Topics:
* CNNs
* Transfer Learning

 Visualization

CS 4644-DL / 7643-A
ZSOLT KIRA

e Assignment 2
* Duesoon!
* Resources (in addition to lectures):

* DL book: Convolutional Networks
o CNN notes https://www.cc.gatech.edu/classes/AY2022/cs7643 spring/assets/L10 cnns notes.pdf

o Backprop notes https://www.cc.gatech.edu/classes/AY2022/cs7643 spring/assets/L10 cnns backprop notes.pdf
. HW2 Tutorial @113, Conv @116, Focal Loss @117

* Slower OMSCS lectures on dropbox: Module 2 Lessons 5-6 (M2L5/M2L6)
(https://www.dropbox.com/sh/iviro188gg0b4vs/AADdHxX Uy1TkpF yvIzX0OnPa?dl=0)

 Meta OH right after this lecture (2pm ET)!
* Projects
* Project proposal due March 13t
* Some Meta project topics up.
* March 8t — Class will be used for project planning session
* Form teams and topic now!

[[[[

[[[[

[[[[

[[[[

[4_%7 [[[A LA

[[[[

I I 77774 l /4 Loss
! | | ’ | >
| _/ | | |

| T | | |

| | | ==

I Convolution + ! _ I Convolution + | Fully

| Non-Linear ! Po°ling | Nonlinear | Connected

| Layer : Layer : Layer : Layers

[

Adding a Fully Connected Layer

These architectures have existed since 1980s

C3: f. maps 16@10x10
S4: f. maps 16@5x5

|T_
%

C1: feature maps
6@28x28

INPUT

32x32 S2: f. maps

C5: layer
6@14x14

120

Convolutions

Convolutions

Subsampling

ONN

Subsampllng

F6 layer OUTPUT

FuII coanectlon GaUSS|an connections
Full connectlon

LeNet Architecture

Image Credit: Yann LeCun, Kevin Murrhy:

The Importance of Benchmarks

AdvProp [EFﬁ_cientNe‘r—ET

E —4
i —@

PNASNet;s GPIPE
ResNeXt-101 64x4 g—va%
InceptionV3 _——g——®

i

e

Five Base + Five’ HFRes
AlexNet - 7CNNs P

) el

TOP 1 ACCURACY

From: https://paperswithcode.com

128 Max
pooling

228%lf6tride

of 4 pooling pooling

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4 W=Q-Faans -

==

Q: what is the output volume size? Hint: (227-11)/4+1 = 55

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231

) AlexNet — Layers and Key Aspects

128 204 ><z_43 dense
ense

48
5
N
224 5
& d dense]
AT] L\
55
\Q ~ 128 Max L
228\l trige Max 128 Max pooling 207 2048
of 4 pooling pooling
3 48

Input: 227x227x3 images
First layer (CONV1): 96 11x11 filters applied at stride 4 G e L
==

Output volume [55x55x96] 227

P
— |) 55x 55
227 =

3

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231

) AlexNet — Layers and Key Aspects

128 Max
pooling

228%lf6tride

of 4 pooling pooling

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4
—-
Output volume [95x55x96]

- 11 x11

7

Q: What is the total number of parameters in this layer? /

el |

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231

) AlexNet — Layers and Key Aspects

128 Max
pooling

228%lf6tride

of 4

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4 /

=> m M x 1
Qutput volume [55x55x96]

Parameters: (11113 + 1)"96 = 35K /

3

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231

) AlexNet — Layers and Key Aspects

But have become deeper and more complex

(SIT+1xT

Conv MaxPool
1x1+1(S) 3x34+1(S)

From: Szegedy et al. Going deeper with convolutions

» D Inception Architecture

Key idea: Repeated blocks and multi-scale features

Filter
concatenation

] () (] (2

Previous layer

From: Szegedy et al. Going deeper with convolutions

Inception Module

Key idea: Repeated blocks and multi-scale features

28x28x(128+192+96+250) = 28x28x672

Fittar

COMCHE TSI

28x28x128 28x28x192 28x28x96 28x28x256
L —

" 1x1 conv, | | 313{;;"?, | | EiEEnmr, '
Module input: Input
28x28x256

Naive Inception module

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231r,

Inception Module

Apply 1x1 convolutions as bottleneck layer (decrease
number of channels!)

