Attention and Transformers

Arjun Majumdar
Georgia Tech

Lecture Qutline

* Machine Translation with RNNs
* RNNs with Attention
* From Attention to Transformers

e What can Transformers do?

Sequence Modeling with RNNs

one to one one to many many to one many to many many to many

Machine Translation

we are eating bread » estamos comiendo pan

Machine Translation

estamos comiendo pan

RNN Encoder » RNN Decoder

we are eating bread

Machine Translation with RNNs

Encoder: h;, = fy (X, hi.q)

hy " h; " hy > hs " h,
A A A A
X4 Xo X3 X4
we are eating bread

Slide credit: Justin Johnson

Machine Translation with RNNs

Encoder: h;, = fy (X, hi.q)

>
o
\ 4
>0
\ 4
>
N
\ 4
>
w
v
>
~
\ 4
n
o

we are eating bread

Slide credit: Justin Johnson

Machine Translation with RNNs

Encoder: h;, = fy (X, hi.q)

Decoder: s, = gy(Yp St.1) estamos
Y1
hg * h, * hy * hg * hy > S — 1 S4
4 4+ 4 [y A
X X, X3 X, Yo
we are eating bread [START]

Slide credit: Justin Johnson

Machine Translation with RNNs

Encoder: h;, = fy (X, hi.q)

Decoder: s, = gy(Ys, Ses) estamos comiendo

Y1 Y2
A A
hy " h; " hy > hs " h, "So T ST T S2
A A A A A A
X1 X2 X3 X4 Yo " Y1
we are eating bread [START] estamos

Slide credit: Justin Johnson

Machine Translation with RNNs

Encoder: h, = f, (X, hy4)

Decoder: s; = gy(Yy Si.1) estamos comiendo pan [STOP]
Y1 Y2 Y3 Y4
A A A A
hy " h; " hy > hs " h, "So T ST T S2 > S3 " S4
A A A A A A A A
X1 X2 X3 X4 Yo " Y1 > Y2 > Y3
we are eating bread [START] estamos comiendo pan

Slide credit: Justin Johnson

Machine Translation with RNNs

Encoder: h, = fy (X, hyq)

Decoder: s, = » St.
t= 9ulYe S) Problem: s; is used to

encode input and
maintain decoder state

ho > h1 > h2 > h3 > h4 > SO g S1 I 82 | ’ Ss ’ S4
A A A A * ? * *
X4 X X3 X4
we are eating bread

Slide credit: Justin Johnson

Machine Translation with RNNs

Encoder: h, = fy (X, hyq)

Decoder: s; = gy(Yis Si.1s
c)

Solution: add a
context vector ¢ = h,
and predict sy from h,

h, * h, * h, > hs * hy > Sy S, S,
A A A A * ?
» C
X4 X X3 X4
we are eating bread

Slide credit: Justin Johnson

Machine Translation with RNNs

Encoder: h;, = fy (X, hi.q)

Decoder: s, = gy(Ys Se1, estamos comiendo pan [STOP]
c)

Solution: add a
context vector ¢ = h, Y1 Y2 Y3 Ys
and predict s, from h, 5 5 5 5

hy " h; " hy > hs " h, "So T ST T S2 > S3 " S4
A A A A A A A A A A A A
» C
X1 X2 X3 X4 Yo " Y1 > Y2 > Y3
we are eating bread [START] estamos comiendo pan

Slide credit: Justin Johnson

Machine Translation with RNNs

Encoder: h, = fy (X, hyq)

Decoder: s; = gy(Yis Si.1s
c)
bottleneck

Problem: Input sequence
ho » hy » h, * hs > h, > Sy — bottlenecked through
fixed-sized vector.

v
(@]

we are eating bread

Slide credit: Justin Johnson

Machine Translation with RNNs

Encoder: h, = fy (X, hyq)

Decoder: s; = gy(Yis Si.1s

c)
bottleneck
|ldea: use new context
ho * h, * h, * hy » h, > Sy — vector at each step of
7 /s i . decoder!
> C —
X4 X X3 X4
we are eating bread

Slide credit: Justin Johnson

I
Machine Translation with RNNs and Attention

From final hidden state:
Initial decoder state s,

h, " hy " hs " h, " So
X4 Xo X3 X4
we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson

I
Machine Translation with RNNs and Attention

Compute alignment scores
ey; = fonlseas y) (fot is an MLP)

From final hidden state:

€11 €12 €13 €14 Initial decoder state s,
it 1t |

h, " hy " hs " h, " So

X4 Xo X3 X4

we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson

I
Machine Translation with RNNs and Attention

Compute alignment scores
ey; = fonlseas y) (fot is an MLP)

Ay aq2 aq3 Aqq
t t t t
softmax Normalize to get

f f f I From final hidden state: attention weights

eﬁ e‘1‘21 e‘1‘3T e‘1‘41 Initial decoder state s, 0<a,<1 Lo, =1
1

h, " hy > hs " hy " So

we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson

I
Machine Translation with RNNs and Attention

> 4 X > 4 X Compute alignment scores
4 ey; = fonlseas y) (fot is an MLP)
aqq aq2 aq3 Aqq

t t t t

softmax Normalize to get
f f f I From final hidden state: attention weights
ef} \ 911‘21 \ eﬂﬁt \ €4 Initial decoder state s, 0<a,<1 Lo,=1
AL LN I. :
h " hy = hy = hy " So + Set context vector C to a linear
I ‘ I] combination of hidden states
¢, = Layh;

we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson

I
Machine Translation with RNNs and Attention

X X X X Compute alignment scores
4 ey; = fonlseas y) (fot is an MLP)
3111 a;z a;3 3}4 estamos
softmax Normalize to get

1 1 1 ! From final hidden state: Y1 attention weights
e e e e T

f} \ ‘121 \ ‘131 \ 14 | Initial decoder state s, [0<a,<1 Lo, =1

AL L I. :
hy " h; " hs " hy " So + S1 Set context vector C to a linear
I ‘ I] ‘ ‘ combination of hidden states
¢ = Layh
X1 X2 X3 X4 > C1 yO
we are eating bread
[START]

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson

I
Machine Translation with RNNs and Attention

X X X X Compute alignment scores
4 ey; = fonlseas y) (fot is an MLP)
3111 a;z a;3 3}4 estamos
softmax Normalize to get

1 1 1 ! From final hidden state: Y1 attention weights
e e e e T

f} \ ‘121 \ ‘131 \ 14 | Initial decoder state s, [0<a,<1 Lo, =1

AL L I. :
hy " h; " hs " hy " So + S1 Set context vector C to a linear
I ‘ I] ‘ ‘ combination of hidden states
¢ = Layh

