
Machine Learning Applications

CS 4644-DL / 7643-A
ZSOLT KIRA

Topics:
• Recurrent Neural Networks
• Long Short-Term Memory



Administrivia

• Assignment 3
• UPDATE: Now due March 16th 11:59pm EST.

• Projects
• Project proposal due March 17th (into grace period)

• Meta office hours on language models!
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(Vanilla) Recurrent Neural Network
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The state consists of a single “hidden” vector h:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
Sometimes called a “Vanilla RNN” or an “Elman RNN” after Prof. Jeffrey Elman

h



Recurrent Neural Network

x

RNN

y
We can process a sequence of vectors x by 
applying a recurrence formula at every time step:

new state old state input vector at 
some time step

some function
with parameters W

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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RNN: Computational Graph: Many to Many
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Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Example: 
Character-level
Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Searching for  interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

quote/comment cell

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Searching for  interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

code depth cell

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



time

depth

Multilayer RNNs

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



ht-1

xt
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Vanilla RNN Gradient Flow Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



ht-1

xt
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stack
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Vanilla RNN Gradient Flow
Backpropagation from ht

to ht-1 multiplies by W 
(actually Whh)

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Computing gradient 
of h0 involves many 
factors of W
(and repeated tanh)

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Largest singular value > 1: 
Exploding gradients

Largest singular value < 1:
Vanishing gradients

Computing gradient 
of h0 involves many 
factors of W
(and repeated tanh)

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Largest singular value > 1: 
Exploding gradients

Largest singular value < 1:
Vanishing gradients

Gradient clipping: Scale 
gradient if its norm is too bigComputing gradient 

of h0 involves many 
factors of W
(and repeated tanh)

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Computing gradient 
of h0 involves many 
factors of W
(and repeated tanh)

Largest singular value > 1: 
Exploding gradients

Largest singular value < 1:
Vanishing gradients

Change RNN architecture

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Long Short Term Memory (LSTM)

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 
1997

Vanilla RNN LSTM

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Meet LSTMs

(C) Dhruv Batra 22

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)



LSTMs Intuition: Memory
• Cell State / Memory

(C) Dhruv Batra 23

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)



LSTMs Intuition: Forget Gate

• Should we continue to remember this “bit” of information or 
not?

(C) Dhruv Batra 24

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)



LSTMs Intuition: Input Gate
• Should we update this “bit” of information or not?

– If so, with what?

(C) Dhruv Batra 25

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)



LSTMs Intuition: Memory Update

• Forget that + memorize this

(C) Dhruv Batra 26

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)



LSTMs Intuition: Output Gate

• Should we output this “bit” of information to “deeper” layers?

(C) Dhruv Batra 27

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)



LSTMs Intuition: Additive Updates

(C) Dhruv Batra 28

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

Backpropagation from ct
to ct-1 only elementwise 
multiplication by f, no 
matrix multiply by W



LSTMs Intuition: Additive Updates

(C) Dhruv Batra 29

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

Uninterrupted gradient flow!



LSTMs Intuition: Additive Updates

(C) Dhruv Batra 30

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

Uninterrupted gradient flow!
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LSTMs
• A pretty sophisticated cell

(C) Dhruv Batra 31

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)



LSTM Variants: Gated Recurrent Units

• Changes: 
– No explicit memory; memory = hidden output
– Z = memorize new and forget old

(C) Dhruv Batra 32

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)



Other RNN Variants

[An Empirical Exploration of 
Recurrent Network Architectures,
Jozefowicz et al., 2015]



Neural Image Captioning

(C) Dhruv Batra 34

Convolution Layer
+ Non-Linearity

Pooling Layer Convolution Layer
+ Non-Linearity

Pooling Layer Fully-Connected MLP

Image Embedding (VGGNet)
4096-dim



Neural Image Captioning

(C) Dhruv Batra 35

Convolution Layer
+ Non-Linearity

Pooling Layer Convolution Layer
+ Non-Linearity

Pooling Layer Fully-Connected MLP

4096-dim

Image Embedding (VGGNet)



Neural Image Captioning

(C) Dhruv Batra 36
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Neural Image Captioning

(C) Dhruv Batra 37
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One-hot representations



An aside: Representing words



Distributed Representations Toy Example

• Can we interpret each dimension?

(C) Dhruv Batra 40

Slide Credit: Moontae Lee 



Power of distributed representations!

(C) Dhruv Batra 41

Local

Distributed

Slide Credit: Moontae Lee 



Vector representations

• Instead of a sparse one-hot vector, represent words as a dense
vector



Linguistic regularities in word vectors



Word representations using RNNs



.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02

.08

.79
Softmax

“e” “l” “l” “o”
Sample• One hot encoding -> FC layer

• Parameters/embeddings 
indexed in a table 

• Can be initialized randomly
• Or can be initialized with 

pre-trained word 
embeddings

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Potential Input Representations



Beam Search
• Proceed from left to right
• Maintain N partial captions
• Expand each caption with possible next words
• Discard all but the top N new partial translations

– Maintain score for each, e.g. product of probabilities

https://geekyisawesome.blogspot.com/2016/10/using-beam-search-to-generate-most.html



Summary

• RNNs leverage internal state information to propagate 
information across sequence
– Same shared function/parameters

• LSTMs improve gradient flow across the computation graph 
with gating

• Next time: Attention mechanisms and transformers to 
explicitly access and propagate information



we are eating
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Set context vector c to a linear 

combination of hidden states

ct = ∑iat,ihi

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

x
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From final hidden 
state: Initial decoder 
state s0

Compute alignment scores

et,i = fatt(st-1, hi)        (fatt is an MLP)

[START]

Machine Translation with RNNs and Attention

Normalize to get 

attention weights

0 < at,i < 1    ∑iat,i = 

1

Slide credit: Justin Johnson



The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Self-Attention

Layer Normalization

+

MLP MLP MLP MLP

+

Layer Normalization

y1 y2 y3 y4

All vectors interact 
with each other

Residual connection

MLP independently 
on each vector

Residual connection
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x

3

x

4

Slide credit: Justin Johnson


