Topics:
e Convolutional Neural Networks

CS 4644-DL / 7643-A
ZSOLT KIRA

The connectivity in linear layers doesn’t always make sense

1024 x 1024
Pixel Image

~1M element
Vector (M)

Fully-

Connected
Layer (N)

)

Limitation of Linear Layers

How many parameters?
M*N (weights) + N (bias)

Hundreds of millions of
parameters for just one layer

More parameters => More
data needed

Is this necessary?

Image features are spatially
localized!

Smaller features repeated
across the image

Edges

Color

Motifs (corners, etc.)

No reason to believe one feature Can we induce a bias in the
tends to appear in one location design of a neural network
vs. another (stationarity) layer to reflect this?

) Locality of Features Geo S

Each node only receives input from
K, X K, window (image patch)

Region from which a node receives
input from is called its receptive
field

0 Advantages:

Reduce parameters to (KX K, +
1) * N where N is number of output
nodes

Explicitly maintain spatial information

Do we need to learn location-specific features?

) Idea 1: Receptive Fields GoolBH)|S

Nodes in different locations can share

features

No reason to think same feature
(e.g. edge pattern) can’t appear
elsewhere

Use same weights/parameters in
computation graph (shared
weights)

Advantages:

Reduce parameters to (KX K, + 1)

Explicitly maintain spatial
information

Idea 2: Shared Weights

We can learn many such features
for this one layer

Weights are not shared
across different feature
extractors

Parameters: (KX K, +
1) * M where M is number of
features we want to learn

Idea 3: Learn Many Features

This operation is extremely common in electrical/computer engineering!

«(7) () v

/(%/ H(f/ﬁv(l o(/,m&) A

;Uv (> = fx{“)~ @Yol

From https://en.Wikipedia.org/W|k|/Convqut|on

) Convolution Ge‘%

This operation is extremely common in electrical/computer engineering!

! T] T T T I I I
T EEREEERES S — I:l"gma under fiogit-o) [

DEf e L L A fix)
1111 e Y L P att-x)

: : : : (gt
|:|4__ T -
D.E—é .. Y

o | I l i I l I

-2 1.4 1 0.5 1] 0.5 1 1.5 2

L&t

] 1]]] 1] 1 I I
1_.: - - - :lﬁreaunderf(ﬂglft-tj'

: . : : . .]

: ; : ; ; : al-x)
05 _ I:f*g:lft:l
oLt | I !

-1.4 1 0.5 1] 0.5 1 1.5 2 2.5]

&t

From https://en.wikipedia.org/wiki/Convqution

) Convolution Ge‘%

This operation is extremely common in electrical/computer engineering!

In mathematics and, in particular, functional Convolution Cross-correlation
analysis, convolution is a mathematical f f

operation on two functions f and g producing a

third function that is typically viewed as a g ’\ g '\

modified version of one of the original functions,
giving the area overlap between the two
functions as a function of the amount that one of
the original functions is translated.

Convolution is similar to cross-correlation.

M9\ AN

A1 1 N N
iy R~ .
e N e

Visual comparison of convolution and
cross-correlation.

It has applications that include probability,
statistics, computer vision, image and signal
processing, electrical engineering, and
differential equations.

From https://en.Wikipedia.orglwiki/Convqution

) Convolution Ge‘%

Notation:

1D

Convolution

2D

Convolution

)

FRIGERXIN=FRG)RI

Yo =ho -
-x0+h0-x1

y1=hy
y2 = hy
y3 = h3

-x0+h1-x1+h0-x2
'.X'0+ hz-x1+h1-x2+h0-x3

2D Discrete Convolution

Image Kernel Output /

(or filter) filter /

10 1 feature map
K=|[-2 o0 2]

-1 0 1

2D

-
Convolution I

) 2D Discrete Convolution

We will make this convolution operation a layer in the neural network
Initialize kernel values randomly and optimize them!

These are our parameters (plus a bias term per filter)

Image Kernel Output /
(or filter) filter /
10 1 feature map
K=|-2 0 2]
-1 0 1
2D =
:]
Convolution I

) 2D Discrete Convolution

1. Flip kernel 2. Stride
along image

(rotate 180
degrees)

4

) The Intuitive Explanation

H- W—

2 2
y(r,c) = (x* k)(r,¢) = 2 Z x(a,b) k(r — a,c — b)
w-1

H-1

=
=

a=2b=2

y(0,0) = x(—2,-2)k(2,2) + x(—2,-1)k(2,1) + x(—2,0)k(2,0) +
x(=2,1)k(2,-1) + x(—2,2)k(2,-2) +...