X1 X2 X3 X4 C1 yO
we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson

I
Machine Translation with RNNs and Attention

> 4 > 4 > 4 X Compute alignment scores
4 ey; = fonlseas y) (fot is an MLP)
a1 CEp) dq3 Ay
t $ $ t estamos
softmax Normalize to get
t 1 t t_ From final hidden state: Vs attention weights
e e e e T
f} \ ‘121 \ ‘131 \ ‘141 Initial decoder state s, [0<a,<1 La,=1
h \ h \ h \ h I +
1 g U2 | N3 | Na " So S1 Set context vector C to a linear
combination of hidden states
Intuition: Context vector ¢, = .a,h
t ivtiti
attends to the relevant ‘ ’
X1 X2 X3 X4 | part of the input sequence "1 G| Yo

“estamos” = “‘we are”
we are eating bread

a,=0.45, a,,=0.45, a,,=0.05, a,,=0.05

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson

I
Machine Translation with RNNs and Attention

X X X X Repeat: Use s, to
a@ a a a compute new
121 %2 is %4 estamos context vector ¢,
softmax
| 1 t t Y1
€21 \ €22 \ €23 \ €24 5
h, \ h, \ h, \ h, Sy S,

we are eating

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

bread

Ci1 || Yo C,

[START]

Slide credit: Justin Johnson

I
Machine Translation with RNNs and Attention

X X X X Repeat: Use s, to
4 compute new
a a a a _
121 %2 f?’ %4 estamos comiendo context vector ¢,
soffmax Use ¢, to compute
| 1 t t Y1 Y2 Sor Yo
€21 \ €5 \ €23 \ €24 | 5
A \ A \ A \ L « + ‘
h1 g h2 g h3 o h4 » SO S1 > S2

I In.

X Xo X3 X4 CillYo| |C2f|Vn

we are eating bread
[START] estamos

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson

I
Machine Translation with RNNs and Attention

estamos comiendo

X X X X

4

A1 dy d3 3%4

t t t

soffmax

t f t t

€1 \ €o \ €23 \ €04]

h, \ h, \ h; \ h, " So

] ‘ I] Intuition: Context vector
attends to the relevant part

X4 Xo X3 Xy of the input sequence
“comiendo” = “eating”

we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Y1 Yo
S4 > S,

i

Cq

[START]

Yo

C,

|

Y4

estamos

Repeat: Use s, to

compute new

context vector ¢,

Use ¢, to compute

Sar Y9

Slide credit: Justin Johnson

I
Machine Translation with RNNs and Attention

Use a different context vector in each timestep of decoder
- Input sequence not bottlenecked through single vector
- At each timestep of decoder, context vector “looks at”

different parts of the input sequence

estamos comiendo pan [STOP]

Y4 Yo Y3 Y4

{ 1 { t

h1 h2 > h3 v h4 SO
-~ Ar -~

X4 Xy X3 X4

we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

[START] estamos comiendo pan

Slide credit: Justin Johnson

I
Machine Translation with RNNs and Attention

Visualize attention weights a;
Example: English to

: BT 5 5 4
French translation e 958885_88 &
F ©c o WwuwWw< = H £ <<~ v
’”
Input: “The agreement on a“gr‘:
. u
the European Economic a
Area was signed in August . zone
’ economique
1 992 européenne
a
“r s été
Output: “L’'accord sur la signé
Zone economique °"
7 7 g4 7 . , aou
europeenne a été signé en 1992

aolt 1992.

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

<end>

Slide credit: Justin Johnson

I
Machine Translation with RNNs and Attention

Visualize attention weights a;

Example: English to
French translation

European
Economic

Input: “The agreement on Diagonal attention
he E E : means words
the Ur0pe_an c(?nomlc correspond in order
Area was signed in August o f
N économique
1 992 . européenne

Output: “L’accord sur la
zone economique
europeenne a ete signe en Diagonal attention

aout 1992.” means words
correspond in order

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson

Machine Translation with RNNs and Attention

Visualize attention weights a;

Example: English to T
French translation 0§
Input: “The agreement on Diagonal attention
h means words
the _) correspond in order
was signed in August =
” économique
1 992 . européenne

Output: “L’accord sur la

a été signe en Diagonal attention

aout 1992.” means words
correspond in order

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson

I
Machine Translation with RNNs and Attention

4 4 4 4
a
8121 8%2 a§3 %4 estamos comiendo pan [STOP]
softmax

t f t | Y1 Yo Y3 Y4
€21 €22 €23 €24 [‘ \ ‘
h 1 h2 h3 h4 SO S1 — S2 E—— S3 ’ S4
X4 Xy X3 X4 CillYo| [Cof|Y1| |C3||Y2| [Ca||V¥3
we are eating bread T T 1 t

[START] estamos comiendo pan

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson

Attention Layer

Inputs: Lo
State vector: s, (Shape: D) | I |
Hidden vectors: h, (Shape: Ny x D}, N B B e'

Similarity function: f_;

estamos comiendo pan [STOP]

Ya Y2 VE] Y4

I .

'Hm X
R

X2 X3 X4

we are eating bread

Computation:

Similarities: e (Shape: Ny) e, =f_(s:.1, h;)
Attention weights: a = softmax(e) (Shape: Ny)
Output vector: y = Y ah;, (Shape: Dy)

So

llﬂjﬂL _ll

[START] estamos comiendo pan

Slide credit: Justin Johnson

Attention Layer

Inguts: ; a; a;a 8 t iend [STOP]
Q tor. (Sha e. D) ' t t t estamos comiendo pan
uery vec - g pe: Dq | t 1:3oftmaxt . |
Input vectors: X (Shape: Ny x Df) e M B OB K
N N 0 N | t
Similarity function: f_; L; o }_ ! [] |]
h, h, h3 hy So I _l _l
X Xz X3 Xg 01 Yo Cz Y1 \:;3 !"2 Cs|lYs
; f i | o
we are eating bread
[START] estamos comiendo pan

Computation:

Similarities: e (Shape: Ny) e, =f,4(ad, X)
Attention weights: a = softmax(e) (Shape: Ny)
Output vector: y = } aX;, (Shape: Dy)

Slide credit: Justin Johnson

Attention Layer

Inputs:
Query vector: g (Shape: D)

Input vectors: X (Shape: Ny x D)
Similarity function: dot produc

Computation:

Similarities: e (Shape: Ny) e, =q - *i
Attention weights: a = softmax(e) (Shape: Ny)
Output vector: y = ,aX; (Shape: Dy)

t

az anx N
t t 1

softmax |

t

1 f i

€24

L'th%hs%

we

estamos comiendo pan [STOP]

Ya Y2 VE] Y4

I .

