
CS 4803 / 7643: Deep Learning

Dhruv Batra 

Georgia Tech

Topics: 
– Image Classification
– Supervised Learning view
– K-NN



Administrativia
• PS0

– Due: Aug 20 11:59pm

• More seats
– We were able to recruit 1 more TA
– 25 more seats added to 7643

• Piazza
– 117/~200 people signed up. Please use that for questions. 

• Office hours start next week 

• Gradescope/Canvas 
– Anybody not have access?
– Please post on Piazza
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What is the collaboration policy?
• Collaboration

– Only on HWs and project (not allowed in HW0).
– You may discuss the questions
– Each student writes their own answers
– Write on your homework anyone with whom you collaborate
– Each student must write their own code for the programming 

part

• Zero tolerance on plagiarism
– Neither ethical nor in your best interest
– Always credit your sources
– Don’t cheat. We will find out. 
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http://cs231n.github.io/python-numpy-tutorial/ 

Python+Numpy Tutorial

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

http://cs231n.github.io/python-numpy-tutorial/


Plan for Today
• Image Classification
• Supervised Learning view
• K-NN

• Next time: Linear Classifiers
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Image Classification



Image Classification: A core task in Computer Vision

cat

(assume given set of discrete labels)
{dog, cat, truck, plane, ...}

This image by Nikita is 
licensed under CC-BY 2.0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/


This image by Nikita is 
licensed under CC-BY 2.0

The Problem: Semantic Gap

What the computer sees

An image is just a big grid of 
numbers between [0, 255]:

e.g. 800 x 600 x 3
(3 channels RGB)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/


Challenges: Viewpoint variation

All pixels change when 
the camera moves!

This image by Nikita is 
licensed under CC-BY 2.0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/


Challenges: Illumination

This image is CC0 1.0 public domain This image is CC0 1.0 public domain This image is CC0 1.0 public domain This image is CC0 1.0 public domain

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://pixabay.com/en/cat-cat-in-the-dark-eyes-staring-987528/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
http://maxpixel.freegreatpicture.com/Cats-Silhouette-Cats-Eyes-Silhouette-Cat-694730
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/red-cat-animals-cat-face-cat-red-1451799/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
http://maxpixel.freegreatpicture.com/Animals-Tree-Sun-Cat-In-Tree-Cat-Feline-Titus-63683
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Challenges: Deformation

This image by Umberto Salvagnin 
is licensed under CC-BY 2.0

This image by Tom Thai is 
licensed under CC-BY 2.0 

This image by sare bear is 
licensed under CC-BY 2.0

This image by Umberto Salvagnin 
is licensed under CC-BY 2.0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://www.flickr.com/photos/kaibara/3625964429/in/photostream/
https://www.flickr.com/photos/kaibara/
https://creativecommons.org/licenses/by/2.0/
https://c1.staticflickr.com/5/4101/4877610923_52c9a5fedf_b.jpg
https://www.flickr.com/photos/eviltomthai/
https://creativecommons.org/licenses/by/2.0/
https://www.flickr.com/photos/sarahcord/364252525
https://www.flickr.com/photos/sarahcord/
https://creativecommons.org/licenses/by/2.0/
https://www.flickr.com/photos/34745138@N00/4068996309
https://www.flickr.com/photos/kaibara/
https://creativecommons.org/licenses/by/2.0/


Challenges: Occlusion

This image is CC0 1.0 public domain
This image by jonsson is licensed 

under CC-BY 2.0
This image is CC0 1.0 public domain

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://pixabay.com/p-393294/?no_redirect
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://commons.wikimedia.org/wiki/File:New_hiding_place_(4224719255).jpg
https://www.flickr.com/people/81571077@N00?rb=1
https://creativecommons.org/licenses/by/2.0/
https://pixabay.com/en/cat-hidden-meadow-green-summer-1009957/
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Challenges: Background Clutter

This image is CC0 1.0 public domain This image is CC0 1.0 public domain

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://pixabay.com/en/cat-camouflage-autumn-fur-animals-408728/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://www.pexels.com/photo/view-of-cat-in-snow-248276/
https://creativecommons.org/publicdomain/zero/1.0/deed.en


An image classifier

15

Unlike e.g. sorting a list of numbers,
 
no obvious way to hard-code the algorithm for 
recognizing a cat, or other classes.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Attempts have been made

16

John Canny, “A Computational Approach to Edge Detection”, IEEE TPAMI 1986

Find edges Find corners

?