) Mathematics of Discrete 2D Convolution Ge° S

ki—1 kp—1

2
y(r,c) =(xxk)(r,c) = z z x(r—a,c—b) k(a,b)
K

_ Kq1-1 , kp—1
a= 3 b=

2

) Centering Around the Kernel

AS we have seen:

Convolution: Start at end of kernel and
move back

Cross-correlation: Start in the beginning of
kernel and move forward (same as for image)

An intuitive interpretation of the relationship:

Take the kernel, and rotate 180 degrees

. P 9 8 7

alonqg center (sometimes referred to as “fli
g (p’) s [6 c
Perform cross-correlation 3 2 1

G—

(Just dot-product filter with image!)

) Convolution and Cross-Correlation

ki-1 kp—1

y(r,¢) = (x * k)(1¢) = Z z x(r + a, ¢ + b) k(a, b)
a=0 b=0

Since we will be learning these kernels, this change
does not matter!

) Cross-Correlation eeo S

200 150 150 1 0 -1
X(0:2,0:2) =100 50 100 K =12 0 -2 |:> X(0:2,0:2) - K’ = 65 + bias
25 25 10

Dot product
(element-wise multiply and sum)

= 0.] |
= (5 | fd |
NS ESR
PARTN
SE2ES8

) Cross-Correlation

Convolution and Cross-Correlation

Convolution and Cross-Correlation

el N | ¢
llll | HES

Convolution and Cross-Correlation

Convolution and Cross-Correlation

Convolution and Cross-Correlation

Why Bother with Convolutions?

Convolutions are just simple linear
operations

Why bother with this and not just say it's a
linear layer with small receptive field?

There is a duality between them during
backpropagation

Convolutions have various
mathematical properties people care
about

This is historically how it was inspired

Input &

Output Sizes

Convolution Layer Hyper-Parameters

Parameters

in_channels (int) - Number of channels in the input image

out_channels (int) - Number of channels produced by the convolution

kernel_size (int or tuple) - Size of the convolving kernel

stride (int or tuple, optional) — Stride of the convolution. Default: 1
padding (int or tuple, optional) — Zero-padding added to both sides of the input. Default: 0

padding_mode (string, optional) - 'zeros', 'reflect', 'replicate' or 'circular'. Default: 'zeros’

Convolution operations have several hyper-parameters

Geo

A
From: https://pytorch.org/docs/stable/generated/torch.nn.Conde.htmI#torch.nn.ﬂfd‘;
2
Tech|]

Output size of vanilla convolution operationis (H —ky +1) X (W — k, + 1)

This is called a “valid” convolution and only applies kernel within image

Valid Convolution

We can pad the images to make the output the same size:
Zeros, mirrored image, etc.

Note padding often refers to pixels added to one size (P = 1 here)

" ----- -
KIS N
= S
$ ™
Pl .
!ﬁgem_ 1
- — -
pr—
N
—)

H+ 2

W+ 2

) Adding Padding

We can move the filter along the image using larger steps (stride)
This can potentially result in loss of information

Can be used for dimensionality reduction (not recommended)

Stride = 2 (every other pixel)

- B=
l S
™)
=
(W—-ky)/2+1

Geo S

Tech|

Stride can result in skipped pixels, e.g. stride of 3 for 5x5 input

FEREEE
BXEE
N

Invalid Stride

We have shown inputs as a one-channel image but in reality they have three
channels (red, green, blue)

In such cases, we have 3-channel kernels!

A 6 4

v={
3 *
= L)
Kernel |
W : W - kz + 1
3 1
Image Feature Map

Multi-Channel Inputs

We have shown inputs as a one-channel image but in reality they have three
channels (red, green, blue)

In such cases, we have 3-channel kernels!

Similar to before, we perform element-wise

multiplication between kernel and image
s patch, summing them up (dot product)
w Except with k4 * ko * 3 values
3
Image

Operation of Multi-Channel Input

Number of

channels in output
We stack the feature maps together at the output s equal to number

of kernels

We can have multiple kernels per layer

"
3 4

Kernels
Image Feature Maps

) Multiple Kernels c,-.e<+=

W—k,+1

Number of parameters with N filtersis: N * (kq* ko * 3 + 1)

Example:
ki =3k, =3, N=4input channels = 3,then (3*3%*3+1)*4 =112

w ﬂ = W—k,+1
3 4

Kernels
Image Feature Maps

Number of Parameters

Just as before, in practice we can vectorize this operation

Step 1: Lay out image patches in vector form (note can overlap!)

