Topics:
e Recurrent Neural Networks

* Long Short-Term Memory
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Assignment 3
e UPDATE: Now due March 16th 11:59pm EST.

Projects

* Project proposal due March 17t (into grace period)

Meta office hours on language models!
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(Vanilla) Recurrent Neural Network

The state consists of a single “hidden” vector h:

y Yt — Whyht + by

ht — tanh(Whhht_l -+ thﬂ?t)
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Recurrent Neural Network

We can process a sequence of vectors x by
applying a recurrence formula at every time step:

f
he|=fw|(Pi—1, ) M:>
?

new state / old state input vector at
some time step

some function
with parameters W
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RNN: Computational Graph: Many to Man L

y. P L, Y. P L, ys P Ls yr | Ly
W X X, Xs
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target chars: “e” iR “I”

Example: 10 05 0.1 ;

Character-level output layer | 22 e - L

Language Model A1 £ = =
T | | Wy

Vocabulary: , 0.3 1.0 0.1 \w_nh|-03

hidden layer | -0.1 0.3 -0.5 > 0.9

[h,e,l,0] 0.9 0.1 -0.3 07
T | | v

Example training 1 0 0 0

Seq uence: input layer g 8 ? (1)

“hello” E 0 0 :

input chars: “h” “g” I 1
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static void stat PC_SEC _ read mostly offsetof(struct seq_argsqueue, \
pC>[11]);

static void
os_prefix(unsigned long sys)
{

PUT_PARAM RAID(2, sel) = get_state_state();
set_pid sum((unsigned long)state, current_state_str(),
{(unsigned long)-1->1r full; low;
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Searching for interpretable cells

Cell that turns on inside comments and quotes:

->lsm_str, GFPIKERNEL)

| ——— quote/comment cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016

Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission




Searching for interpretable cells

#wifdef CONFIG_AUDITSYSCALL
static inline int audit_match_class_bits(int class, u32 *mask)
{
Imtai
if (classes[ cr 1ss]) {

for (1 = o; € AUDIT_BITMASK_SIZE; i++)

if (mask([i] l classes[class][ 1)

return o;

}
return 1;

code depth cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016




Multilayer RNNs A TR ET T
hlztanhW’(hi_l) I I I I I I I
t b > B B
h € R® W' [nx 2n] F Y Y Y Y Y%
BNERENERENEN
LS Sy Sy S S N
s
A % 2 X & 4 &
depth
—_—
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- - Bengio et al, “Learning long-term dependencies with gradient descent
Va n I I I a R N N G rad I e nt F I OW is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

hy = tanh(Whphi—1 + Wanay)
hi—1
= tanh [ (W, Whe
NPRREN A N o (003 92 (7))

h T g = tanh (W (h;j))
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- - Bengio et al, “Learning long-term dependencies with gradient descent
a n I a ra I e n OW is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,

ICML 2013

Backpropagation from h,
to h.4 multiplies by W
(actually W,,)

e ™
W »Q;! -~ hy = tanh(Wpnhi—1 + Wmhﬂz)

L = tanh ((Whh Wh:r) ( t_l))
ht- 1——> stack h Ty

T T (e ()

X

v
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Bengio et al, “Learning long-term dependencies with gradient descent

[ L]
Va n I I I a I Q N N G rad I e nt F I OW is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,

ICML 2013
™ y 1 B ™
W—"OZ tanh W-’OZ tanh W-’OZ tanh W-’OZ tanh

ho 51

i . ‘I L. ., e *I | S iy | Y

| | | |
X4 X, X3 X4

Computing gradient
of hy involves many
factors of W

(and repeated tanh)
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Vanilla RNN G

radient Flow

Bengio et al, “Learning long-term dependencies with gradient descent
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,

ICML 2013
) i ‘ i ™ B
W—"OZ tanh W-’OZ tanh W-’OZ tanh W—’Oz tanh
i i i 1Al
hO - stiIck Lﬂ h 1 - stjck L_.. h2 - — stiIck |—% h3 - — stlck |—;—- h 4
— ] S By S L
X1 X X3 Xy