0

X2 X3 X4

are eating bread

Changes:

So

llﬂjﬂL _ll

[START] estamos comiendo pan

- Use dot product for similarity

Slide credit: Justin Johnson

Attention Layer

Inputs: L] + 4 +

. « ' a;z afm 8%4 estamos comiendo pan [STOP]
Query vector: g (Shape: D) | | Tsoftmaxt]
Input vectors: X (Shape: Ny x D) c. il L] |a 7

i

Similarity function: scaled dot produc

i 1T
thH% "
i IIHJ T

Xz X3 X4 Yo Cz Yi| |Cs !"2 Cs|lYs
we are eating bread T i L al 7
[START] estamos comiendo pan
Computation:
Similarities: e (Shape: Ny) e;=q - X;/ sqrt(D})
Attention weights: a = softmax(e) (Shape: Ny) Changes:

Output vector:y =) aX; (Shape: Dy) - Use scaled dot product for similarity

Slide credit: Justin Johnson

Attention Layer

Inputs: L) a0 a+ ao []
i e 3 estamos comiendo an STOP!

Query vectorg: Q (Shape: Nq x D) | : :Soﬂmax: : | ;

Input vectors: X (Shape: Ny x Dy c. il L] |a 7

i 1T
thH% "
i IIHJ T

Xz X3 X4 Yo| [Cz||[Y1| [Ca||Y2 Cs|lYs
we are eating bread [:START] e:tamcs \Z)mlendo 1p::m |
Computation:

Similarities: E = QX" (Shape: Ng x Ny) E;; = Q, - X;/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: NQxNX) Changes:

Output vectors: Y = AX (Shape: Ng X Dx) Y; = 2 /A X - Use dot product for similarity

- Multiple query vectors

Slide credit: Justin Johnson

-
Attention Layer

Inputs: a‘ a0 a+ ao []
(' i e 3 estamos comiendo an STOP!
Query vectors: Q (Shape: Nq x Dg) | : :Soﬂmax: : | ;
Input vectors: X (Shape: Ny x Dy) v[»i v| si
t 1 1 t

Key matrix: (Shape: Dy x Dq)

| | | | 1
Value matrix: W,, (Shape: Dy x D)) b\HTh}—] b o I] |—JJ l_l —“
X4 Xz X3 X4 CJ Yo Cz Ya LCF !"2 Cq
i i | b

we are eating bread

[START] estamos comiendo pan

Computation:

Key vectors: K = X (Shape: Ny x Dq)
Value vectors: V = XW,, (Shape: Ny x Dy)
Similarities: £ = QK" (Shape: Ng X Ny) E;; = Q, - K,/ sqrt(Dg)

Attention weights: A = softmax(E, dim=1) (Shape: NQ X Ny) Changes:

Output vectors: Y = AV (Shape: Ng X Dy) Y = 2 AV, - Use dot product for similarity

- Multiple query vectors
- Separate and value

Slide credit: Justin Johnson

-
Attention Layer

Inputs:
Query vectors: Q (Shape: Ng x Dg)

Input vectors: X (Shape: Ny x Dy)
Key matrix: (Shape: Dy x Dq)
Value matrix: W,, (Shape: Dy x D))

Computation:
Key vectors: K = X (Shape: Ny x Dq) X,
Value vectors: V = XW,, (Shape: Ny x D))
Similarities: E = QK" (Shape: Ng x Ny) E;; = Q, - K,/ sqrt(Dg) X,
Attention weights: A = softmax(E, dim=1) (Shape: Ng x Ny)
Output vectors: Y = AV (Shape: Ng x D) Y; = > AV, X,

Slide credit: Justin Johnson

-
Attention Layer

Inputs:
Query vectors: Q (Shape: Ng x Dg)

Input vectors: X (Shape: Ny x Dy)
Key matrix: (Shape: Dy x Dq)
Value matrix: W,, (Shape: Dy x D))

Computation:
Key vectors: K =X (Shape: Ny x Dq) X; — K,
Value vectors: V = XW,, (Shape: Ny x D))
Similarities: E = QK" (Shape: Ng x Ny) E;; = Q, - K,/ sqrt(Dg) X, — K,
Attention weights: A = softmax(E, dim=1) (Shape: Ng x Ny)
Output vectors: Y = AV (Shape: Ng x D) Y; = > AV, X, — K,

Slide credit: Justin Johnson

-
Attention Layer

Inputs:
Query vectors: Q (Shape: Nq x Dg)

Input vectors: X (Shape: Ny x Dy)
Key matrix: (Shape: Dy x Dq)
Value matrix: W,, (Shape: Dy x D))

Computation:

Key vectors: K =X (Shape: Ny x Dq) X; ™ Ky — Eqy E, Es E4 1
Value vectors: V = XW,, (Shape: Ny x D))

Similarities: E = (Shape: Ng x Ny) E;; = Q, - K;/ sqrt(Dq) X, — K, — Eq, E,., Es, Es,
Attention weights: A = softmax(E, dim=1) (Shape: Ng x Ny)

Output vectors: Y = AV (Shape: Ng x D) Y; = > AV, Xs — K3 — Ej, E,s Ess Ess

Slide credit: Justin Johnson

-
Attention Layer

Inputs:

Query vectors: Q (Shape: Ng x Dg) A A, Az 4 A,
Input vectors: X (Shape: Ny x Dy)

Key matrix: (Shape: Dy x Dq) A, A, Asor | Ay

Value matrix: W,, (Shape: Dy x D))

Computation:

Key vectors: K =X (Shape: Ny x Dq) X; ™ Ky — Eqy E, Es E4 1
Value vectors: V = XW,, (Shape: Ny x D))

Similarities: E = (Shape: Ng x Ny) E;; = Q, - K;/ sqrt(Dq) X, — K, — Eq, E,., Es, Es,
Attention weights: A = softmax(E, dim=1) (Shape: Ng x Ny)

Output vectors: Y = AV (Shape: Ng x D) Y; = > AV, Xs — K3 — Ej, E,s Ess Ess

Slide credit: Justin Johnson

-
Attention Layer

Inputs:
Query vectors: Q (Shape: Nq x Dg) " Vi — Aqg A, 4 Az 4 As
Input vectors: X (Shape: Ny x Dy)
Key matrix: (Shape: Dy x Dq) » V, — A, A, Asor | Ay
Value matrix: W,, (Shape: Dy x D))

Vo — Az Az Az Ags

Computation:

Key vectors: K =X (Shape: Ny x Dq) - Xy — Ky — Eyy E, Es E4 1
Value vectors: V = XW,, (Shape: Ny x D))

Similarities: E = (Shape: Ng x Ny) E;; = Q, - K;/ sqrt(Dq) X, — K, — Eq, E,., Es, Es,
Attention weights: A = softmax(E, dim=1) (Shape: Ng x Ny)

Output vectors: Y = AV (Shape: Ng x D) Y; = > AV, Xs — K3 — Ej, E,s Ess Ess

Slide credit: Justin Johnson

Attention Layer

Inputs:

Query vectors: Q (Shape: Nq x Dg) " Vi — Aqg A, 4 Az 4 As
Input vectors: X (Shape: Ny x Dy)

Key matrix: (Shape: Dy x Dq) » V, — A, A, Asor | Ay

Value matrix: W,, (Shape: Dy x D))

Computation:

Key vectors: K =X (Shape: Ny x Dq) - Xy — Ky — Eyy E, Es E4 1
Value vectors: V = XW,, (Shape: Ny x D))

Similarities: E = (Shape: Ng x Ny) E;; = Q, - K;/ sqrt(Dq) X, — K, — Eq, E,., Es, Es,
Attention weights: A = softmax(E, dim=1) (Shape: Ng x Ny)

Output vectors: Y = AV (Shape: Ng x D) Y; = > AV, Xs — K3 — Ej, E,s Ess Ess

Slide credit: Justin Johnson

—
Self-Attention Layer

One query per input vector
Inputs:
Input vectors: X (Shape: Ny x Dy)
Key matrix: (Shape: Dy x Dq)
Value matrix: W., (Shape: Dy, x D))
Query matrix: W, (Shape: Dy x D§)

Computation:

Query vectors: O = XW

Key vectors: K = X (Shape: Ny x Dq)

Value vectors: V = XW,, (Shape: Ny x D))

Similarities: E = QK" (Shape: Ny x Ny) E;; = Q, - K,/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x D) Y; = > AV,

Slide credit: Justin Johnson

—
Self-Attention Layer

One query per input vector
Inputs:
Input vectors: X (Shape: Ny x Dy)
Key matrix: (Shape: Dy x Dq)
Value matrix: W,, (Shape: Dy x D))
Query matrix: W, (Shape: Dy x Dq)

Computation:

Query vectors: O = XW

Key vectors: K = X (Shape: Ny x Dq)

Value vectors: V = XW,, (Shape: Ny x D))

Similarities: E = QK" (Shape: Ny x Ny) E;; = Q, - K,/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x D) Y; = > AV, t 1 f

Slide credit: Justin Johnson

—
Self-Attention Layer

One query per input vector
Inputs:
Input vectors: X (Shape: Ny x Dy)
Key matrix: (Shape: Dy x Dq)
Value matrix: W,, (Shape: Dy x D))
Query matrix: W, (Shape: Dy x Dq)

Computation: Ks
Query vectors: O = XW, K,
Key vectors: K = X (Shape: Ny x Dq)

Value vectors: V = XW,, (Shape: Ny x D)) K

Similarities: E = QK" (Shape: Ny x Ny) E;; = Q, - K,/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) ‘
Output vectors: Y = AV (Shape: Ny xD,) Y; = 3 A}V, t 1 f

Slide credit: Justin Johnson

—
Self-Attention Layer

One query per input vector
Inputs:
Input vectors: X (Shape: Ny x Dy)
Key matrix: (Shape: Dy x Dq)
Value matrix: W,, (Shape: Dy x D))
Query matrix: W, (Shape: Dy x Dq)

Computation: Ke |™|LE1a] [Eaal [Ess

Query vectors: O = XW, Ky |[=||E12| |E22| |Esy

Key vectors: K = X (Shape: Ny x Dq)

Value vectors: V = XW,, (Shape: Ny x D)) Ki = Eq; Bz Es.s

Similarities: E = QKT (Shape: Ny x Ny) E;; = Q; - K,/ sqrt(Dg) (5 Li) 4

Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)

Output vectors: Y = AV (Shape: Ny x D) Y; = > AV, t £ f
X X 1%

Slide credit: Justin Johnson

—
Self-Attention Layer

One per input vector
Inputs: Az Az Az
Input vec_tors: X (Shape: Ny x Dy) Aol Aol |Ass
Key matrix: (Shape: Dy x Dq)
Value matrix: W,, (Shape: Dy x D)) At Asr [Agg
Query matrix: (Shape: Dy x Dq) t
| Softmax(1) |

t
Computation: Ks |=|[B1a]| [Eos| [Eas
Query vectors: O = X Ky ||| Eq2| | Ez2| |Es»
Key vectors: K = X (Shape: Ny x Dq)
Value vectors: V = XW,, (Shape: Ny x D)) Ki = Eq; Ex Es s
Similarities: E = (Shape: Ny x Ny) E;; = Q; - K,/ sqrt(Dg) (5 (5 6
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x D) Y; = > AV, t £ f

Slide credit: Justin Johnson

—
Self-Attention Layer

One query per input vector

Inputs: Vs = A Az A3
Input vectors: X (Shape: Ny x Dy) LV, = AL (ALl Al
Key matrix: (Shape: Dy x Dq) : ’ ’
Value matrix: W,, (Shape: Dy x D)) TV = A A Ay
Query matrix: W, (Shape: Dy x Dq) t
| Softrr;ax(T) |

Computation: Ke |™|LE1a] [Eaal [Ess
Query vectors: O = XW, Ky |[=||E12| |E22| |Esy
Key vectors: K = X (Shape: Ny x Dq)
Value vectors: V = XW,, (Shape: Ny x D)) Ki = Eq; Bz Es s
Similarities: E = QKT (Shape: Ny x Ny) E;; = Q; - K,/ sqrt(Dg) (5 Li) 4
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x D) Y; = > AV, t £ f

X Xl %

Slide credit: Justin Johnson

T —————

Self-Attention Layer e
One query per input vector f
Inputs: Vs = A Az Az
Input vectors: X (Shape: Ny x Dy) LV, = AL (ALl Al
Key matrix: (Shape: Dy x Dq) : ’ ’
Value matrix: W,, (Shape: Dy x D)) TV = A A Ay
Query matrix: W, (Shape: Dy x Dq) t
| Softrr;ax(T) |
Computation: Ks |=|[B1a]| [Eos| [Eas
Query vectors: O = XW, Ky |[=||E12| |E22| |Esy
Key vectors: K = X (Shape: Ny x Dq)
Value vectors: V = XW,, (Shape: Ny x D)) Ki = Eq; Bz Es s
Similarities: E = QKT (Shape: Ny x Ny) E;; = Q; - K,/ sqrt(Dg) (5 Li) 4
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x D) Y; = > AV, t £ f
X Xl %