Input Image

Patch 1
Patch 2

Adapted from: https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learniny/

) Vectorization c;e%‘=

Just as before, in practice we can vectorize this operation

Step 2: Multiple patches by kernels

Input Matrix Kernel Matrix
- k »

Patch 1 1 4

Paff:.hZ —
S X
o 1=
2 |5
=4 N I
-
>
O
> 4
D - =
m < >
v Number of Kernels

Adapted from: https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learniny/

) Vectorization c.e%a

Backwards
Pass for

Convolution
Layer

It IS instructive to calculate the [1 2 3‘

backwards pass of a convolution =4 5 6
layer 7 8 9
Similar to fully connected layer,
will be simple vectorized linear
algebra operation!
9 8 7
We will see a duality between K = [6 5 4
cross-correlation and convolution 3 2 1

) Backwards Pass for Conv Layers

ki-1 kp—1

y(r,c) = (x* k)(r,c) = Z Z x(r + a,c + b) k(a, b)

Recap: Cross-Correlation

ki-1 kp—1

y(r,c) = (x* k)(r,c) = Z x(r + a,c + b) k(a, b)
a=0 b=0
' B .
< N
ky =3
. N Y
b

Some simplification: 1 channel input, 1 kernel (channel output), padding (here
2 pixels on right/bottom) to make output the same size

) Ilterators ee%=

ki-1 kp—1

y(r,c) = (x* k)(r,c) = Z Z x(r + a,c + b) k(a, b)

a=0 b=0
ly|=HXW
% ~ Assume size H x W (add padding, change
dy convention a bit for convenience)
oL t I t
O access elemen
dy(r,c)

) Gradient Terms and Notation

oL
ah{’—l

¢ OL
| Ak
|
oL dL Oh' oL dL oh'
dht-1 9h?! AQh’-1 ok o9h! dk
Gradient for passing back Gradient for weight update

(weights = k, i.e. kernel values)

Y Backpropagation Chain Rule

Gradient for

Convolution
Layer

¢
oL_ oL ok What does this weight
0k oh* 0k affect at the output?
Gradient for weight update

oL Everything!
dk(a, b)

Calculate one pixel at a time

) What a Kernel Pixel Affects at Output

Need to incorporate all upstream
gradients:

|

oL oL

dy(0,0)'dy(0,1)" "’

oL

dy(H, W)

}

Chain Rule:

H-1W-1

z z dL dy(r,c)
ak(a b) o L dy(r,c) dk(a, b)

Sum over Upstream We will
all output gradient compute
pixels (known)

dy(r,c) " ..." ..'

dk(a,b) [/ |] |
BL.2E EBR
le

Does this look familiar?
Iy, _ x(r+a,c+b)

dk(a, b)
. Hwor Cross-correlation
_ z z x(r +a,c+ b) betw_een upstream
dk(a,b) Ly L4 dy(r,c) gradient and input!

(until k4 X k, output)

Gradients and Cross-Correlation

Forward Pass Does this look familiar?

Cross-correlation
between upstream
gradient and input!

Backward Pass k(0,0) Backward Pass k(2,2) (until k4 X k, output)

..-
1

) Forward and Backward Duality

dL oL oy What does this input pixel

dx dy ox affect at the output?
Gradient for input (to pass to prior layer)

oL Neighborhood around it
Calculate one pixel at a time axr, o) (where part of the kernel

touches it)

Extents of Kernel Touching the Pixel

This is where the
corresponding locations
are for the output

Extents at the Output

Chain rule for affected pixels (sum gradients):
dL dL dy(p)

0x(r',c) L dy(p)oxG’,c)
ixelsp

ki-1ky—1

dL dy(?,?)
(’)x(r c) z Z ay(?,?7)dx(r',c')

Q-II@

Summing Gradient Contributions

Chain rule for affected pixels (sum gradients): Let’s derive it

aL dL dy(p) analytically this time (as

ax(r',c") it dy(p) ax(r’,c") opposed to visually)

o "il "221 oL dy(r' —a,c’ — b)
ox(r',c) — dy(r' —a,c’' — b) ax(r',c’)

Summing Gradient Contributions

Definition of cross-correlation (use a’, b’ to distinguish from prior variables):

ki1 ky—1
y',c)=(x*k)', c") = Z Z x(r'+a,c"+b") k(a',b)
a'=0 br=0
Plug in what we actually wanted :
ki-1 ky—1
yir'—a,c'—b)=(xxk)(r', c) = Z Z x(r'—a+a',c’—b+b")k(a',b)
a'=0 br=0

