CS 4803/ 7643: Deep Learning

Topics:
— Regularization
— Neural Networks

Dhruv Batra
Georgia Tech
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Administrativia

* PS1/HW1 out
— Due: 09/09, 11:59pm
— Asks ak_)gut togig_sé_b_e_inwered now
—E(':ﬁveat: one more (extra credit) ch_)lbIem to be addid]
— Please please pleqse please start early [
— More details next class

(C) Dhruv Batra 2



Recap from last time
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Parametric Approach: Linear Classifier

72x1
f(x,W)|= +(b | 10x1
— - I
S |10x1{ 10x3072
10 numbers giving
> >
f(X’W) class scores
Array of 3x32x3 numbers T
(3072 numbers total)
- W
parameters
or weights

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Stretch pixels into column

56

231

24

Input image

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Stretch pixels into column

56
.~ 02 |-05]| 01 | 20 -) 1.1 -96.8 | Catscore
4 ' — 231
i - 24
0 |025| 0.2 | -0.3 -1.2 61.95 '
nout image — 0.. , Ship score
%A j b

W <

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Linear Classifier: Three Viewpoints

Algebraic Viewpoint

fxw)= +b
Wx —
pixels into column
'Q?&l 05 | 0.1 E n -
?Qi@ 13 | 21 n + n = | 43
I:pu‘;‘i. ag;’ 02 0% n n g
W b

Visual Viewpoint

One template
per class

plane car kird cat deer ?

frog horse ship truck

Geometric Viewpoint
.--""--___-

Hyperplanes
cutting up space

llllllllllll

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



R
Recall from last time: Linear Classifier

TODO:

1. Define a loss function —_?
that quantifies our

unhappiness with the

. ‘83 '8475 -0.51 3.42 scores across the training
automobile —o. 6.04 4.604

bird 0.09 5.31 2.65 data. _
cat 2.9 -4.22 5.1 -
deer 4.48 ~4.19 2.64 2. Come up with a way of

. 222 3.58 5.55 efficiently finding the

"~ e 5 I parameters that minimize

- ~0.36 —2 .09 _4.79 the loss function.

truck -0.72 -2.93 6.14 (optimization) g

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
https://www.pexels.com/photo/audi-cabriolet-car-red-2568/
https://creativecommons.org/publicdomain/zero/1.0/
https://en.wikipedia.org/wiki/File:Red_eyed_tree_frog_edit2.jpg

Softmax vs. SVM
P Lyl i)

L; ::EE( 5;;: = ) L; :@ma}:(& 8; ——i— 1)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Suppose: 3 training examples, 3 classes. Multiclass SVM loss:

With some W the scores f(z, W) =Wz are:
“Hinge loss”

cat 32 13 22 |
LiZZ{O lfsin.Sj—i—]_

car 5 1 4_9 25 2o 185 — 8wt 1 otherwise

frog -1.7 2.0 -3.1 5 ; max(0, sj — sy, + 1)

(( B S

T T

I 1 = 'P 3

) score
scores for other class score for ect class
Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Softmax vs. SVM

L; = —log( ey =] Li =) ,,, max(0,s; — sy, +1)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Softmax Classifier (Multinomial Logistic Regression)

= f(zi; W)| [P =KX =)= 5

cat 3.2
car 5.1
frog -1.7

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

» Want to interpret raw classifier scores as probabilities

Softmax
Function




Softmax Classifier (Multinomial Logistic Regression)

cat
car

frog

s = flzs; W)

Probabilities
must be >=0

3.2 24.5

exp

5.1 —164.0
-1.7 0.18

unnormalized
probabilities

P(Y — k| X—a;)

e’k

Zj e’

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

» Want to interpret raw classifier scores as probabilities

Softmax
Function




Softmax Classifier (Multinomial Logistic Regression)

== Want to interpret raw classifier scores as probabilities
8 = f(j_j“ W) P(Y — k|X — g[;,&) — e’k | Softmax

SJ .
Zj € Function

Probabilities Probabillities
must be >=0 must sumto 1
cat 3.2 24.5 0.13

exp

car 5.1 —164.0/ "% 0.87
frog -1.7 0.18 0.00

unnormalized probabilities
probabilities .