Computing gradient
of hy involves many
factors of W

(and repeated tanh)

Largest singular value > 1:
Exploding gradients

Largest singular value < 1:
Vanishing gradients
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- - Bengio et al, “Learning long-term dependencies with gradient descent
Va n I I I a R N N G rad I e nt F I OW is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

En / \ B By

W—"O—" tanh W-’OZ tanh W-’OZ tanh W—"O—" tanh

P stiICk Tl—a h, s—= itl:k ‘L’ h, T—* iteIck TI—% h, S Stl:k Lz h,

ho«-— 2 -
1 1 ) 1 !
| | | |

X1 X2 X3 X4

Ohy
Ohy1
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- - Bengio et al, “Learning long-term dependencies with gradient descent
Va n I I I a R N N G rad I e nt F I OW is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

N

W—"OZ tanh W-’OZ tanh | W-’OZ tanh W-’OZ tanh

i . ‘I L. ., e *I | S iy | Y

1 N !
| | | |

X1 X2 X3 X4

oL T 0L, ohy /
W thl W ohs 1 tanh (Whh,ht—l + Wmhxt)whh

~

OLr OLt Ohy Ohy OLr (HT Oh; )8h1
ow Ohry Ohy_1 ="~ OW — Ohyp
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- - Bengio et al, “Learning long-term dependencies with gradient descent
Va n I I I a R N N G rad I e nt F I OW is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

= B By

W—"OZ tanh W-’OZ tanh | W-’OZ tanh W-’OZ tanh

i . ‘I L. ., e *I | S iy | Y

ho 51
[ f .

| | | |

T tanh’'
oL T 3Lt Alwe_lys.< 1 _
—_— _ Vanishing gradients
oW = 2t=1 g -

OLr o OLt Ohy % L OLr (HT Oh; )8h1
oW Ohp Ohy 1 " OW Ohy t=2 9h, ,’ OW
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Vanilla RNN Gradient Flow

W—"O—" tanh

al

Bengio et al, “Learning long-term dependencies with gradient descent
is difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

En P \ a

W—"OZ tanh W-’OZ tanh W—’O—" tanh

hO‘_

|
X4

=4 i, O

- T A > h

B By

H—ﬁ’ h, T 5‘%‘3" Li h,

| |
X X3

Computing gradient

Largest singular value > 1:
Exploding gradients

of hy involves many
factors of W
(and repeated tanh)

Largest singular value < 1:
Vanishing gradients

|
X4

Gradient clipping: Scale
gradient if its norm is too big
grad_norm = np.sum(grad * grad)

if grad_norm > threshold:
grad *= (threshold / grad_norm)
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Vanilla RNN G

Bengio et al, “Learning long-term dependencies with gradient descent
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,

radient Flow

ICML 2013
) i ‘ i ™ B
W—"OZ tanh W-’OZ tanh W-’OZ tanh W—’Oz tanh
il i i }

L.

hO‘_

Computing gradient
of hy involves many

TLﬂ h1 - " stack
1 1 )

T
S — o E— »
h tack T |— h stack |— h
2 - T 3 - T 4

| | |

Largest singular value > 1:
Exploding gradients

factors of W
(and repeated tanh)

Largest singular value < 1:

Vanishing gradients —» Change RNN architecture
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Long Short Term Memory (LSTM)

Vanilla RNN LSTM
7 o
f — a W (h‘t—l)
——L 0 0 “
b Ty g tanh
c=fOc_1+i0g
ht = o ® tanh(c;)

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation
1997
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Meet LSTMSs
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LSTMs Intuition: Memory

 Cell State / Memory

Ci1 Cy

®
®
v
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LSTMs Intuition: Forget Gate

 Should we continue to remember this “bit” of information or
not?

ft=0 Wy lht—1,2:] + by)
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LSTMs Intuition: Input Gate

* Should we update this “bit” of information or not?