1x1 CONV

o6 with 32 filters 5¢

(each filter has size
1x1x64, and performs a
B4-dimensional dot

56 product)

64 32

56

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231r,

Inception Module

Using same parallel layers as
naive example, and adding “1x1
conv, 64 filter” bottlenecks:

28x28x480
Conv Ops:
S e [1x1 conv, 64] 28x28x64x1x1x256
28x28x128 28&8@%}{96 28x28x64 LE1000% el < ERRCRRIRL K
L v o [1x1 conv, 128] 28x28x128x1x1x256
1x1 conv, 3131 conv, 5“5;““‘-'- 1’“;‘““"7 [3%3 conv, 192] 28x28x192x3x3x64
AN P W VE——— [5x5 conv, 96] 28x28x96x5x5x64
SRR SSNE R [1x1 conv, 64] 28x28x64x1x1x256
[iﬂ;ﬁnv, : 11‘1;-:“':, ' 3x3 pool Total: 358M ops

N

Module input: | reoue Lo Compared to 854M ops for naive version
28x28x256 Bottleneck can also reduce depth after
pooling layer

Inception module with dimension reduction

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231r,

Inception Module

The Challenge of Depth

S6-layer

20-layer

—
=
T

S6-layer

—
=
SN

—
—
e
)

zh
c
=
o
=

test error (%)

20-layer

3 6

3 4
iter. (led)

Optimizing very deep networks is challenging!

I weight layer I
F(x) lrelu
I weight layer I

X
identity

F(x)+x

Key idea: Allow information from a layer to propagate
to any future layer (forward)

Same is true for gradients!

From: He et al., Deep Residual Learning for Image Recognitici

Several ways to learn
architectures:

Evolutionary learning
and reinforcement
learning

Prune over-
parameterized
networks

Learning of
repeated blocks
typical

test accuracy (%)

28.1 70.2 wall time (hours)

From:

https.//ai.googleblog.com/2018/03/using-evolutionary-automl-to-discover.html

)) Evolving Architectures and AutoML

Computational Complexity

Top-1 accuracy [%]

50

Al

we' $e‘ $\$ $e‘

Phg\x\ P‘\?’ AN oo \16

&°° ?@

Top-1 accuracy [%]

ResNet-50(

Inception-v3 |

g ResNet-101
. ResNet-34
ﬂ ResNet-18

GoogLeNet
ENet

© BN-NIN

BN-AlexNet
AlexNet

Inception-v4

ResNet-152
VGG-16

125M

155M

15 20

25

Operations [G-Ops]

Transfer

Learning &
Generalization

Georgia
Tech

Reality

Multi-class Logistic

Regression R
| Softmax | horse perﬂ
[_FCHxwWx3] L g

| Input

2,
o.
Oq
&/ o s

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Generalization Gegraia |

=

AlexNet

Softmax

FC 1000

FC 4096

FC 4096

— model class —__

Pool

Xo)
x\O
e
ol
| Pool | e
&,

| Pool |

Input |

Generalization

Reality

horse —person

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Georgia
Te%

Al

=

VGG19 5
S .
%(/\«0/ Reality
model class X
Q horse perﬂ
;\30
<L
<</9\\ o
&
o)
6}}‘0&.
—— %%
6}/:.
(o)
2

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Generalization Gegraia |

=

What if we don’t have
enough data?

Step 1: Train on large-scale |
dataset i,

%ll —> Predictions

Convolutional Neural
Networks

Input
Image

Transfer Learning — Training on Large Dataset S|

Tec

=

Step 2: Take your custom data and initialize the network with weights

trained in Step 1

v
| %
Replace last layer with new fully-connected for
output nodes per new category

Initializing with Pre-Trained Network Gegrala |

=

Step 3: (Continue to) train on new dataset
Finetune: Update all parameters

Freeze feature layer: Update only last layer weights (used when not

enough data)

ol

Replace last layer with new fully-connected for
output nodes per new category

Finetuning on New Dataset Gegrola

This works
extremely well! It
was surprising upon

diSCOVG ry_ [fe Best state of the art_ 02 CNN off-the-shelf 88 CNN off-the-shell + augmentation 18 _Specialized CNN
100} , g3 C
Features learned s0f
for 1000 object 60]
categories will ol
work well for
1001st!