What is Iy (@ — ‘f’ C: —b) — k(a, b) (V\{G want term with x(r’,c") in it; ,
dx(r,c) this happens when a = a’ and b = b’)

Geo

) Calculating the Gradient

ch=

Plugging in to earlier equation:

ki—1ky—

dy(r' —a,c’' — b)
6x(r c) Z z dy(r' —a,c’' — b) ax(r',c’)

Does this look familiar?

ki—1ky—

Z Z ay(r' —a,c’ — b)k(a b) Convolution between
upstream gradient and
kernel!

Again, all operations can be
Implemented via matrix
multiplications (same as FC layer)!

(can implement by
flipping kernel and
Cross- correlation)

) Backwards is Convolution

Convolutions are mathematical descriptions of striding linear operation

In practice, we implement cross-correlation neural networks! (still called
convolutional neural networks due to history)

« Can connect to convolutions via duality (flipping kernel)

« Convolution formulation has mathematical properties explored in ECE

Duality for forwards and backwards:
« Forward: Cross-correlation
« Backwards w.r.t. K: Cross-correlation b/w upstream gradient and input
« Backwards w.r.t. X: Convolution b/w upstream gradient and kernel
* |In practice implement via cross-correlation and flipped kernel

All operations still implemented via efficient linear algebra (e.g. matrix-matrix
multiplication)

) Summary Ge‘%c

Topics:
e Convolutional Neural Networks

CS 4644-DL / 7643-A
ZSOLT KIRA

H-

p-\
p-\

2 2
y(r,c) = (x* k)(r,c) = 2 Z x(a,b) k(r — a,c — b)
H w

a=2b=2

y(0,0) = x(—2,-2)k(2,2) + x(—2,-1)k(2,1) + x(—2,0)k(2,0) +
x(=2,1)k(2,-1) + x(—2,2)k(2,-2) +...

&
=
D

) Mathematics of Discrete 2D Convolution Ge°=

ki-1 kp—1

y(r,¢) = (x * k)(1¢) = Z z x(r + a, ¢ + b) k(a, b)
a=0 b=0

Since we will be learning these kernels, this change
does not matter!

) Cross-Correlation eeo S

200 150 150 1 0 -1
X(0:2,0:2) =100 50 100 K =12 0 -2 |:> X(0:2,0:2) - K’ = 65 + bias
25 25 10

Dot product
(element-wise multiply and sum)

= 0.] |
= (5 | fd |
NS ESR
PARTN
SE2ES8

) Cross-Correlation

Convolution and Cross-Correlation

Convolution and Cross-Correlation

el N | ¢
llll | HES

Convolution and Cross-Correlation

Convolution and Cross-Correlation

Convolution and Cross-Correlation

Why Bother with Convolutions?

Convolutions are just simple linear
operations

Why bother with this and not just say it's a
linear layer with small receptive field?

There is a duality between them during
backpropagation

Convolutions have various
mathematical properties people care
about

This is historically how it was inspired

We can pad the images to make the output the same size:
Zeros, mirrored image, etc.

Note padding often refers to pixels added to one size (P = 1 here)

H+ 2

Adding Padding

Number of

channels in output
We stack the feature maps together at the output s equal to number

of kernels

We can have multiple kernels per layer

"
3 4

Kernels
Image Feature Maps

) Multiple Kernels c,-.e<+=

W—k,+1

Number of parameters with N filtersis: N * (kq* ko * 3 + 1)

Example:
ki =3k, =3, N=4input channels = 3,then (3*3%*3+1)*4 =112

w ﬂ = W—k,+1
3 4

Kernels
Image Feature Maps

Number of Parameters

Need to incorporate all upstream
gradients:

|

oL oL

dy(0,0)'dy(0,1)" "’

oL

dy(H, W)

}

Chain Rule:

H-1W-1

z z dL dy(r,c)
ak(a b) o L dy(r,c) dk(a, b)

Sum over Upstream We will
all output gradient compute
pixels (known)

ay(r, c)

= 7 9

dk(a, b) : .!m | 1]
EFZ8 HEX

Reasoning
Cross-correlation is just “dot product” of kernel and input patch (weighted sum) .L -!3' "E
When at pixel y(r, ¢), kernel is on input x such that k(0, 0) is multiplied by x(r, ¢) !ﬁlgg
But we want derivative w.r.t. k(a, b)
k(0,0) * x(r,c), k(1,1) *x(r+1,c+ 1), k(2,2) *sx(r+2,c+ 2)=>1in i!!i.

general k(a, b) * x(r + a,c + b)
Just like before in fully connected layer, partial derivative w.r.t. k(a, b) only
has this term (other x terms go away because not multiplied by k(a, b)).