— If so, with what?

| ’it — 0 (Wi'[ht—lv*rt] + bi)
| :3 C’t = tanh(We-[hi—1,2¢] + be)

Tt
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LSTMs Intuition: Memory Update

* Forget that + memorize this

C

Ci_ t

t—1 @7 ’
it

o,
1 d

Ci = fi % Ci_q + 14t + Cy
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LSTMs Intuition: Output Gate

e Should we output this ;”Rit” of information to “deeper” layers?

Op = U(Wo [ht—laxt] + bo)
hy = o4 * tanh (C})

he—1

i
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LSTMs Intuition: Additive Updates

<

. - « ——
t—1 ® @ >

Backpropagation from c,
to ¢, , only elementwise
multiplication by f, no
matrix multiply by W
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LSTMs Intuition: Additive Updates
& ®) 6

A
tlninterrupted gradipnt flow! T
[ < N\
——® @ T o —
A Iucﬂ_;a%moﬂ ‘ A
— | | | J > —>
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LSTMs Intuition: Additive Updates

& ®) )
- tlnlnterrupted gradlant flow! T\
A Ilm}%w A
\I )_’ / ’\I /_’
© &
simaro || t;'Eﬂnm“'Tnn Mtﬂl"
) I ||||||.||||| |||||I At




LSTMs
* A pretty sophisticated cell

~ T‘\ e ' T\
— —(X) @ A > -
A P ot A
[o][o][tenh] [0 ]
— | | | J > —
Y J o\ ),
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LSTM Variants: Gated Recurrent Units

e Changes:
— No explicit memory; memory = hidden output
— Z = memorize new and forget old

hy
ht—1/r @ @\\L ~t = U(Wz . [ht_:hxt})
\ U% ‘g
Tt = O (Wr . [ht—laxt])
A 7 hy h; = tanh (W - [re * hy—1,24])

ht:(l—zt)*ht—l‘}_zt*ibt
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Other RNN Variants

[An Empirical Exploration of
Recurrent Network Architectures,

Jozefowicz et al., 2015] MUTI:
2 = sigm(Waze +b;)
r = sigm(Wex + Wiohe +b,)
heyy = tanh(Wyn(r @ hy) + tanh(z,) + by) © 2
he®(1-2)
MUT2:
z = sigm(Weax, + Wighy +5,)
r = sigm(x, + Wihy +b;)
hi+1 = tanh(Win(r @ he) + Wenze + bu) © 2
he ® (1 —2)
MUT3:
2 = sigm(Wex, + Wy, tanh(hy) + b;)
r = sigm(Weze + Wychy + b;)
hiyy = tanh(Wyn(r © he) + Wepz +by) © 2
ho(l-2)
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Neural Image Captioning

4096-dim

Convolution Layer Pooling Layer Convolution Layer Pooling Layer  Fully-Connected MLP
. N )
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Neural Image Captioning

4096-dim

||ﬁ o=
~
~
- ISo

Convolution Layer Pooling Layer Convolution Layer Pooling Layer  Fully-Connected MLP
+ Non-Linearity + Non-Linearity
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Neural Image Captioning

P(next) P(next) P(next) P(next) P(next) P(next)

t + t+t t+ t 1

—> > > > > >
§ | <start> Two people and two horses.

[ 2
Rl

bedding (VGGNet)
J I : E




Neural Image Captioning

P(next) P(next) P(next) P(next) P(next) P(next)

t *+t *rt 1 t 1
> S Yi—>{Yo—{Y3—>{Y4—>{U5,

rTtr 11t 1t 1

g _ <start> Two people and two horses.

[ 2
Rl

bedding (VGGNet)
J I : E




One-hot representations

* Simple way how to encode discrete concepts, such as words

Example:

vocabulary = (Monday, Tuesday, 1is, a, today)
Monday = [1 0 O 0O O]

Tuesday = [0 1 0 0 O]

1.8 = [@ 6 1L 8 0]

a [ & ) 1 &)

today = [0 0 0 0 1]

Also known as 1-of-N (where in our case, N would be the size of the vocabulary)
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An aside: Representing words

You can get a lot of value by representing a word by
means of its neighbors

“You shall know a word by the company it keeps”
(J. R. Firth 1957: 11)
One of the most successful ideas of modern statistical NLP

N These words will represent banking 24

You can vary whether you use local or large context
to get a more syntactic or semantic clustering




Distributed Representations Toy Example

* Can we interpret each dimension?

g
(a) (b) c';; $

000 === GOOO
@000
o] Yolo

| |
—1 1
) ococeo )
< 0000 O




Power of distributed representations!