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Softmax Classifier (Multinomial Logistic Regression)

» Want to interpret raw classifier scores as probabilities
‘ 8 = f(;;[:“ W) P(Y — k|X — g[;,&) — e’k | Softmax

SJ .
Zj € Function

Probabilities Probabillities
must be >=0 must sumto 1
cat 3.2 24.5 0.13

exp

car 5.1 H164.0|"""% 0.87
frog -1.7 0.18 0.00

Unnormalized log- unnormalized probabilities
probabilities / logits probabilities

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities
8 = f(j_j“ W) P(Y — k|X — g[;,&) — e’k | Softmax

sJ .
Zj € Function

Probabilities Probabillities
must be >=0 must sum to 1 fa=—legP{¥' =g X =)
cat 3.2 24.5 0.13 A)L. = -10g(0.13)
exp normalize =2.04
car 5.1 —164.0 1 0.87| —=
frog -1.7 0.18 0.00
Unnormalized log- unnormalized probabilities
probabilities / logits probabilities

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Softmax Classifier (Multinomial Logistic Regression)

,  Want to interpret raw classifier scores as probabilities
‘ 8 = f(;c“ W) P(Y — k|X — 33,6) . EE Softmax

— = !
Zj € Function

Probabilities Probabillities .
must be >= 0 must sum to 1 Li=—log P(¥' =il X =)
cat 3.2 24.5 0.13 | - L =-log(0.13)

exp

car 51 —164.0/ """ 0.87
frog 1.7 0.18 0.00 "“E iivpaiiinie

the likelihood of the observed (1at

=2.04

Unnormalized log- unnormalized probabilities
probabilities / logits probabilities

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Softmax Classifier (Multinomial Logistic Regression)

cat
car

frog

s = flzs; W)

3.2
5.1
-1.7

exp

Unnormalized log-

probabilities / logits

unnormalized
probabilities

Probabilities
must be >=0

24.5
164.0
0.18

e’k

Zj e’

Probabilities
must sumto 1

normalize

0.13
0.87
0.00

s —

—> compare
*

pon
I<L

probabilities

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Want to interpret raw classifier scores as probabilities
PLY = &X = @j)

Softmax
Function

—log P(Y = yi| X = z;)




Softmax Classifier (Multinomial Logistic Regression)

- Want to interpret raw classifier scores as probabilities
. 8 = f(;[}“ W) P(Y — k|X — g;,&) — e’k | Softmax

SJ .
Zj € Function

Probabilities Probabilities
must be >=0 must sum to 1

cat 3.2 24.5 0.13 [ compae—1 1.00

exp

normalize Kullback—Leibler
car 5 1 — 1640 g O.SZ...---"""vaergence OOO

Li = —log P(Y = yi| X = x;)

Drr(P|Q) =
fog | -1.7 0.18 0.00] . = "] 0.00
y)log
Unnormalized log- unnormalized probabilities QW) correct
probabilities / logits probabilities - probs

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Softmax Classifier (Multinomial Logistic Regression)

- Want to interpret raw classifier scores as probabilities
‘ 8 = f(;;[:“ W) P(Y — k|X — g[;,&) — e’k | Softmax

sJ .
Zj € Function

Probabilities Probabillities . _maiall, o
must be >=0 must sum to 1 L= —logP(F =gl =)
cat 3.2 24.5 0.13 | " comeae—1 1.00
exp normalize
car 5.1 —164.0 1 0.87 | crossenrony. | Q.00
o %P, Q) =
frog '1.7 0.18 0.00 H(p DKL(PHQ) 0.00
Unnormalized log- unnormalized probabilities Correct
probabilities / logits probabilities probs

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



- . - _
i Log-LikeIihood?/ KL-Divergence //Cross-Entropy’

D ':-E(XL: 55).3 ?-_--..IE. ~ P~
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Plan for Today

K Regularization
* Neural Networks

=
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Regularization

2|*—‘
\
1
1

t___—

Data loss: Model predictions
should match training data

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



eﬁegularlzatlon

]
~109 PCD ._Jbal’(w)

Fyon

",
Q }NZL v ﬂ*{—} 1

Y
Data loss: Model predictions ]Regularlzatlon: Prevent the model
should match training data from doing too well on training data

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




-
Regularization

A= regularization strength
/ (hyperparameter)

LOW) = = 3" Li(f (i, W), 32) + AR(W)

N J H/_/
Y
Data loss: Model predictions  Regularization: Prevent the model
should match training data from doing too well on training data

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



E————————————————.
Regularization Intuition In

Polynomial Regression

y,

. :\c\
O

O
O |0

g2y

e

X by "X el

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Polynomial Regression

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Polynomial Regression
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Polynomial Regression

(C) Dhruv Batra 30



Error Decomposition

oy mi] I gt poley

= \ . % -'... g 7 ‘\
[ 0 horse _DErso

fulti-class Logistic Regression e}QJ\\
N\Y
s, e
" T
I~
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Polynomial Regression

* Demo: https://arachnoid.com/polysolve/

* You are a scientist studying runners.
— You measure average speeds of the best runners at different ages.