Does this look familiar?
Iy, _ x(r+a,c+b)

dk(a, b)
. Hwor Cross-correlation
_ z z x(r +a,c+ b) betw_een upstream
dk(a,b) Ly L4 dy(r,c) gradient and input!

(until k4 X k, output)

Gradients and Cross-Correlation

Forward Pass , / Does this look familiar?

Cross-correlation
between upstream
gradient and input!

(until k4 X k, output)

Forward and Backward Duality

oL _ dL aJdy
dx dy ox
Gradient for input (to pass to prior layer)

dL
ax(r',c’)

Calculate one pixel at a time

EERE
III" f

) What an Input Pixel Affects at Output

What does this input pixel
affect at the output?

Neighborhood around it
(where part of the kernel
touches it)

Extents of Kernel Touching the Pixel

This is where the
corresponding locations
are for the output

Extents at the Output

Chain rule for affected pixels (sum gradients):
oL oL ay(p) x(r',c") *k(0,0) = y(r',c")

R — ’ x(r',c)«k(1,1) =7
ax(r', c' _ dy(p) ax(r',c’)
Pixelsp yip

ki-1ky—1
aL z Z L dy(?,?7)
ox(r',c) — ay(?,?7)dx(r',c')

Summing Gradient Contributions

Chain rule for affected pixels (sum gradients):

x(r',c") «k(0,0) = y(',c)
L — oL ay(p) x(r',c)«k(1,1)) >y —1,c'—1)
ax(r',c’ d ax(r',c'
() Pixelsp y(p) () x(r',c") «k(a,b) = y(r' —a,c’ — b)
ki-1k,-1

aL z Z L dy(?,?7)
ox(r',c) — ay(?,?7)dx(r',c')

Summing Gradient Contributions

Chain rule for affected pixels (sum gradients): Let’s derive it

aL dL dy(p) analytically this time (as

ax(r',c") it dy(p) ax(r’,c") opposed to visually)

ki-1ky—1

dy(r' —a,c’ — b)
ax(r c) Z Z dy(r' —a,c’' — b) ax(r',c’)

C%--m@

Summing Gradient Contributions

Definition of cross-correlation (use a’, b’ to distinguish from prior variables):

ki1 ky—1
y',c)=(x*k)', c") = Z Z x(r'+a,c"+b") k(a',b)
a'=0 br=0
Plug in what we actually wanted :
ki-1 ky—1
yir'—a,c'—b)=(xxk)(r', c) = Z Z x(r'—a+a',c’—b+b")k(a',b)
a'=0 br=0

What is Iy (@ — ‘f’ C: —b) — k(a, b) (V\{G want term with x(r’,c") in it; ,
dx(r,c) this happens when a = a’ and b = b’)

Geo

) Calculating the Gradient

ch=

Plugging in to earlier equation:

ki—1ky—

dy(r' —a,c’' — b)
6x(r c) Z z dy(r' —a,c’' — b) ax(r',c’)

Does this look familiar?

ki—1ky—

Z Z ay(r' —a,c’ — b)k(a b) Convolution between
upstream gradient and
kernel!

Again, all operations can be
Implemented via matrix
multiplications (same as FC layer)!

(can implement by
flipping kernel and
Cross- correlation)

) Backwards is Convolution

Convolutions are mathematical descriptions of striding linear operation

In practice, we implement cross-correlation neural networks! (still called
convolutional neural networks due to history)

« Can connect to convolutions via duality (flipping kernel)

« Convolution formulation has mathematical properties explored in ECE

Duality for forwards and backwards:
« Forward: Cross-correlation
« Backwards w.r.t. K: Cross-correlation b/w upstream gradient and input
« Backwards w.r.t. X: Convolution b/w upstream gradient and kernel
* |In practice implement via cross-correlation and flipped kernel

All operations still implemented via efficient linear algebra (e.g. matrix-
matrix multiplication)

) Summary Ge‘%c

Pooling

Layers

machine learning

Can we make a layer to :>
explicitly down-sample
Image or feature maps?