Local ..O.=VR+HR+HE=7
Distributed .. O.=V+H+ESO

>




Vector representations

* |Instead of a sparse one-hot vector, represent words as a dense
vector

r
B

PREVIOUS WORD HIDDEN LAYER CURRENT WORD

* Bigram neural language model

» Previous word is used to predict the current word by going through hidden
layer (classifier with as many outputs as there are words in the vocabulary)

A
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Linguistic regularities in word vectors

* Recently, it was shown that word vectors capture many linguistic properties
(gender, tense, plurality, even semantic concepts like “capital city of”)

* We can do nearest neighbor search around result of vector operation “King
— man + woman” and obtain “Queen” (Linguistic reqularities in continuous
space word representations (Mikolov et al, 2013))

WOMAN
QUEENS

/ AUNT
MAN / KINGS
UNCLE
QUEEN \ QUEEN

KING KING
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Word representations using RNNs

@ Input layer w and output layer y have the same dimensionality as the
vocabulary

@ Hidden layer s is orders of magnitude smaller

@ U is the matrix of weights between input and hidden layer, V is the
matrix of weights between hidden and output layer

Georgia |
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Potential Input Representations

« One hot encoding -> FC layer sample ﬂ
.03
Softmax | ‘oo
.84
« Parameters/embeddings A
|ndexed |n a table output layer 2320
« Can be initialized randomly 4T1
* Or can be initialized with
. 0.3
pre-trained word ridden ayer |01 —
embeddings !
input layer é z
0 k 0

input chars:
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Beam Search

Proceed from left to right

Maintain N partial captions

Expand each caption with possible next words
Discard all but the top N new partial translations

— Maintain score for each, e.g. product of probabilities

<END
e
cat 7 50%)
o .\< )
2 partial hypothesis expand hypotheses 2 new partial hypotheses P »‘n::o-;:ud o>
a (0%
| decided },«” 125%) \ . /lix};
My decision / dog - | .
I | thought ,/J (70%) ~abarked _..'-PNI:I'-‘
My » | tI'IEdg o | decided > <START .< (20%) (100%)
i rune | My decision \ <END>
:)r(\zand ey inking ; J \ cat _,/"'( %)
My direction % A2 ™ meowed END:
sort A hie -/ (509 (100
'5-;%;{_\ CEND-
“ dog ¥ (755
(73%] "“n_“l;nm | <E N[
[25%) [100%)
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Summary

* RNNs leverage internal state information to propagate
information across sequence

— Same shared function/parameters

* LSTMs improve gradient flow across the computation graph
with gating

* Next time: Attention mechanisms and transformers to
explicitly access and propagate information
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e
Machine Translation with RNNs and Attention

X X X X Compute alignment scores
a[‘l1 am1 am1 ?1 i = faﬂ(sl-'ll hi) (fan is an MLP)
% 3 3 % estamos
soffmax y Normalize to get
d i & & From final hidden ! attention weights
TR T T ol B LA LR
1

h S h \ h \ h s " s

1 9 B y . ] Set context vector C to a linear
] I I I I I combination of hidden states

¢, = Loy h;

X X X X o C || Y

1 2 3 4 1 0
we are eating bread

[START]

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson



The Transformer B L L

Layer Normalization

Residual connection :(-p

|
MLP independently MLP MLIP MLIP MLIP
on each vector § § § 3

1
Layer Normalization

Residual connection :é

All vectors interact Self-Attention

with each other t 4 4 4
t t t t
X X X X
1 2 3 4

Vaswani et al, “Attention is all you need”, NeurlPS 2017

Slide credit: Justin Johnson



