Attention and Transformers

Arjun Majumdar
Georgia Tech

Lecture Outline

 Machine Translation with RNNs
« RNNs with Attention
e From Attention to Transformers

 What can Transformers do?

Sequence Modeling with RNNs

one to one one to many many to one many to many many to many

Machine Translation

we are eating bread » estamos comiendo pan

Machine Translation

estamos comiendo pan

RNN Encoder » RNN Decoder

we are eating bread

Machine Translation with RNNs

Encoder: h; = fyy(X;, hiq)

ho > h1 > h2 h3 h4
V' N A
X1 X7 X3 X4
we are eating bread

Slide credit: Justin Johnson

Machine Translation with RNNs

Encoder: h; = fyy(X;, hiq)

So=h4

we are eating bread

Slide credit: Justin Johnson

Machine Translation with RNNs

Encoder: h; = fyy(X;, i)

Decoder: s; = gu(Yt, St-1) estamos
Y1
h0 > h1 > h2 h3 h4 So — S
X1 X2 X3 X4 Yo

we are eating bread [START]

Slide credit: Justin Johnson

Machine Translation with RNNs

Encoder: h; = fyy(X;, hiq)

Decoder: s; = gy(Ys St1) estamos comiendo

Y1 Y2
ho > h1 > h2 h3 h4 So ™ S1 — 1" S2
X1 X2 X3 Xa Yo > Y1

we are eating bread [START] estamos

Slide credit: Justin Johnson

Machine Translation with RNNs

Encoder: h; = fyy(X;, hiq)

Decoder: s, = gy(Yy St1) estamos comiendo pan [STOP]
Y1 Y2 Y3 Y4
ho > h1 > h2 h3 h4 So ™ S1 1T S2 1T " S3 /1" S4
X1 X2 X3 Xa Yo Y1 Y2 > Y3
we are eating bread [START] estamos comiendo pan

Slide credit: Justin Johnson

Machine Translation with RNNs

Encoder: h; = fyy(X;, hiq)

Decoder: s; = » St-
t= 9ulys 1) Problem: s; is used to

encode input and
maintain decoder state

ho > h1 > h2 h3 h4 So ™ S1 1T S2 1T " S3 /1" S4
% ‘ 4 4) 4
X1 X7 X3 X4
we are eating bread

Slide credit: Justin Johnson

Machine Translation with RNNs

Encoder: h; = fyy(X;, hiq)

Decoder: s; = gu(Ys St1, C)

Solution: add a
context vector c = hy
and predict sy from hy

ho > h1 > hz h3 g h4 > Sy ™ S1 1T S2 1T " S3 /1" S4
‘ 4 4 4 4
C
X1 X7 X3 X4
we are eating bread

Slide credit: Justin Johnson

Machine Translation with RNNs

Encoder: h; = fyy(X;, i)

Decoder: s; = gu(Yy, St1, C) estamos comiendo pan [STOP]

Solution: add a
context vector c = hy Y1 Y2 Y3 Ys
and predict sy from hy 5 5 5 5

ho * by * hy * h3 > hy > So > S 1 > S22 — 1S3 — [" S4
A A A A A A A A A A A A
» C
X1 X2 X3 Xa Yo > Y1 > Y2 > Y3
we are eating bread [START] estamos comiendo pan

Slide credit: Justin Johnson

Machine Translation with RNNs

Encoder: h; = fyy(X;, i)

Decoder: s; = gu(Yys St1, C)

bottleneck

Problem: Input sequence
ho > hy » h, hs h, Sog — bottlenecked through
. . fixed-sized vector.
C —
X1 X2 X3 X4
we are eating bread

Slide credit: Justin Johnson

Machine Translation with RNNs

Encoder: h; = fyy(X;, i)

Decoder: s; = gu(Yys St1, C)

bottleneck

ldea: use new context

hg > h; > hy > hg > hy > Sg — vector at each step of
. decoder!
C T
X1 X7 X3 X4
we are eating bread

Slide credit: Justin Johnson

e
Machine Translation with RNNs and Attention

From final hidden state:
Initial decoder state s,

h1 h2 > h3 h4 So
X1 X2 X3 Xy
we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson

e
Machine Translation with RNNs and Attention

Compute alignment scores
ey = Tau(Ser, M) (far is an MLP)

From final hidden state:

€11 €12 €13 €14 | Initial decoder state s,
[|

h, * hy > hg * hy > So

X1 X9 X3 X4

we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson

e
Machine Translation with RNNs and Attention

aqq dq2 ais d14

t t t t

softmax

f f t I From final hidden state:
€11 €12 €13 €14 | Initial decoder state s,
[|

h; » h, > hs » hy > Sp

X1 X2 X3 X4
we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Compute alignment scores
e = fau(Se,)

(f,« is an MLP)

Normalize to get
attention weights
O<ay<T 28 =1

Slide credit: Justin Johnson

e
Machine Translation with RNNs and Attention

Compute alignment scores

X x x X
4 4 4

4 e = fan(Ser, M) (fait is an MLP)
a1 ai2 a13 a14
t t t t
soffmax Normalize to get
1 1 1 1 From final hidden state: attention weights
€11 €12 €13 €14 iti
I I \ ¥ f \ 1 Initial decoder state s, O<ay<1 Ya, =1
SRYSRUSRR Ie + -
1 2 s 4 " So Set context vector ¢ to a linear
] ‘ I [combination of hidden states
Ct = 258N,
X1 X2 X3 X4 C1
we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson

e
Machine Translation with RNNs and Attention

x

X X X
4 4 4 4
aqq a2 /313 d14
t t t t
soffmax
f f t 1 From final hidden state:
611T \ e121 913T \ €14 | Initial decoder state s,
I C C .
h; > h > h3 > hy > So
X1 X2 X3 X4
we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Compute alignment scores
ey = Tau(Ser, M) (far is an MLP)

estamos

|

:C.I

|

Yo

Normalize to get
attention weights
O<ay<T 28 =1

Set context vector ¢ to a linear
combination of hidden states

Ct = 2y

[START]

Slide credit: Justin Johnson

e
Machine Translation with RNNs and Attention

Compute alignment scores

X X X X |
4 4 4 4 et‘i = fatt(SH» h|) (fatt IS an MLP)
atq ai2 a1 d14 estamos
t t t t
soffmax Normalize to get
1 1 1 1 From final hidden state: Y1 attention weights
€11 €12 €13 €14 iti
I T \ i f \ 1 Initial decoder state s, ‘ O<a,<1 Ya,=1
h \ h \ h \ h I + |
1 y [g = | Na " So S1 Set context vector ¢ to a linear
] ‘ I [‘ ‘ combination of hidden states
Ct = 2y
X1 X2 X3 Xg C1 || Yo
we are eating bread o))
This is all differentiable! Do not
supervise attention weights —
Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015 baCkprop th rough everything

Slide credit: Justin Johnson

e
Machine Translation with RNNs and Attention

From final hidden state:
Initial decoder state s,

X X X X
1y 1y 4 4
atq ai2 a1 d14
t t t t
soffmax
t t t t
€11 \ €12 €13 €14
h, \ h, \ hs > hy
X1 X2 X3 Xy
we are eating bread

a11=0.45, a12=0.45, a13=0.05, a14=0.05

:SO

Intuition: Context vector

attends to the relevant

part of the input sequence
“estamos” = “we are”

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Compute alignment scores
ey = Tau(Ser, M) (far is an MLP)

estamos
Normalize to get
Y1 attention weights
‘ O<ay<T 28 =1
S1 Set context vector ¢ to a linear

|

|

Yo

combination of hidden states
Cy = 2N

Slide credit: Justin Johnson

e
Machine Translation with RNNs and Attention

X X X X Repeat: Use s4 to
a‘ a‘ a4 a4 compute new
12 : :2 ;3 ;4 estamos context vector ¢,
soffmax
1 1 \ t f Vi
€21 €22 €93 €24 |

hy \hz \hs \h4

we are eating bread
[START]

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson

e
Machine Translation with RNNs and Attention

X X X X Repeat: Use s, to
4 4 / 4 - compute new
da2
t

a a a :
121 ;3 ;4 estamos comiendo context vector ¢,
1 1sof1[maxT : Use ¢, to
Y1 Y2 compute s, Y,
€21 \ €22 €23 \ €24 ! T
A A 4 2 ~ + ‘

hy \,h2 \h3 \h4 . N

X1 X2 X3 X4 Ci1 || Yo Co || Y1

we are eating bread
[START] estamos

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson

e
Machine Translation with RNNs and Attention

X X X X Repeat: Use s, to
a‘ a‘ a* a‘ compute new
121 ;z ;3 ;4 estamos comiendo context vector ¢,
sofjmax Use ¢, to
I f \ f f Y1 y2 compute s,, Y,
931 \ €22 €23 \ e‘24 l T ‘
+

