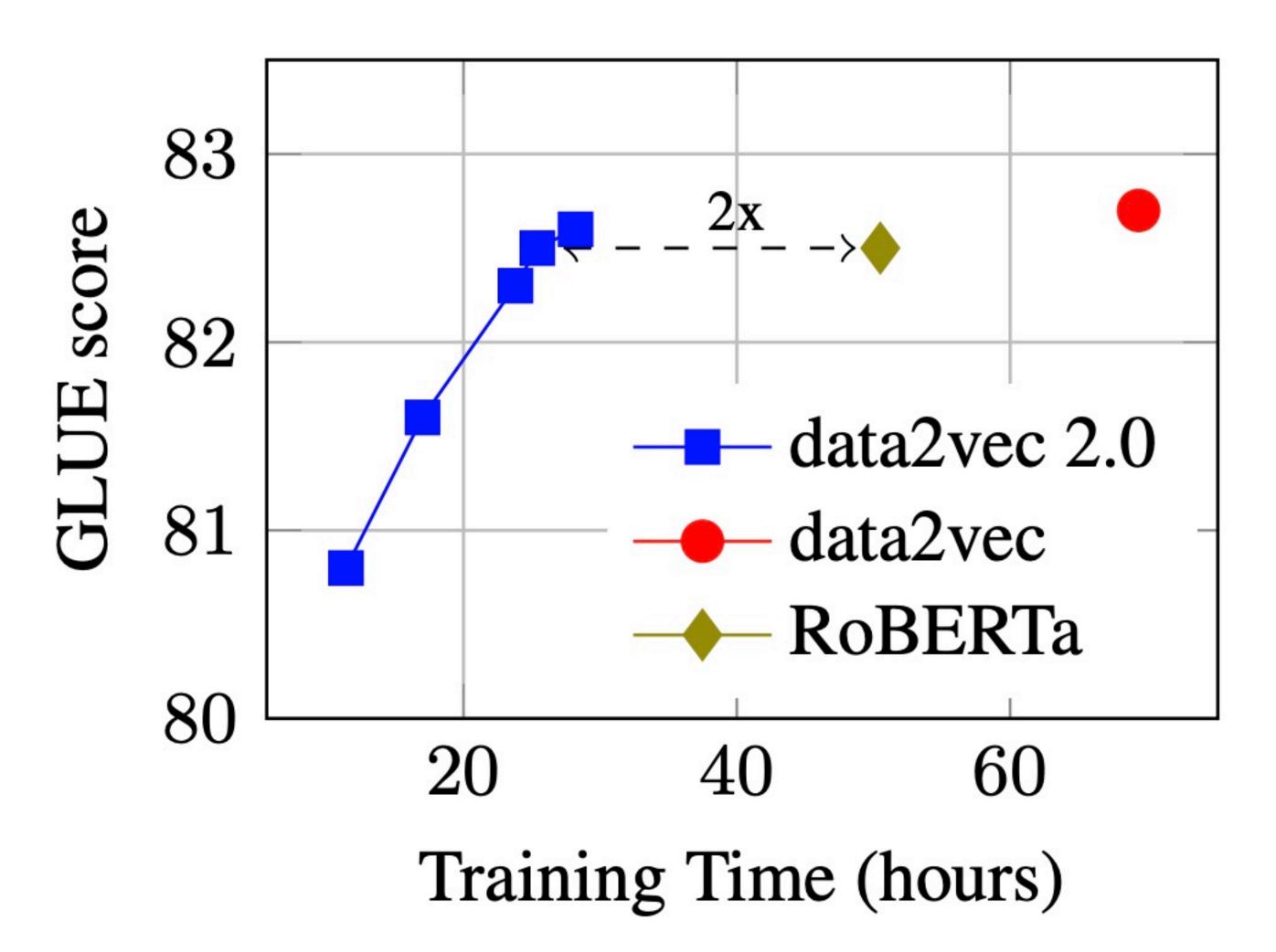
	MAE	data2vec 2.0
Train time (h)	50.7	3.1
Epochs	1600	20
Batch size	4,096	512
Accuracy	83.6	83.7