Slide credit: Justin Johnson

Self-Attention Layer e
Consider permuting , — 1
Inputs: the input vectors:
Input vectors: X (Shape: Ny x Dy) > —
Key matrix: (Shape: Dy x Dq)
Value matrix: W,, (Shape: Dy x D)) -
Query matrix: W, (Shape: Dy x Dq) t
Softmax(1)
t
Computation: -
Query vectors: O = XW —
Key vectors: K = X (Shape: Ny x Dq)
Value vectors: V = XW,, (Shape: Ny x D)) -
Similarities: E = QKT (Shape: Ny x Ny) E;; = Q; - K,/ sqrt(Dg) t t t
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x Dy) Y; = 3 A,)V, t + t
X X4 X,

Slide credit: Justin Johnson

- 1)) t
Self-Attention Layer e
t
Consider permuting , -
Inputs: the input vectors:
Input vectors: X (Shape: Ny x Dy) > —
Key matrix: W, (Shape: Dy x Dg) Queries and Keys will
Value matrix: W,, (Shape: Dy x D)) be the same, but -
t
- . K2 il
Computation:
Query vectors: O = XW, -+ K,
Key vectors: K = XW, (Shape: Ny x Dq)
Value Vectors: V = XW,, (Shape: Ny x D) K T
Similarities: E = QKT (Shape: Ny x Ny) E;; = Q; - K;/ sqrt(Dg) 6 6 6
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) i)
Output vectors: Y = AV (Shape: Ny xD,) Y; = 3 A}V, 1 t 1
X, X4 X,
! |

Slide credit: Justin Johnson

Self-Attention Layer e
Consider permuting , - !
Inputs: the input vectors:
Input vectors: X (Shape: Ny x Dy) S —
Key matrix: W, (Shape: Dy x Do) Similarities will be the
Value matrix: W,, (Shape: Dy x Dy) same, but permuted -
Query matrix: W, (Shape: Dy x Dq) t
| Softrr;ax(T) |
Computation: 27 Esz| |Eip] [Eoo
Query vectors: O = XW K, Esqi| |Eqy E,
Key vectors: K = X (Shape: Ny x Dq)
Value vectors: V = XW,, (Shape: Ny x D)) Ks Ess | [Eis Ezs
Similarities: E = QKT (Shape: Ny x Ny) E;; = Q; - K;/ sqrt(Dg) (5 6 6
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x D) Y; = > AV, f t 1
X3 X, X

Slide credit: Justin Johnson

- 1 t t t
Self-Attention Layer e
)
Consider permuting _ '
Inputs: the input vectors: Asz| [Arz] [Az
Input vectors: X (Shape: Ny x Dy) > - A A A
. _ 3,1 1,1 2,1
Key matrix: W, (Shape: D x Dq) Attention weights will i 1
Value matrix: W,, (Shape: Dy x D) be the same, but ' Azz| Az [Azs
| Softmax(1) |
t
Computation: Ko || [Ba2| [E12]| [Eaz
Query vectors: O = XW, K, — Ejq E, E,
Key vectors: K = X (Shape: Ny x Dq)
Value vectors: V = XW,, (Shape: Ny x D)) Ks = Bssl [Eia Ezs
Similarities: E = QKT (Shape: Ny x Ny) E;; = Q; - K;/ sqrt(Dg) (5 Li) Li)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) i)
Output vectors: Y = AV (Shape: Ny xD,) Y; = 3 A}V, f 1 1
X X4 X,

Slide credit: Justin Johnson

Self-Attention Layer

Consider permuting

Inputs: the input vectors:
Input vectors: X (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x Do) Values will be the
Value matrix: W,, (Shape: Dy x D)) same, but permuted

Query matrix: W, (Shape: Dy x Dq)

Computation:

Query vectors: O = XW

Key vectors: K = X (Shape: Ny x Dq)

Value vectors: V = XW,, (Shape: Ny x D))

Similarities: E = QK" (Shape: Ny x Ny) E;; = Q, - K,/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x D) Y; = > AV,

4 4 4
| Product(—), Sum(1) |
t
" Vo |7 As, Ai Az,
TV T Az 1 Aj A 4
| Vs |- As 3 Ais Az
1
| Softmax(1) |
t
Ky, = Ej, =P E,»
Ky = Esq E, 4 E,
Ks = Ej3 Eis E,s
1 1
Q Q Q
f [} f
X, X | X%,

Slide credit: Justin Johnson

Self-Attention Layer

Consider permuting

Inputs: the input vectors:
Input vectors: X (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x Do) Outputs will be the
Value matrix: W,, (Shape: Dy x D)) same, but permuted

Query matrix: W, (Shape: Dy x Dq)

Computation:

Query vectors: O = XW

Key vectors: K = X (Shape: Ny x Dq)

Value vectors: V = XW,, (Shape: Ny x D))

Similarities: E = QK" (Shape: Ny x Ny) E;; = Q, - K,/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x D) Y; = > AV,

Y, Y,

A A
1 1

| Product(—), Sum(}) |

t
Az A1 Az
As 1 A 1 A; 4
Az Ais Az
t
| Softmax(1) |
t
Es» Ei E,,
E; Eq E,
Ess Eis E,s
1 1
Q Q Q
3 t f
X, X, X,

Slide credit: Justin Johnson

Self-Attention Layer

Consider permuting

Inputs: the input vectors:
Input vectors: X (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x Do) Outputs will be the
Value matrix: W,, (Shape: Dy x D)) same, but permuted

Query matrix: W, (Shape: Dy x Dp)
Self-attention layer is

_ Permutation
Computation: Equivariant

Query vectors: O = XW, f(s(x)) = s(f(x))
Key vectors: K = X (Shape: Ny x Dq)

Value vectors: V = XW,, (Shape: Ny x D))

Similarities: E = QK" (Shape: Ny x Ny) E;; = Q, - K,/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x D) Y; = > AV,

Y, Y,

A A
1 1

| Product(—), Sum(}) |

t
Az A1 Az
As 1 Aq 1 A; 4
Az Ais Az
t
| Softmax(1) |
t
Es» Ei E,,
E; E 4 E,
Ess Eis E,s
1 1
Q Q Q
3 t f
X, X, X,