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



ML: A Data-Driven Approach

17

1. Collect a dataset of images and labels
2. Use Machine Learning to train a classifier
3. Evaluate the classifier on new images

Example training set

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Notation
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Supervised Learning
• Input: x   (images, text, emails…)

• Output: y (cats vs dogs, spam vs not…)

• (Unknown) Target Function
– f: X  Y (the “true” mapping / reality)

• Data  
– { (x1,y1), (x2,y2), …, (xN,yN) }

• Model / Hypothesis Class
– H = {h: X  Y}
– e.g. y = h(x) = sign(wTx)

• Learning = Search in hypothesis space
– Find best g in model class. 
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Supervised Learning
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Supervised Learning
• Input: x   (images, text, emails…)

• Output: y (spam or non-spam…)

• (Unknown) Target Function
– f: X  Y (the “true” mapping / reality)

• Data  
– { (x1,y1), (x2,y2), …, (xN,yN) }

• Model / Hypothesis Class
– H = {h: X  Y}
– e.g. y = h(x) = sign(wTx)

• Learning = Search in hypothesis space
– Find best h in model class. 

(C) Dhruv Batra 21



Learning is hard!

(C) Dhruv Batra 22



Learning is hard!
• No assumptions = No learning

(C) Dhruv Batra 23



Procedural View
• Training Stage:

– Training Data { (xi,yi) }  h (Learning)

• Testing Stage
– Test Data x  h(x)       (Apply function, Evaluate error)

(C) Dhruv Batra 24



Statistical Estimation View
• Probabilities to rescue:

– X and Y are random variables 
– D = (x1,y1), (x2,y2), …, (xN,yN) ~ P(X,Y)

• IID: Independent Identically Distributed
– Both training & testing data sampled IID from P(X,Y)
– Learn on training set
– Have some hope of generalizing to test set
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Classical Learning Theory: Error Decomposition

(C) Dhruv Batra 27

Reality
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Error Decomposition
• Approximation/Modeling Error

– You approximated reality with model

• Estimation Error
– You tried to learn model with finite data

• Optimization Error
– You were lazy and couldn’t/didn’t optimize to completion

• Bayes Error
– Reality just sucks
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Caveats
• A number of recent empirical results question our 

intuitions built from this clean separation.
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First classifier: Nearest Neighbor

33

Memorize all 
data and labels

Predict the label 
of the most similar 
training image

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Example Dataset: CIFAR10

34

 Alex Krizhevsky, “Learning Multiple Layers of Features from Tiny Images”, Technical Report, 2009.

10 classes
50,000 training images
10,000 testing images

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Example Dataset: CIFAR10

35

 Alex Krizhevsky, “Learning Multiple Layers of Features from Tiny Images”, Technical Report, 2009.

10 classes
50,000 training images
10,000 testing images Test images and nearest neighbors

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Nearest Neighbours

36



Nearest Neighbours



Instance/Memory-based Learning

Four things make a memory based learner:
• A distance metric

• How many nearby neighbors to look at?

• A weighting function (optional)

• How to fit with the local points?

(C) Dhruv Batra 38Slide Credit: Carlos Guestrin



1-Nearest Neighbour

Four things make a memory based learner:
• A distance metric

– Euclidean (and others)

• How many nearby neighbors to look at?
– 1

• A weighting function (optional)
– unused

• How to fit with the local points?
– Just predict the same output as the nearest neighbour.

(C) Dhruv Batra 39Slide Credit: Carlos Guestrin



k-Nearest Neighbour

Four things make a memory based learner:
• A distance metric

– Euclidean (and others)

• How many nearby neighbors to look at?
– k

• A weighting function (optional)
– unused

• How to fit with the local points?
– Just predict the average output among the nearest 

neighbours.

(C) Dhruv Batra 40Slide Credit: Carlos Guestrin



1-NN for Regression
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Distance Metric to compare images

42

L1 distance:

add

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



K-Nearest Neighbors: Distance Metric

43

L1 (Manhattan) distance L2 (Euclidean) distance

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Nearest Neighbor classifier

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Nearest Neighbor classifier

Memorize training data

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Nearest Neighbor classifier

For each test image:
  Find closest train image
  Predict label of nearest image

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



48

Nearest Neighbor classifier

Q: With N examples, 
how fast are training 
and prediction?

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



49

Nearest Neighbor classifier

Q: With N examples, 
how fast are training 
and prediction?

A: Train O(1),
     predict O(N)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Nearest Neighbor classifier

Q: With N examples, 
how fast are training 
and prediction?

A: Train O(1),
     predict O(N)

This is bad: we want 
classifiers that are fast 
at prediction; slow for 
training is ok

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Nearest Neighbour
• Demo 

– http://vision.stanford.edu/teaching/cs231n-demos/knn/ 
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Hyperparameters

54

What is the best value of k to use?
What is the best distance to use?