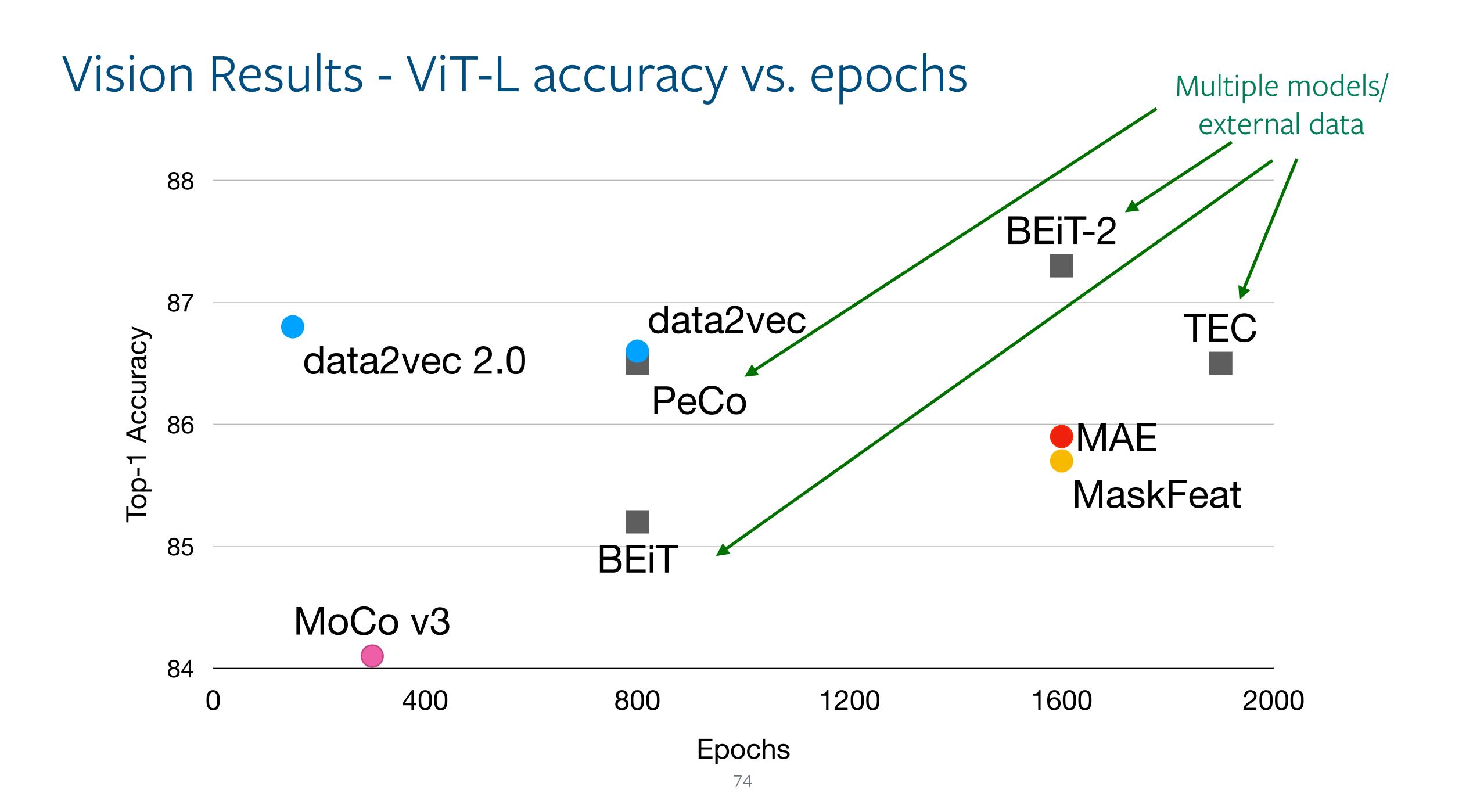
ViT-B, pre-train and fine-tune on ImageNet-1K, eval on dev All training times are for 32 A100 GPUs

Compute Efficiency in Speech



Compute Efficiency in NLP





Conclusion

- A single learning objective can perform very well compared to the best modalityspecific algorithms for vision/speech/NLP.
- Contextualized targets lead to a rich learning task which enables efficient training.
- Think about multiple modalities from the outset.

Thank you

Arun Babu

Alexis Conneau

Steffen Schneider

Henry Zhou

Abdelrahman Mohamed

Jiatao Gu

Naman Goyal

Wei-Ning Hsu

Alexei Baevski

Michael Auli

Kushal Lakhotia

Andros Tjandra

Kritika Singh

Yatharth Saraf

Geoffrey Zweig

Qiantong Xu

Tatiana Likhomanenko

Paden Tomasello

Ronan Collobert

Gabriel Synnaeve