* Data: Age (years), Speed (mph)

106 P
- 159 ’ﬁ /%
- 2011

— 2512 N

- 29 - '

—Z'ng 1 Zx a?Q’
— 5010
— 609

(C) Dhruv Batra ~ 32



https://arachnoid.com/polysolve/

-
Regularization

A= regularization strength
(hyperparameter)

L(W)=— ZLz(f(iU?:a W), yi) + AR(W)

N J H/_/

Y
Data loss: Model predictions  Regularization: Prevent the model
should match training data from doing too well on training data

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Regularization

A= regularization strength
(hyperparameter)

LOW) = 7 3 L (@0, W), 30) + AR(W)

N J H/_/
Y
Data loss: Model predictions  Regularization: Prevent the model
should match training data from doing too well on training data

Simple examples
E_Z reqularization: R(W) =", Z;IV;E;
L1 regularization: R(W) = >, >, |W#g:g|£—-—
"Elastic net (L1 +L2): R(W)=>", Zml + |Wh,|
- "

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Regularization

A= regularization strength
(hyperparameter)

LOW) = 7 3 L (@0, W), 30) + AR(W)

N J H/_/
Y
Data loss: Model predictions  Regularization: Prevent the model
should match training data from doing too well on training data

Simple examples — & More complex:

L2 regularization: lR(W))= Yow D Wﬁ [@

L1 regularization: R(W) = >, 5; |Wk,| [Batch normalization
Elastic net (L1 + L2): R(W) =3, >, W, + |Wi,|| Stochastic depth, fractional pooling, etc

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



-
Regularization

A= regularization strength
(hyperparameter)

LOW) = 7 3 L (@0, W), 30) + AR(W)

N J H/_/
Y
Data loss: Model predictions  Regularization: Prevent the model
should match training data from doing too well on training data

Why regularize?

- Ez_xpress preferences over Weighti]
- _Make the model simple so it works on test datas ——

- | Improve optimization by adding curvatureﬂ

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Recap

- We have some dataset of (X,y) eq.
- We have a score function: s = f(z;W) =Wz
- We have a loss function:

Softmax

L; = —log(=

Z € & SVM regularization loss

L4 g
LQ‘, s Zj?éyt IIl&X 0 Sj Sy _|_ ].) smrefunctlon f(mu ) . #‘E

B:J:Z 4 FE]FUII loss ﬂ; ¥

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Recap
How do we find the best W?

- We have some dataset of (X,y) eq.
- We have a score function: s = f(z;W) =Wz
- We have a loss function:

sy, SOftmax
L' —_ —].0 < 3.5'-
(] g( Zj el ) SVM regularization loss
L; =) ., max(0,8; — sy +1 T score e S =
Z‘??’éyt ( ' 9 Y; ) > f(fﬂ“W) data loss *L
1 N 3 ‘ '3
L==>:1L +RW) Fullloss E

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Next: Neural Networks

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



So far: Ljnear Classifiers

> Class
scores




Hard cases for a linear classifier

Class 1: Class 1:
First and third quadrants 1<=L2norm<=2
Class 2: Class 2:

Second and fourth quadrants

——

Everything else

\\
\

\

A

Class 1:
Three modes

Class 2:
Everything else

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Aside: Image Features

14
11(x) = Wx5

HHHHH HHH HU Hﬂn HH DDD N T Class

Scores
ﬁ:eature Representatlon

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Image Features: Motivation

Cannot separate red
and blue points with
linear classifier

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Image Features: Motivation

@ \
[
® lle
f(x, ¥) = (10, y), 8(X, y)) o [l
= %
: o[ 1] 7%
of I%
° °
o 13‘
/' L/
Cannot separate red After applying feature
and blue points with transform, points can
linear classifier be separated by linear
classifier

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




-
Example: Color Histogram

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



-
Example: Histogram of Oriented
Gradients (HoG)

Divide image into 8x8 pixel regions Example: 320x240 image gets divided
Within each region quantize edge into 40x30 bins; in each bin there are
direction into 9 bins 9 numbers so feature vector has

30*40*9 = 10,800 numbers

Lowe, “Object recognition from local scale-invariant features”, ICCV 1999
Dalal and Triggs, "Histograms of oriented gradients for human detection,” CVPR 2005

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Image features vs Neural Nets

—y O -+

Feature Extraction 10 numbers giving

scores for classes

training

J

Krizhevsky, Sutskever, and Hinton, “Imagenet classification
with deep convolutional neural networks”, NIPS 2012.
Figure copyright Krizhevsky, Sutskever, and Hinton, 2012.
Reproduced with permission.