These are hyperparameters: choices about 
the algorithm that we set rather than learn

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Hyperparameters

55

What is the best value of k to use?
What is the best distance to use?

These are hyperparameters: choices about 
the algorithm that we set rather than learn

Very problem-dependent. 
Must try them all out and see what works best.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Hyperparameters

56

Idea #1: Choose hyperparameters 
that work best on the data

Your Dataset

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

http://vision.stanford.edu/teaching/cs231n-demos/knn/


Hyperparameters

57

Idea #1: Choose hyperparameters 
that work best on the data

BAD: K = 1 always works 
perfectly on training data

Your Dataset

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Hyperparameters

58

Idea #1: Choose hyperparameters 
that work best on the data

BAD: K = 1 always works 
perfectly on training data

Idea #2: Split data into train and test, choose 
hyperparameters that work best on test data

Your Dataset

train test

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Hyperparameters

59

Idea #1: Choose hyperparameters 
that work best on the data

BAD: K = 1 always works 
perfectly on training data

Idea #2: Split data into train and test, choose 
hyperparameters that work best on test data

BAD: No idea how algorithm 
will perform on new data

Your Dataset

train test

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Hyperparameters

60

Idea #1: Choose hyperparameters 
that work best on the data

BAD: K = 1 always works 
perfectly on training data

Idea #2: Split data into train and test, choose 
hyperparameters that work best on test data

BAD: No idea how algorithm 
will perform on new data

Your Dataset

train test

Idea #3: Split data into train, val, and test; choose 
hyperparameters on val and evaluate on test

Better!

train testvalidation

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Hyperparameters

61

Your Dataset

testfold 1 fold 2 fold 3 fold 4 fold 5

Idea #4: Cross-Validation: Split data into folds, 
try each fold as validation and average the results

testfold 1 fold 2 fold 3 fold 4 fold 5

testfold 1 fold 2 fold 3 fold 4 fold 5

Useful for small datasets, but not used too frequently in deep learning

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Setting Hyperparameters

62

Example of
5-fold cross-validation
for the value of k.

Each point: single
outcome. 

The line goes
through the mean, bars
indicated standard
deviation

(Seems that k ~= 7 works best
for this data)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Parametric vs Non-Parametric Models

• Does the capacity (size of hypothesis class) grow 
with size of training data?
– Yes = Non-Parametric Models
– No = Parametric Models
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Scene Completion [Hayes & Efros, SIGGRAPH07]
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Hays and Efros, SIGGRAPH 2007



… 200 total
Hays and Efros, SIGGRAPH 2007



Context Matching

Hays and Efros, SIGGRAPH 2007



Graph cut + Poisson blending Hays and Efros, SIGGRAPH 2007



Hays and Efros, SIGGRAPH 2007



Hays and Efros, SIGGRAPH 2007



Hays and Efros, SIGGRAPH 2007



Hays and Efros, SIGGRAPH 2007



Hays and Efros, SIGGRAPH 2007



Hays and Efros, SIGGRAPH 2007



Problems with Instance-Based Learning

• Expensive
– No Learning: most real work done during testing
– For every test sample, must search through all dataset – 

very slow!
– Must use tricks like approximate nearest neighbour search

• Doesn’t work well when large number of irrelevant 
features
– Distances overwhelmed by noisy features

• Curse of Dimensionality
– Distances become meaningless in high dimensions
– (See proof next)
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k-Nearest Neighbor on images never used.

- Very slow at test time
- Distance metrics on pixels are not informative

(all 3 images have same L2 distance to the one on the left)

Original Boxed Shifted Tinted

Original image is 
CC0 public domain

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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k-Nearest Neighbor on images never used.

- Curse of dimensionality

Dimensions = 1
Points = 4

Dimensions = 3
Points = 43

Dimensions = 2
Points = 42

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Curse of Dimensionality
• Consider: Sphere of radius 1 in d-dims

• Consider: an outer ε-shell in this sphere

• What is                      ?

(C) Dhruv Batra 78

shell volume
spherevolume



Curse of Dimensionality

(C) Dhruv Batra 79Figure Credit: Kevin Murphy
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K-Nearest Neighbors: Summary

In Image classification we start with a training set of 
images and labels, and must predict labels on the test set

The K-Nearest Neighbors classifier predicts labels based on 
nearest training examples

Distance metric and K are hyperparameters

Choose hyperparameters using the validation set; only run 
on the test set once at the very end!

81

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://www.pexels.com/photo/blonde-haired-woman-in-blue-shirt-y-27411/
https://creativecommons.org/publicdomain/zero/1.0/
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