4
1

Dimensionality reduction
IS an important aspect of

Parameters
Yes! We call one class of
. , » kernel_size - the size of the window to take a max over
these operatlons pOOI I ng » stride - the stride of the window. Default value is kernel_size
Operatlons » padding - implicit zero padding to be added on both sides

From: https://pytorch.org/docs/stable/generated/torch.nn.MaxPool2d.html#torch.nn.MaxPoo!2%

) Pooling Layers Geo=

Example: Max pooling

Stride window across image but perform per-patch max operation
200 150 150
X(0:2,0:2) = (100 50 100 ES) max(0:20:2) = 200
25 25 10
How many learned
parameters does
this layer have?

L]

Nonel

) Max Pooling

Not restricted to max; can use any differentiable function

Not very common in practice
200 150 150

X(0:2,0:2) = (100 50 100 |:> average(0:2,0:2) = ZZx(l j) = 90
25 25 N

) Max Pooling

Since the output of convolution and pooling layers are (multi-channel) images,
we can sequence them just as any other layer

Convolution Pooling

|
mage Layer Layer

Geo

ch=

Combining Convolution & Pooling Layers

This combination adds some invariance to translation of the features

If feature (such as beak) translated a little bit, output values still
remain the same

N

Convolution Pooling
Layer Layer

) Invariance

Convolution by itself has the property of equivariance

If feature (such as beak) translated a little bit, output values move by the

same translation

» Invariance vs. Equivariance

Simple
Convolutional

Neural
Networks

Since the output of convolution and pooling layers are (multi-channel) images,
we can sequence them just as any other layer

Convolution Pooling
Layer Layer

Convolutional Neural Networks (CNNSs)
[

Useful,
lower-
dimensional
features

2

o

Qﬁ""

Convolution +
Non-Linear
Layer

Convolution +
Non-Linear
Layer

Pooling
Layer

Alternating Convolution and Pooling

[[[[

[[[[

[[[[

[[[[

[m [[[ZA

[[[[

I I [7/ //4 | Loss
[[[’ [

j _/ |) j

| T | | |

| j) e

I Convolution + | _ I Convolution + | Fully

| Non-Linear ! Pooling 1 Non-Linear ! Connected
' Layer | lLayer Layer : Layers

l [l

Adding a Fully Connected Layer

Loss

Fully
Connected

- e e e e e o)) e e e o @a» @G Ea -G

INiR o
Wmm =
N~ S8
N o
N £ -
— i — + | -
.A“V m % (-
WHH 55¢
®_ T EE
o\ m o
oz
@)

) Receptive Fields

Input —

=> Predictions
Image

Convolutional Neural
Networks

/

Input

Image CNN —> Predictions

Typical Depiction of CNNs

These architectures have existed since 1980s

C3: f. maps 16@10x10

INPUT gé Zm‘ggtzuSre maps S4: f. maps 16@5x5
32x32 S2: f. maps C5: layer .
6@14x14 120 ¢ Filayer OUTPUT

84 10

‘ Full conAection ‘ Gaussian connections
Convolutions Subsampling Convolutions Subsampling Full connection

Image Credit: Yann LeCun, Kevin Murrhy

LeNet Architecture

Handwriting Recognition

m

™M

Image Credit:
Yann LeCun

-@n

Translation Equivariance (Conv Layers) & Invariance (Output)

it

=

[
i

i

;
.

Image Credit:
Yann LeCun

|

(Some) Rotation Invariance

el 2 anT | [eNet 5

RESEARCH

Image Credit:
Yann LeCun

(Some) Scale Invariance

RESEARCH

Image Credit:

Yann LeCun

Advanced

Convolutional
Networks

The Importance of Benchmarks

AdvProp (EfficientNet-Eo
PNASNet:5 GhiPe
ResNeXt-101 64x4

Inception V.3
VGG-19

Five Base + Five'HiRes
AlexNet - 7CNNs

TOP 1 ACCURACY

SIFT +EVs

From: https://paperswithcode.com

AlexNet - Architecture

2048

Max pooling
pooling

Full (simplified) AlexNet architecture:

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] 4096 neurons

[4096] ~C7: 4096 neurons

[1000] ~C&: 1000 neurons (class scores)

=3 204 2048 \dense

224

dense dense]

LINL 1000

R 128 Max
228\ [iStride Max 128 Max pooling
Yof 4 pooling pooling

204 2048

Key aspects:
RelLU instead of sigmoid or tanh
Specialized normalization layers
PCA-based data augmentation
Dropout
Ensembling