Slide credit: Justin Johnson

T —————

- 1 t t ¢
Self-Attention Layer o) St
_ Self attention doesn’t “know” V, = A A A
—L:n uts: _ _ the order of the vectors it is L &3 -
nput vectors: X (Shape: Ny x Dy) : V, = A A A
. _ processing! 2 1,2 2,2 3,2
Key matrix: (Shape: Dy x Dq)
Value matrix: W,, (Shape: Dy x D)) Vi = A Asrl [Ags
Query matrix: W, (Shape: Dy x Dq) t
| Softmax(1) |
t
Computation: Ks |=|[B13] [Eas Ess
Query vectors: O = XW, Ko |=||Ei2| |Ez2| |Esa
Key vectors: K = X (Shape: Ny x Dq)
Value vectors: V = XW,, (Shape: Ny x D)) Ki = Eq; Ex Es s
Similarities: E = QKT (Shape: Ny x Ny) E;; = Q; - K;/ sqrt(Dg) (5 Li) Li)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) ‘ -
Output vectors: Y = AV (Shape: Ny xD,) Y; = 3 A}V, t 1 f
X4 X, Xs

Slide credit: Justin Johnson

Self-Attention Layer

Self attention doesn’t “know”
the order of the vectors it is
processing!

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: (Shape: Dy x Dq)
Value matrix: W,, (Shape: Dy x D))

Query matrix: W, (Shape: Dy x Dq) In order to make processing

position-aware, concatenate
input with positional

Computation: encoding

Query vectors: O = XW

Key vectors: K = X (Shape: Ny x Dq)
Value vectors: V = XW,, (Shape: Ny x Dy,
Similarities: E = QK" (Shape: Ny x Ny) E;; = Q, - K,/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x D) Y; = > AV,

E can be learned lookuptable,
?r fixed function

Y1 Y2 Y3
t 4 4
Product(—), Sum({) |
t
A1,3 A2,3 A3,3
A1,2 A2,2 A3,2
A1,1 A2,1 A3,1
t
Softmax(1) |
f
E1,3 E23 E3,3
E1,2 E22 E3,2
E1,1 E2,1 E3,1
1t b 1
Q Q Q
t i §
X, X, || X
E(1) [E@) E@)

Slide credit: Justin Johnson

e —
Big cat [END]

¢ 4 t
° | Product(—), Sum(1) |
Masked Self-Attention Layer i
Inputs: Va = 0 0 Az
Input vectors: X (Shape: Ny x Dy) , . V, =] o A A
Value matrix: W, (Shape: Dy x Dy) ahead” in the sequence Vi = A Asrl [Ags
Query matrix: (Shape: Dy x Dq) t
Used for language | Softmax() |
modeling (predict next ol o "
Computation: word) LS Saiz
Query vectors: O = X K, = = E,, Es,
Key vectors: K = X (Shape: Ny x Dq)
Value vectors: V = XW,, (Shape: Ny x D)) Ki = Eq; Ex Es s
Similarities: E = (Shape: Ny x Ny) E;; = Q; - K,/ sqrt(Dg) (5 (5 6
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x D) Y; = > AV, t t f

[START] Big cat

Slide credit: Justin Johnson

Multihead Self-Attention Layer

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: (Shape: Dy x Dq)
Value matrix: W,, (Shape: Dy x D))

Query matrix: W, (Shape: Dy x Dg) Use H independent

“Attention Heads” in
parallel

Computation:

Query vectors: O = XW

Key vectors: K = X (Shape: Ny x Dq)

Value vectors: V = XW,, (Shape: Ny x D))

Similarities: E = QK" (Shape: Ny x Ny) E;; = Q, - K,/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x D) Y; = > AV,

Concat

7\

N
7\

Slide credit: Justin Johnson

Three Ways of Processing Sequences

Recurrent Neural Network

Y4 > Y > Y3 g/

Works on Ordered Sequences
(+) Good at long sequences:
After one RNN layer, h; "sees”
the whole sequence

(-) Not parallelizable: need to
compute hidden states
sequentially

Slide credit: Justin Johnson

Three Ways of Processing Sequences

Recurrent Neural Network

Y1 > Yo > Y3 > Y4

Works on Ordered Sequences
(+) Good at long sequences:
After one RNN layer, h; "sees”
the whole sequence

(-) Not parallelizable: need to
compute hidden states
sequentially

1D Convolution

Y1 Yo Y3 Y4

4 A x 4 X A

X4 X5 X3 X4

Works on Multidimensional
Grids

(-) Bad at long sequences: Need
to stack many conv layers for
outputs to “see” the whole
sequence

(+) Highly parallel: Each output
can be computed in parallel

Slide credit: Justin Johnson

Three Ways of Processing Sequences

Recurrent Neural Network

Y1 > Yo > Y3 > Y4

Works on Ordered Sequences
(+) Good at long sequences:
After one RNN layer, h; "sees”
the whole sequence

(-) Not parallelizable: need to
compute hidden states
sequentially

1D Convolution

Y1 Yo Y3 Y4

XX

X4 X5 X3 X4

Works on Multidimensional
Grids

(-) Bad at long sequences: Need
to stack many conv layers for
outputs to “see” the whole
sequence

(+) Highly parallel: Each output
can be computed in parallel

Self-Attention

Works on Sets of Vectors

(+) Good at long sequences:
after one self-attention layer,
each output “sees” all inputs!
(+) Highly parallel: Each output
can be computed in parallel

(-) Very memory intensive

Slide credit: Justin Johnson

Three Ways of Processing Sequences

Recurrent Neural Network

1D Convolution

Self-Attention

Attention Is all you need

Vaswani et al, NeurlPS 2017

Works on Ordered Sequences
(+) Good at long sequences:
After one RNN layer, h; "sees”
the whole sequence

(-) Not parallelizable: need to
compute hidden states
sequentially

Works on Multidimensional
Grids

(-) Bad at long sequences: Need
to stack many conv layers for
outputs to “see” the whole
sequence

(+) Highly parallel: Each output
can be computed in parallel

Works on Sets of Vectors

(+) Good at long sequences:
after one self-attention layer,
each output “sees” all inputs!
(+) Highly parallel: Each output
can be computed in parallel

(-) Very memory intensive

Slide credit: Justin Johnson

The Transformer

X4 X5 X3 X4

Vaswani et al, “Attention is all you need”, NeurlPS 2017

Slide credit: Justin Johnson

The Transformer

t
All vectors interact Self-Attention
with each other t t t t
1 1 1 |
X4 Xy X3 X4