> So S1

] ‘ I [Intuition: Context vector ‘ ‘ ‘

attends to the relevant part
X1 Xo X3 X4 of the input sequence C1 || Yo Ca || Y1
“‘comiendo” = “eating”

we are eating bread
[START] estamos

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson

e
Machine Translation with RNNs and Attention

Use a different context vector in each timestep of decoder

- Input sequence not bottlenecked through single vector

- At each timestep of decoder, context vector “looks at”
different parts of the input sequence

\ 4

estamos comiendo

Y1

|

Y2

—

|

|

pan [STOP]

S1
Cq

|

Yo C

Y1

A

h1 > h2 > h3 h4 So
A a s r

X1 X9 X3 Xy

we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

[START]

estamos comiendo pan

Slide credit: Justin Johnson

e
Machine Translation with RNNs and Attention

Visualize attention weights a;;

Example: English to French -
translation e _ o258355 33 S
F © 05 WW< 32 n £ I A Y
.
Input: “The agreement on accord
. sur
the European Economic a
Area was signed in August . zone
” economique
1992 européenne
a
"y /tl
Output: “L'accord sur la cigne
zone économique en
’ sy s e , ao(t
européenne a été signé en 1992

aout 1992

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

<end>

Slide credit: Justin Johnson

Machine Translation with RNNs and Attention

Visualize attention weights a;;

Example: English to French S
translation ° 5
Input: “The agreement on Diagonal attention means Jaccord
. words correspond in
the European Economic order
Area was signed in August - Zome
” économique
1 992 européenne
Output: “L’accord sur la
zone économique
européenne a été signé en Diagonal attention means
aoiit 1992” words correspond in
order

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson

Machine Translation with RNNs and Attention

Example: English to French
translation

Input: “The agreement on
the
was signed in August

1992."

Output: “L'accord sur la

a été signé en
aout 1992

Visualize attention weights a;;

agreement

on

European

Economic

The
Area

the

Diagonal attention means Jaccord
words correspond in

order
Zzone

économique
européenne

Diagonal attention means
words correspond in
order

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson

e
Machine Translation with RNNs and Attention

estamos comiendo pan [STOP]
Y1 Y2 Y3 Ys
So S Sy /> S3 > 54

4 4 4 4
d21 ChY) d23 a4
t t t t
softmax

t t t t
€21 €22 €23 €24
h1 > h2 > h3 > h4
X1 X9 X3 Xy
we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

[START] estamos comiendo pan

Slide credit: Justin Johnson

Attention Layer

In uts: a;ﬂ a% a;” a%“ estamos comiendo pan [STOP]
State vector: s; (Shape: Dg) | softmax |
Hidden vectors: h; (Shape: Ny x D) o Rl Bl e y] yz y3 y]
Similarity function: f_; . S E
X4 X4 yo a EW Cy)q
we are eating bread

[START] estamos comiendo

Computation:

Similarities: e (Shape: Ny) e; = fau(si.1, hi)
Attention weights: a = softmax(e) (Shape: Ny)
Output vector: y = Y;a;h; (Shape: Dy)

Slide credit: Justin Johnson

Attention Layer

estamos comiendo pan [STOP]
‘ Y1

1 0 @
R

Inputs: 2 B B2 [
Query vector: ¢ (Shape: Dg) T ofmax]
Input vectors: X (Shape: Ny x Dy) = el Rl [
1 T — 2 — t t t t
Similarity function: f; ﬁj @ @ @

Computation:

Similarities: e (Shape: Nx) e; = f u(q, X))
Attention weights: a = softmax(e) (Shape: Ny)
Output vector: y = Y;a;X; (Shape: Dy)

are

eating bread

L it e iy

[START] estamos comiendo pan

Slide credit: Justin Johnson

Attention Layer

In Uts a; a;z 323 324
Query vector: ¢ (Shape: Do) T T E—
Input vectors: X (Shape: Ny x Dg) 2 B ’

estamos comiendo pan [STOP]

Y1 YZ Y3 Ya

€23 €24

Similarity function] dot product q] FIT FIT
h, h h

e R 1
T

we are eating bread

[START] estamos comiendo

Computation:
Similarities: e (Shape: Ny) | i = q - X;
Attention weights: a = softmax{e) (Shape: Ny) Changes:

Output vector: y = 3;a;X; (Shape: D) - Use dot product for similarity

Slide credit: Justin Johnson

Attention Layer

Inputs: wl Bl el [
2 22 23 24 estamos comiendo an [STOP]
Query vector: ¢ (Shape: Dg) T ofmax] p
Input vectors: X (Shape: Ny x Do) = el Rl e V] yz yg‘ 0 ‘
« _ep_ _s . . t 1 1 1
Similarity function:|scaled dot product ﬁ] ? @ @ .
X4 X4 g Yo a a Y2 Q YS

we are eating bread
[START] estamos comiendo pan

Computation:
Similarities: e (Shape: Ny) | ;= q - X;/ sqrt(Dq)
Attention weights: a = softmax(e) (Shape: Ny) Changes:

Output vector: y = >aX; (Shape: Dy) - Use scaled dot product for similarity

Slide credit: Justin Johnson

Attention Layer

Inputs: o [l [[a
21 22 23 24 estamos comiendo an [STOP]
Query vectors:{Q (Shape: Nq x D) ST i
Input vectors: X (Shape: Ny x Dg) = el Rl e ” yz yg‘ 0 ‘
t

X1

@Mm’n S
o ““

we are eating bread
[START] estamos comiendo pan

Computation:
Similarities: E = OXT (Shape: Nq x Nx) E;; = Q; - X;/ sqrt(Dq)
Attention weights: A = softmax(E, dim= 1) (Shape Nq X Ny) Changes:

Output vectors: Y = AX (Shape: Nq x Dy) Y; = 3AX; - Use dot product for similarity
- Multiple query vectors

Slide credit: Justin Johnson

-
Attention Layer

In uts: 3131 aiz at23 a%“ estamos comiendo pan [STOP]

Query vectors: O (Shape: Ng x Dg) | Softmax |

Input vectors: X (Shape: Ny x Dy) = el Rl e ” yz yg‘ 0 ‘
t

Key matrix: W, (Shape: Dy x Do) q] FIT FIT FIT

l
Value matrix: Wy (Shape: Dy x Dy) _‘_[L‘J s
X1 Xq g Yo a a 2 E y3

we are eating bread

[START] estamos comiendo pan

Computation:
\-Is(ey vectors: K = XW, (Shape: Ny x Dq)

Value vectors: V = XW, (Shape: Nx x Dy)
imilarities: E = OK™ (Shape: Nq x Ny) E;; = Q; - K;/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Nq x Ny) Changes:
Output vectors: Y = AV (Shape: NQ X Dv) Y, = ZJAI,JVJ - Use dot pI’OdUCt for Slmllal’l’[y
- Multiple query vectors
- Separate and value

Slide credit: Justin Johnson

-
Attention Layer

Inputs:

Query vectors: O (Shape: Nq x Dq)
Input vectors: X (Shape: Ny x Dy)
Key matrix: W, (Shape: Dy x Dq)
Value matrix: Wy (Shape: Dy x Dy)

Computation:

Key vectors: K = XW, (Shape: Ny x Dq) X4
Value vectors: V = XW,, (Shape: Ny x Dy)

Similarities: E = QK™ (Shape: Nq x Nx) Ej; = Q; - K/ sqrt(Dq) X5
Attention weights: A = softmax(E, dim=1) (Shape: Nq x Ny)

Output vectors: Y = AV (Shape: Nq x Dy) Y; = 3;A;;V, X

Q; Q, Q3 Qy

Slide credit: Justin Johnson

-
Attention Layer

Inputs:

Query vectors: O (Shape: Nq x Dq)
Input vectors: X (Shape: Ny x Dy)
Key matrix: W, (Shape: Dy x Dq)
Value matrix: Wy (Shape: Dy x Dy)

Computation:

Key vectors: K = XW, (Shape: Ny x Dq) X; — K
Value vectors: V = XW,, (Shape: Ny x Dy)

Similarities: E = QK™ (Shape: Nq x Nx) Ej; = Q; - K/ sqrt(Dq) X, — K,
Attention weights: A = softmax(E, dim=1) (Shape: Nq x Ny)

Output vectors: Y = AV (Shape: Nq x Dy) Y; = 3;A;;V, X3 — K

Q; Q, Q3 Qy

Slide credit: Justin Johnson

-
Attention Layer

Inputs:
Query vectors: O (Shape: Nq x Dq)

Input vectors: X (Shape: Ny x Dy)
Key matrix: W, (Shape: Dy x Dq)
Value matrix: Wy (Shape: Dy x Dy)