A\ 4

10 numbers giving
scores for classes

a

\_ A AT > \Faining

x @‘C-D ﬂ%\) T

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Error Decomposition

horse ““perso

\
&€
i-class Logistic Regression e}QJ\\ O
] N\
Q
po®
m'}' * oy @(0(
<%,
Yo’ 78
S /b» e(? .
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Neural networks: without the brain stuff
j—iﬁ.{[q: K—*}'}

(Before) Linear score function: @: Wz

)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Neural networks: without the brain stuff

s " wonll, 1o, 1)
—7'::(.
(Before) Linear score function: f Wz /é []
(Now) 2-layer Neural Network ﬁ— max 0 Wm:

[""Jj

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Neural networks: without the brain stuff

(Before) Linear score function: f We
(Now) 2-layer Neural Network = WQEX_(\O Wix)

—{Z
X Wi howg s

v

3072 % ool 10
L S

Loy

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Neural networks: without the brain stuff

(Before) Linear score function: f — W /
L
(Now) 2-layer Neural Network  f = Wa max(0, Wiz)

oLt
u“‘-: It g

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Neural networks: without the brain stuff

L(fmd ) L3905

(Before) Linear score function: f — W
(Now) 2-layer Neural Network  f = W max(0, Wiz)

or 3-layer Neural.Network
E{ ‘lg L(max (0, Wg ma,x(O Wlsc))

"‘ﬂ) -
Nt N:. Wz.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Multilayer Networks
. @ascaded[“neurons”li

* The output from one layer is the input to the next
* Each layer has its own sets of weights

'

A
(JC
%
o;o

\/

S '

\ __ tput layer
INPUt [aYer o —— input layer

— idden laye hidden layer 1 hidden layer 2

X\
(X
\4
;2
&

®
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Neural networks: Architectures

A
(¢
o;o

7
SN
S\

XY
.t
\We
’( W
2
.;

output layer

S 4
: . output layer
input layer input layer

~mEEaa=  hidden layer hidden layer 1 hidden layer 2
“3-layer Neural Net”, or
]E‘/Z—Iaygr Neural Net;]or “2-hidden-layer Neural Net”
Hl

-hidden-layer Neural Net”

()

“Fully-connected” layers

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



This image by Fotis Bobolas is
licensed under CC-BY 2.0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Impulses carried toward cell body

\

presynaptic
terminal

axon

AN

cell ——M
body

>
Impulses carried away

from cell body

This image by Felipe Perucho
is licensed under CC-BY 3.0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Impulses carried toward cell body

& dendrite
presynaptic
terminal

axon

2
<

cell ——M
body

>
Impulses carried away

from cell body o wo
e loansed under CC.Y 30 synapse

axon from a neuron
- { waxg

b (Z wiT; + b)

output axon

activation
function

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Impulses carried toward cell body

& dendrite

presynaptic
ol terminal
— axon
S—

cell ——M
body

>
Impulses carried away

from cell body

o wo

@

axon from a neuron synapse
W

This image by Felipe Perucho
is licensed under CC-BY 3.0

1.0

cell body i b

i - S b f (Z iy

> Wd; + &
0.6 : = output axon
o sigmoid activation function activation
i 1 Wols function
o l+e™™
-10 -5 0 5 T e ——

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Be very careful with your brain analogies!

Biological Neurons:
| ® Many different types
® Dendrites can perform complex non-linear computations
® Synapses are not a single weight but a complex non-linear dynamical
system
® Rate code may not be adequate

[Dendritic Computation. London and Hausser]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Activation functions

: a
Sigmoid | Leaky ReLlf)
o(z) = 5} f max(f.13) z)

e : P
tanh ~ 26(2) - Y_ Maxout
tanh( ) 6 _é‘tw b max 'wl x + b1, w2 xr + bz)
" T =

—— + &
1ReLUk

x>0
| maxO@ ae®—1) =<0

S

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


https://www.flickr.com/photos/fbobolas/3822222947
https://www.flickr.com/photos/fbobolas
https://creativecommons.org/licenses/by/2.0/

Activation Functions

. Eigmoid}vs tanh

2 sCa) - |

Lot o ————. 1
u.s—:i / I (, + .f
: n.s:}."
[].h‘:"r ' —_—"
(P el
et A, o ;2
S I Py — 2
0 -5 —R?/. 10 l}i?)

(C) Dhruv Batra
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https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/

A quick note(@ﬂ)
7

08¢

(b)

Fig. 4. (a) Not recommended; the ndard lggistic function, f(z) =1/(1 +e™*). (b)

Hyperbolic tangent, f(x) m

(C) Dhruv Batra Image Credit: LeCun et al. ‘98 68


https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/

-
Rectified Linear Units (RelLU)

0.75

—RelU |
— Logistic |

0.5 \

Training error rate
f

.25+ =

40

et
h

‘ 0 5 10 15 20 25 30

Epochs

[Krizhevsky et al., NIPS12]

(C) Dhruv Batra 69


https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/

R
Demo Time

* https://playground.tensorflow.org
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