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Fvaluation Method

» Generally, this is performance on held-out data.

» Evaluation is typically done by (partially) training the network and evaluating its
performance on held-out data.
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Search via Reinforcement Learning
NAS-RL

» Motivated by the observation that a DNN architecture can be specified by a
string of variable length (i.e. Breadth-first traversal of their DAG)

» Use reinforcement learning to train an RNN that builds the network
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NAS-RL
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NAS-RL

* Thisis a very general method

» The cost of that is compute: This used 800 GPUs (for an unspecified amount of
time) and trained >12,000 candidate architectures
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Search via Reinforcement Learning
NASNet

* Instead, limit the search space with "blocks”

* Thisis similar to "Human Neural Architecture Search”
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Application

Efficient Neural Networks (MnasNet)

* One benefit of search via RL is that validation
performance need not be the only metric
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Differentiable Architecture Search (DARTS)
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Neural Architecture Search without Training

» How well a given architecture will do when fully trained can be approximated by
how “flexible” the network is.
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Neural Architecture Search without Training
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Summary

 Neural Architecture Search (NAS) focuses on automatically finding highly
performant network architectures
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Summary

 Neural Architecture Search (NAS) focuses on automatically finding highly
performant network architectures

Google’'s AutoML
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 Neural Architecture Search (NAS) focuses on automatically finding highly
performant network architectures

» Search is commonly done with either RL or gradient methods (e.g. DARTS)
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Summary

 Neural Architecture Search (NAS) focuses on automatically finding highly

performant network architectures

» Search is commonly done with either

RL or gradient methods (e.g. DARTS)

» One fruitful use has been searching for compute efficient networks

/9