Generalizes even

acrosg .taS|.(S From: Razavian et al., CNN Features off-the-shelf: an Astounding
(C|aSSIfICatI0n to Baseline for Recognition

object detection)

Surprising Effectiveness of Transfer Learning Sinceok |

=

Learning with Less Labels

But it doesn’t always work that
well!

If the source dataset you train on
is very different from the target
dataset, transfer learning is not as
effective

If you have enough data for the
target domain, it just results in
faster convergence

See He et al., “Rethinking
ImageNet Pre-training”

Georgia [ﬂ]
Tech

Effectiveness of More Data

Small Data p faw Reoi Irreducible
REaion ower-law Region Errin

Region
Best Guess Error

[
o

7
o,
< 20
=
(1l
=

Generalization Error (Log-scale)

Irreducible Error

—
=

®—@ [ine-tuning

®—® No Fine-tuning Training Data Set Size (Log-scale)

0
10 30 100 300

Number of examples (in millions) — Figure 6: Sketch of power-law learning curves

From: Hestness et al., Deep Learning Scaling Is

From: Revisiting the Unreasonable Predictable

Effectiveness of Data
https.//ai.googleblog.com/2017/07/revisiting-

unreasonable-effectiveness.html Georgia [&
Tech

There is a large number of different low-labeled settings in DL research

Setting Source Target Shift Type
Semi-supervised Single labeled Single unlabeled None
Domain Adaptation Single labeled Single unlabeled | Non-semantic

Domain Generalization Multiple labeled Unknown Non-semantic
Cross-Task Transfer Single labeled Single unlabeled Semantic
Few-Shot Learning Single labeled Single few-labeled Semantic
Un/Self-Supervised Single unlabeled Many labeled Both/Task

Non-Semantic Shift

A

«

W
R N

)

Semantic Shift

= 1 S

Dealing with Low-Labeled Situations

Georgia
Te%

Al

=

Visualization
of Neural

Networks

Given a trained model, we’d like to understand
what it learned. —>

Weights
pIE car Robustness

Fei-Fei Li, Justin Johnson,
Serena Yeung, from CS
231n

gy o et
Hendrycks & Dietterich,
2019

Zeiler & Fergus, 2014 Simonyan et al, 2013

) Visualizing Neural Networks

FC Layer: Reshape weights for a node back into size of image, scale 0-255

bird

g

Conv layers: « WS WIE ey = EBRCErE Problem:
For each kernel, [& -+ _ ' et 3x3 filters
scale values TF A EBREREE E :_‘::E-’ @ (difficult to
from 0-255 and A\ 15l TR FLEEETT interpret!

visualize

ResNet-18: ResNet-101:
64 x3x7Tx7 64 x3x7x7

AlexNet:
64 x3x11x11

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena YziLni¢. from CS 2314

Visualizing Weights

We can also produce
visualization output
(aka activation/filter)
maps

These are larger early
In the network.

D Visualizing Output Maps

Visualizing Output Maps

convl pl nl conve pe nZ convd convd sonvyd pd ot fo¥ feB prob

. ' whole layer

A 2 5 1 &
selected channel

From: Yosinski et

Highly " al., “Understanding

g . _ Neural Networks
Activati ng Through Deep
Image Visualization”,

Patches

jaclk: deconv (from convi 151, disp raw) Boost: 0/1

Activations — Small Output Sizes

Activations of last conv layer in VGG network

CNN101 and CNN Explainer

CNN 107 (corm Convolutional Neural Network ((NN) in your browser!

https://poloclub.github.io/cnn-explainer/ https.//fredhohman.com/papers/cnn101

We can take the activations of
any layer (FC, conv, etc.) and
perform dimensionality
reduction

Often reduce to two
dimensions for plotting

% B IR
OO~ ; =k WN-=O0O

E.g. using Principle
Component Analysis (PCA)

t-SNE is most common

Performs non-linear mapping
to preserve pair-wise
distances

) Dimensionality Reduction: t-SNE

Weights —

e Activations radlen_ts | Robustness

=
Fei-Fei Li, Justin Johnson,

Serena Yeung, from CS
231n

Zeiler & Fergus, 2014 Simonyan et al, 2013 2019

Visualizing Neural Networks

Summary & Caveats

While these methods provide some visually
interpretable representations, they can be

misleading or uninformative (Adebayo et al.,
2018)

Assessing interpretability is difficult
Requires user studies to show usefulness

E.g. they allow a user to predict mistakes
beforehand

Neural networks learn distributed
representation

(no one node represents a particular feature)
This makes interpretation difficult

Adebayo et al., “Sanity Checks for Saliency Maps”, 2018.