Vaswani et al, “Attention is all you need”, NeurlPS 2017

Slide credit: Justin Johnson

The Transformer

Vaswani et al, “Attention is all you need”, NeurlPS 2017

MLP independently
on each vector

All vectors interact
with each other

Y1 Yo Y3 Y4

t t t t

t t t t

MLP MLP MLP MLP
t t t t
t
Self-Attention

t t t 1

1 1 1 |
X4 X X3 X4

Slide credit: Justin Johnson

The Transformer

Vaswani et al, “Attention is all you need”, NeurlPS 2017

MLP independently
on each vector

Residual connection

All vectors interact
with each other

Y1 Yo Y3 Y4

t t t t

t t t t
MLP MLP MLP MLP

t t t t

;
Self-Attention

t t t 1

1 1 1 |
X4 X X3 X4

Slide credit: Justin Johnson

Y1 Y2 Y3 Ya
The Transformer LU S Ll
Recall Layer Normalization:
Given hy, ..., hy (Shape: D))
scale: y (Shape: D) _ | | I |
Shift B (Shape: D) ~ MLP independently MLP| MLP | MLP| |MLP
= (1/D)3; h;; (scalar) on each vector f f
= (; (h; -)2)1/2 (scalar) |
(h M) / of Layer Normalization
y- *z,+ [: :
Residual connection o
All vectors interact Self-Attention
Ba etal, 2016 with each other f f f f
! f f 1
X4 Xy X3 X4

Vaswani et al, “Attention is all you need”, NeurlPS 2017

Slide credit: Justin Johnson

The Transformer

Vaswani et al, “Attention is all you need”, NeurlPS 2017

MLP independently
on each vector

Residual connection

All vectors interact
with each other

Y1 Y2 Y3 Ya
t t t t
t
I I I I
MLP MLP MLP MLP
{ 1 I |
Layer Normalization

:
Self-Attention
t t t t
! f f 1
X4 X5 X3 X4

Slide credit: Justin Johnson

Y1 Yo Y3 Ys

The Transformer i a
Layer Normalization
Residual connection :@I'.)
MLP independently MII_P MII_P MII_P MII_P
on each vector : . i "
1

Vaswani et al, “Attention is all you need”, NeurlPS 2017

Layer Normalization

Residual connection :@:9

All vectors interact Self-Attention

with each other t t t t
1 1 1 |
X4 Xy X3 X4

Slide credit: Justin Johnson

Y1 Yo Y3 Y4
1 1 1 1

Layer Normalization
Transformer Block: ’q")
Input: Set of vectors x
Output: Set of vectors y | | | |

The Transformer

Self-attention is the only 1 | | f

interaction between vectors! Y
Layer Normalization

Layer norm and MLP work :/ﬁ‘a
independently per vector

Self-Attention
Highly scalable, highly t t t t
parallelizable t t t t
X4 Xy X3 X4

Vaswani et al, “Attention is all you need”, NeurlPS 2017

Slide credit: Justin Johnson

The Transformer

Transformer Block:
Input: Set of vectors x
Output: Set of vectors y

Self-attention is the only
interaction between vectors!

Layer norm and MLP work
independently per vector

Highly scalable, highly
parallelizable

Vaswani et al, “Attention is all you need”, NeurlPS 2017

A Transformer is a

sequence of transformer

blocks

Layer Normalization

Self-Attention
t 1 t t

Slide credit: Justin Johnson

The Transformer

Vaswani et al, “Attention is all you need”, NeurlPS 2017

Output

Probabilities
(
Add & Norm)
Feed
Forward
r 1 ~\ (CAdd & Norm :
g T Multi-Head
Feed Attention
Forward T 7 Nx
I
Nix Add & Norm
r—>'| Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
_t . S
L_‘ J _)
Positional o ¢ Positional
Encoding Encoding
Input Qutput
Embedding Embedding
Inputs Outputs
(shifted right)

Encoder-Decoder

GLUE Benchmark

Rank Name Model URL Score ColLA SST-2 MRPC STS-B QQP MNLI-m MNLI-mm QNLI RTE WNLI AX

1T HFLIFLYTEK MacALBERT + DKM 90.7 74.8 97.0 94.5/926 92.8/92.6 74.7/90.6 91.3 91.1 97.8 92.0 94.5 52.6

e 2 Alibaba DAMO NLP StructBERT + TAPT g 90.6 753 97.3 93.9/91.9 93.2/92.7 74.8/91.0 90.9 90.7 97.4 91.2 94.5 49.1

L 3 PING-AN Omni-Sinitic ALBERT + DAAF + NAS 90.6 73.5 97.2 94.0/92.0 93.0/92.4 76.1/91.0 91.6 91.3 97.5 91.7 94.5 512

4 ERNIE Team - Baidu ERNIE E 90.4 74.4 97.5 93.5/91.4 93.0/92.6 75.2/90.9 91.4 91.0 96.6 90.9 94.5 51.7

5 T5Team - Google TS C)Jl 90.3 71.6 97.5 92.8/90.4 93.1/928 75.1/90.6 92.2 91.9 96.9 9238 94.5 53.1

6 Microsoft D365 Al & MSR Al & GATECH MT-DNN-SMART g 89.9 69.5 97.5 93.7/91.6 92.9/92.5 73.9/90.2 91.0 90.8 99.2 89.7 94.5 50.2

i 7 Zihang Dai Funnel-Transformer (Ensemble B10-10-10H1024) C}J' 89.7 70.5 97.5 93.4/91.2 92.6/923 75.4/90.7 91.4 91.1 958 90.0 94.5 51.6

+ 8 ELECTRA Team ELECTRA-Large + Standard Tricks g 89.4 71.7 97.1 93.1/90.7 92.9/92.5 75.6/90.8 91.3 90.8 95.8 89.8 91.8 50.7

o= 9 Huawei Noah's Ark Lab NEZHA-Large 89.1 69.9 97.3 93.3/91.0 92.4/91.9 74.2/90.6 91.0 90.7 95.7 88.7 93.2 479

= 10 Microsoft D365 Al & UMD FreeLB-RoBERTa (ensemble) g 88.4 68.0 96.8 93.1/90.8 92.3/92.1 74.8/90.3 91.1 90.7 95.6 88.7 89.0 50.1

11 Junjie Yang HIRE-RoBERTa [:)J' 883 68.6 97.1 93.0/90.7 92.4/92.0 74.3/90.2 90.7 90.4 95.5 879 89.0 493

12 Facebook Al RoBERTa U 88.1 67.8 96.7 92.3/89.8 92.2/91.9 74.3/90.2 90.8 90.2 95.4 88.2 89.0 48.7

b 13 Microsoft D365 Al & MSR Al MT-DNN-ensemble [:)1' 87.6 68.4 96.5 92.7/90.3 91.1/90.7 73.7/89.9 87.9 87.4 96.0 86.3 89.0 428
14 GLUE Human Baselines GLUE Human Baselines g 87.1 66.4 97.8 86.3/80.8 92.7/92.6 59.5/80.4 92.0 928 91.2 93.6 95.9