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

AlexNet — Layers and Key Aspects

INPUT: [224x224x3] memory: 224*224*3=150K params:0 (Ot counting biases) R et Configuration 5 -
CONV3-64: [224x224x64] memory. 224"224"64=3.2M params: (3"3"3)°64 = 1,728 1T weight | 11 weight | 13 weight | 16 weight | 16 weight | 19 weight
CONV3-64: [224x224x64] memory: 224"224*64=3.2M params: (3"3"64)"64 = 36,864 layers layers 12’;‘5 L Rlcas:fs) layers layers
POOL2: [112x112x64] memory: 112°112°64=800K params: 0 : ___wput(221 % 224 RGB umage) .
CONV3-128: [112x112x128] memory: 112°112°128=1.6M params: (3°3'64)*128 = 73,728 oIS T | comret | oot | comaet | comiet
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3"3"128)"128 = 147 456 maxpool
POOL2: [66x56x128] memory: 56*56"128=400K params: 0 comv3-128 ‘ comv3-128 ‘ o | o ‘ com- 28 | oy
CONV3-256: [56x56x256] memory: 56°56"256=800K params: (3"3*128)"256 = 294,912 O pod R
CONV3-256: [56}(56}(255] memory. 567567256=800K params: (3"3*256)"256 = 589,824 conv3-256 | conv3-256 [conv3-256 | conv3-236 | conv3-236 | conv3-236
CONV3-256: [56x56x256] memory: 56°56'256=800K params: (3'3'256)"256 = 589,824 com3-26 | com-256 | comd256 | com32%6 | comd-2%6 | comd-2%6
POOLZ2: [28x28x256] memory: 28°28*256=200K params: 0 - e 325
CONV3-512: [28x28x512] memory: 28"28°512=400K params: (3*3*256)"612 = 1,179,648 T o
CONV3-512: [28x28x512] memory: 28*28°512=400K params: (3*3'512)*512 = 2,359,296 conv3-S12 T conv3-S12 [conv3-S12 [com3-5T2 | com3-S12 [conv3-S12
CONV3-512: [28x28x512] memory: 28°28°512=400K params: (3'3'512)*512 = 2,359,296 com3-S12 | comISI2 | con3-SI2 | comd- T | con i | com -2
POOLZ: [14x14x512] memory: 14*14*512=100K params: 0 conv3-512
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296 ey T eans T mm&_illl;aXptzlmgﬁ_s12 T
CONV3-512: [14}(14}(512] memory: 147147512=100K params: {3“3*512)*512 = 2,359,296 c011v3-:512 con\‘é-%:li com-’j-:ilz conv3-:512 com-':%-:ﬂi c011\'3-:512
CONV3-512: [14x14x512] memory: 14"14*512=100K params: (3*3*512)*512 = 2,359,296 convl-512 | conv3-512 | comv3-512
POOLZ: [7Tx7x512] memory: 7*7*512=25K params: 0 conv3-513
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448 ??nggé
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216 TC3006
FC: [1x1x1000] memaory: 1000 params: 4096*1000 = 4,096,000 F(;;IOOO

SOoIt-max

Table 2: Number of parameters (in millions).
[Network [AAIRN | B C] DJE]
| Number of parameters | 133 | 133 [134 [138 | 144 |

From: Simonyan & Zimmerman, Very Deep Convolutional Networks for Large-Scale Image Recognition
From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 23

INPUT: [224x224x3] memory: 224*224*3=150K params: 0 (not counting biases)
CONV3-64: [224x224x64] memory: 2247224°64=3.2M params: (3"3"3)"64 = 1,728
CONV3-64: [224x224x64] memory: 224%224"64=3.2M params: (3"3"64)"64 = 36,864
POOLZ: [112x112x64] memory: 112°112°64=800K params: 0

CONV3-128: [112x112x128] memory: 112°112"128=1.6M params: (3*3"64)"128 = 73,728
CONV3-128: [112x112x128] memory: 112°112"128=1.6M params: (3"3"128)"128 = 147,456
POOLZ: [566x56x128] memory: 56"56"128=400K params: 0

CONV3-256: [56x56x256] memory: 56756"256=800K params: (3"3"128)"256 = 284,912
CONV3-256: [56x56x256] memory: 56°56*256=800K params: (3"3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56°56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28°28°256=200K params: 0

CONV3-512: [28x28x512] memory: 28°28*512=400K params: (3"3*256)*512 = 1,179,648
CONV3-512: [28%28x512] memory: 28°28*512=400K params: (3*3*512)"512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)"512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0

CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3"512)"512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14"14*512=100K params: (3*3*512)*512 = 2,359,296
POOL2: [Tx7x512] memory: 7*7*512=25K params: 0

FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448

FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216

FC: [1x1x1000] memaory: 1000 params: 4096*1000 = 4,096,000

Most memory usage in
convolution layers

Most parameters in FC
layers

From: Simonyan & Zimmerman, Very Deep Convolutional Networks for Large-Scale Image Recognition
From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 23

Parameters and Memory

ConvNet Configuration
A A-LRN B C D E
11 weight | 11 weight | 13 weight 16 weight 16 weight 19 weight

K ey aS p e CtS : layers layers layers layers layers layers

input (224 x 224 RGB 1mage)

conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64
‘ LRN conv3-64 conv3-64 conv3-64 ‘ conv3-64
maxpool
conv3-128 | conv3-128 | conv3-128 | comv3-128

conv3-128 | conv3-128
conv3-128

conv3-128 | conv3-128 | conv3-128
maxpool

conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | comv3-256

conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | comv3-256

convl-256 | conv3-256 | conv3-256

3x3 conv (stride of 1, padding

conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | comv3-512

Repeated application of:

conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
Of 1) convl-512 | conv3-512 | conv3-512
conv3-512

maxpool

conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | comv3-512
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | comv3-512
- - convl-512 | conv3-512 | conv3-512
2x2 max pooling (stride 2)
maxpool
FC-4096
FC-4096
FC-1000
soft-max

Very large number of parameters

Table 2: Number of parameters (in millions).
[Network [AAIRN | B C] DJE]
| Number of parameters | 133 | 133 [134 [138 | 144 |

From: Simonyan & Zimmerman, Very Deep Convolutional Networks for Large-Scale Image Recognition
From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 23r

VGG - Key Characteristics

But have become deeper and more complex

Conv MaxPool
1x1+1(S) 3x3+1(S)

From: Szegedy et al. Going deeper with convolutions

Georg l:

» D Inception Architecture

Key idea: Repeated blocks and multi-scale features

Filter
concatenation

Previous layer

From: Szegedy et al. Going deeper with convolutions

Inception Module

The Challenge of Depth

S6-layer

20-layer

—
=
T

56-layer

test error (%)

—
=]
o~

—
o
o

ch
)
=
=
—

20-layer

5 6 2 3

3 4 x
iter. (1e4) iter. (led)
From: He et al., Deep Residual Learning for Image Recognition

Optimizing very deep networks is challenging! ﬂ
Geor

'&
[]
Techﬁb

VGG-19 34-layer plain 34-layer residual

.
X
- pocl.j2
ez] [Famer]| [rmman | =
¥ ¥ ¥
- 7 > weight layer
[Eam= | | [Eawa |
¥ ¥ ¥
[Ceamma=] [(=amme] [moems |
¥ ¥ [
e e e F(x relu
[T — 1 [o 1 [_—— 1
¥ = 2C
[ememe | e 1)
¥ ¥
[A-!u;w,sl] e] =
2 Ctee Cmeer, weight layer - :
S : —, iaentty
s) [ms, f [Mmmlxm_:-_
| e | [[mamm |
¥ ¥
v 5 v D8
¥
= =
: F(x)+x
=

Key idea: Allow information from a layer to propagate
to any future layer (forward)

Same is true for gradients!

From: He et al., Deep Residual Learning for Image Recogniticn

Residual Blocks and Skip Connections

Several ways to learn
architectures:

Evolutionary learning
and reinforcement
learning

test accuracy (%)

Prune over-
parameterized
networks

Learning Of 0.9 28.1 70.2 wall time (hours)
repeated blocks
typical

From: https://ai.googleblog.com/2018/03/using-evolutionary-automil-to-discover.html

) Evolving Architectures and AutoML

Computational Complexity

Inception-v4

Inception-v3 ResNet-152

ResNet-50 VGG-16

ResNet-101
. ResNet-34
ﬂ ResNet-18

GoogLeNet
ENet

° BN-NIN

=
>
9
©
o
3
V)
V)
]
—
o
(o]
=

>
=
>
v
©
e
=
v
v
(]
—
=3
o
fhe

125M 155M
20 BN-AlexNet

e W e gk AR A0 A9
N $ & ((F\ & \'O'\' g AlexNet

+ 6‘ v

15 20 25
Operations [G-Ops]

From: An Analysis Of Deep Neural Network Models For Practical Applicati 7'

(=]

Geor ﬁb
Tech|]

	L10_ConvPooling
	L11_CNNs