Gradient-
Based
Visualizations

Given a trained model, we can

Forward Pass
perform forward pass given an
input to get scores, softmax
probabilities, loss and then —
backwards pass to get
gradients -/

G ————————————————————————
Backward Pass

Note: We are keeping parameters/weights frozen

Do not use gradients w.r.t. weights to perform updates

) Visualizing Neural Networks

Backwards pass gives us
gradients for all layers: How
the loss changes as we change
different parts of the input

This can be useful not just for
optimization, but also to
understand what was learned

Forward Pass

L[}

—

Backward Pass

Gradient of loss with respect to all layers (including input!)

Gradient of any layer with respect to input (by cutting off computation

graph)

) Visualizing Neural Networks

Idea: We can backprop to the

) Forward Pass
image —
Sensitivity of loss to individual = -
pixel changes S aN
Large sensitivity implies
—

important pixels

G ————————————————————————
Backward Pass

Called Saliency Maps

In practice:

Instead of loss, find gradient of classifier scores (pre-softmax)
Take absolute value of gradient
Sum across all channels

From: Simonyan et al., “Deep Inside Convolutional Networks:
Visualising Image Classification Models and Saliency Maps”, 2973

) Gradient of Loss w.r.t. Image

Applying traditional
(non-learned) computer
vision segmentation
algorithms on gradients
gets us object
segmentation for free!

Surprising because not
part of supervision

-_—

From: Simonyan et al., “Deep Inside Convolutional Networks:
Visualising Image Classification Models and Saliency Maps”, 2973

) Object Segmentation for Free!

Can be used to
detect dataset bias

@ E.g. snow used to
misclassify as
wolf

Incorrect
predictions also
informative

(a)

Husky classified as wolf (b) Explanation

From: Ribeiro et al., "Why Should | Trust You?": Explaining the Predictions of Any Classifi=r

Rather than loss or scores, we can
pick a neuron somewhere deep in the
network and compute gradient of
activation with respect to input

Steps:
Pick a neuron

Find gradient of its activation
w.r.t. input image

Can also first find highest activated <
image patches using its
corresponding neuron (based on
receptive field)

From: Ribeiro et al., "Why Should | Trust You?": Explaining the Predictions of Any Classifi=r

Normal backprop not always best
choice

Example: You may get parts of
image that decrease the feature
activation

There are probably lots of
such input pixels

Guided backprop can be used to
Improve visualizations

b)

Forward pass

3214 olz2]34

210]-1 2 3 1
Backward pass: clalo Bl ;B
backpropagation E

0 1] 3 2 113

013]|]o0 21311

Backward pass:

“deconvnet”

210] 3 21-1] 3
Backward pass: 0 J O - K
guided 6lojJo] «<— |6]-3]1
backpropagation olol3s 21113

From:

) Guided Backprop

Guided Backprop Results

guided backpropagation corresponding image crops

A0 ‘\”d"”ﬂ
}ﬂlf’ YAV ﬂ'
L ANAN T 1YY
RS,Q.JH('JG .CI Q“A[‘“

’1

_»-~ﬁ“% wa-':*--——- *Fg
ws Ufl l;a *fﬁl "

VGG Layer-by-Layer Visualization

Note: These images were created
by a slightly different method called
deconvolution, which ends up
being similar to guided backprop

From: “Visualizing and Understanding Convolutional Networks, Zeiler & Fergus, 2014.

VGG Layer-by-Layer Visualization

From: *Visualizing and Understanding Convolutional Networks, Zeiler & Fergus, 2014. Tec

VGG Layer-by-Layer Visualization

Al Nl
jres
AL L Lt

AR | i T

From: *Visualizing and Understanding Convolutional Networks, Zeiler & Fergus, 2014.

VGG Layer-by-Layer Visualization

From: *Visualizing and Understanding Convolutional Networks, Zeiler & Fergus, 2014.