15 Stanford Hazy Research Snorkel MeTal [.__}Jl 83.2 63.8 96.2 91.5/88.5 90.1/89.7 73.1/89.9 87.6 87.2 93.9 80.9 65.1 39.9

source: https://gluebenchmark.com/leaderboard

GLUE Benchmark

Rank Name Model URL Score ColLA SST-2 MRPC STS-B QQP MNLI-m MNLI-mm QNLI RTE WNLI AX

1T HFLIFLYTEK MacALBERT + DKM 90.7 74.8 97.0 94.5/926 92.8/92.6 74.7/90.6 91.3 91.1 97.8 92.0 94.5 52.6

e 2 Alibaba DAMO NLP StructBERT + TAPT g 90.6 753 97.3 93.9/91.9 93.2/92.7 74.8/91.0 90.9 90.7 97.4 91.2 94.5 49.1
L 3 PING-AN Omni-Sinitic ALBERT + DAAF + NAS 90.6 73.5 97.2 94.0/92.0 93.0/92.4 76.1/91.0 91.6 91.3 97.5 91.7 94.5 512
4 ERNIE Team - Baidu ERNIE E 90.4 74.4 97.5 93.5/91.4 93.0/92.6 75.2/90.9 91.4 91.0 96.6 90.9 94.5 51.7

5 T5Team - Google TS C)Jl 90.3 71.6 97.5 92.8/90.4 93.1/928 75.1/90.6 92.2 91.9 96.9 9238 94.5 53.1

6 Microsoft D365 Al & MSR Al & GATECH MT-DNN-SMART g 89.9 69.5 97.5 93.7/91.6 92.9/92.5 73.9/90.2 91.0 90.8 99.2 89.7 94.5 50.2

i 7 Zihang Dai Funnel-Transformer (Ensemble B10-10-10H1024) C}J' 89.7 70.5 97.5 93.4/91.2 92.6/923 75.4/90.7 91.4 91.1 958 90.0 94.5 51.6
+ 8 ELECTRA Team ELECTRA-Large + Standard Tricks g 89.4 71.7 97.1 93.1/90.7 92.9/92.5 75.6/90.8 91.3 90.8 95.8 89.8 91.8 50.7
o= 9 Huawei Noah's Ark Lab NEZHA-Large 89.1 69.9 97.3 93.3/91.0 92.4/91.9 74.2/90.6 91.0 90.7 95.7 88.7 93.2 479
= 10 Microsoft D365 Al & UMD FreeLB-RoBERTa (ensemble) g 88.4 68.0 96.8 93.1/90.8 92.3/92.1 74.8/90.3 91.1 90.7 95.6 88.7 89.0 50.1
11 Junjie Yang HIRE-RoBERTa [:)J' 883 68.6 97.1 93.0/90.7 92.4/92.0 74.3/90.2 90.7 90.4 95.5 879 89.0 493

12 Facebook Al RoBERTa U 88.1 67.8 96.7 92.3/89.8 92.2/91.9 74.3/90.2 90.8 90.2 95.4 88.2 89.0 48.7

b 13 Microsoft D365 Al & MSR Al MT-DNN-ensemble [:)1' 87.6 68.4 96.5 92.7/90.3 91.1/90.7 73.7/89.9 87.9 87.4 96.0 86.3 89.0 428

GLUE Human Baselines GLUE Human Baselines : . .8 86.3/80.8 92.7/92.6 59.5/80.4
15 Stanford Hazy Research Snorkel MeTal [.__J 83.2 63.8 96.2 91.5/88.5 90.1/89.7 73.1/89.9 87.6 87.2 93.9 80.9 65.1 39.9

source: https://gluebenchmark.com/leaderboard

SYSTEM PROMPT (HUMAN-WRITTEN)

In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously unexplored
valley, in the Andes Mountains. Even more surprising to the researchers was the fact that the unicorns
spoke perfect English.

MODEL COMPLETION (MACHINE-WRITTEN, 10 TRIES)

The scientist named the population, after their distinctive horn, Ovid’s
Unicorn. These four-horned, silver-white unicorns were previously unknown to
science.

Now, after almost two centuries, the mystery of what sparked this odd
phenomenon is finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and
several companions, were exploring the Andes Mountains when they found a small
valley, with no other animals or humans. Pérez noticed that the valley had what
appeared to be a natural fountain, surrounded by two peaks of rock and silver
Snow.

Pérez and the others then ventured further into the wvalley. “By the time we
reached the top of one peak, the water looked blue, with some crystals on top,”

said Pérez.
Source: OpenAl, “Better Language Models and Their Implications”
https://openai.com/blog/better-language-models/

Can Attention/Transformers be used
from more than text processing?

VILBERT: A Visolinguistic Transformer

i 17

gt
Rt Wi

3 ER b} "f?\«J\P. Ty

pop artist performs at the a worker helps to clear blue sofa in the living
festival in a city. the debris. room.

Image and captions from: Sharma, Piyush, et al. "Conceptual captions: A cleaned,
hypernymed, image alt-text dataset for automatic image captioning." ACL. 2018.

VILBERT: A Visolinguistic Transformer

Faster R-CNN Multimodal Transformer
RPN j H B ENEB
Rol ..
Pool Vision e\ Language
~—][]0 Il EE BB
blue sofa in the living
room.

Lu et al "Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks." NeurlPS. 2019.
Ren et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." NeurlPS. 2015.

VILBERT Demo:

https://demo.allennlp.org/visual-question-answering

E———
Summary

Self-Attention Transformer Model VILBERT

Qutput
Probabilities

Y Yo Ya
t L] t
I Product(—), Sum(7)
1

Add & Norm

AGTE Nom) N N B B

- Vision N Language

: Ado & o Mutt-Head
[Softmax(]) | Feed Attention
T Forward

Ks || E E E _I
3 1,3 23 33 Nx Add & Norm Je—
2 I ||| Bz | |Ez| |Es2 Ada SiNom Masked
= = = = Mult-Head Mutti-Head]
o K = Eqy 21| | Esa Attention Attention | B B B B
t 4 t Ammsak t
Q Q, Q,] J —)

: . = Positional e Positional
B3 < B Encoding ¥ Encoding
Embedding

Embedding

I I

Inputs Qutputs
(shifted right)