Computation:

Key vectors: K = XW, (Shape: Ny x Dq) X — Ky — Eq;y Eq Esq E4q
Value vectors: V = XW,, (Shape: Ny x Dy)

Similarities: E = (Shape: Nq x Ny) E;; = / sqrt(Dq) Xo — Koy — Eq2 | Eyp | | Ezp | Eso
Attention weights: A = softmax(E, dim=1) (Shape: Nq x Ny)

Output vectors: Y = AV (Shape: Nq x Dy) Y; = 3;A;;V, X; — Kg — Eqs Ess Ess Ess

Slide credit: Justin Johnson

-
Attention Layer

Inputs:

Query vectors: O (Shape: Nq x Dq) A A; As As
Input vectors: X (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x Dq) As A Asy Ay

Value matrix: Wy (Shape: Dy x Dy)

Computation:

Key vectors: K = XW, (Shape: Ny x Dq) X — Ky — Eq;y Eq Esq E4q
Value vectors: V = XW,, (Shape: Ny x Dy)

Similarities: E = (Shape: Nq x Ny) E;; = / sqrt(Dq) Xo — Koy — Eq2 | Eyp | | Ezp | Eso
Attention weights: A = softmax(E, dim=1) (Shape: Nq x Ny)

Output vectors: Y = AV (Shape: Nq x Dy) Y; = 3;A;;V, X; — Kg — Eqs Ess Ess Ess

Q; Q, Q3 Qy

Slide credit: Justin Johnson

Attention Layer

Inputs:

Query vectors: O (Shape: Nq x Dg) » Vi — Ay A; As As
Input vectors: X (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x Dg) » Vo — A A Az Ay

Value matrix: Wy (Shape: Dy x Dy)

Computation:

Key vectors: K = XW, (Shape: Ny x Dq) = X7 — K; — | Eq; Eq Esq E4q
Value vectors: V = XW, (Shape: Nx x Dy)

Similarities: E = (Shape: Nq x Ny) E;; = / sqrt(Dq) Xo — Koy — Eq2 | Eyp | | Ezp | Eso
Attention weights: A = softmax(E, dim=1) (Shape: Nq x Ny)

Output vectors: Y = AV (Shape: Nq x Dy) Y; = ZA;;V; X; — Kg — Eqs Ess Ess Ess

Q; Q, Q3 Qy

Slide credit: Justin Johnson

Y, Y, Y, Y,

Attention Layer A D B

Product(—), Sum(t)

Inputs: 1

Query vectors: O (Shape: Nq x Dq) » Vi — Ay A; As As
Input vectors: X (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x Dq) » Vo — A A Az Ay

Value matrix: Wy (Shape: Dy x Dy)

Computation:

Key vectors: K = XW, (Shape: Ny x Dq) = X7 — K; — | Eq; Eq Esq E4q
Value vectors: V = XW,, (Shape: Ny x Dy)

Similarities: E = (Shape: Nq x Ny) E;; = / sqrt(Dq) Xo — Koy — Eq2 | Eyp | | Ezp | Eso
Attention weights: A = softmax(E, dim=1) (Shape: Nq x Ny)

Output vectors: Y = AV (Shape: Nq x Dy) Y; = 3;A;;V, X; — Kg — Eqs Ess Ess Ess

Q; Q, Q3 Qy

Slide credit: Justin Johnson

-
Self-Attention Layer

One query per input vector

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x Dq)

Value matrix: W., (Shape: Dy x D)

Query matrix: W, (Shape: Dy x Dg)

Computation:

Query vectors: O = XW

Key vectors: K = XW, (Shape: Ny x Dq)

Value vectors: V = XW, (Shape: Nx x Dy)

Similarities: E = QK™ (Shape: Nx x Nx) Ej; = Q; - K;/ sqrt(Dg)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x Dy) Y; = JA;,V,

Slide credit: Justin Johnson

-
Self-Attention Layer

One query per input vector
Inputs:
Input vectors: X (Shape: Ny x Dy)
Key matrix: W, (Shape: Dy x Dq)
Value matrix: Wy (Shape: Dy x Dy)
Query matrix: W, (Shape: Dy x D)

Computation:

Query vectors: O = XW,

Key vectors: K = XW, (Shape: Ny x Dq)

Value vectors: V = XW,, (Shape: Ny x Dy)

Similarities: E = QK™ (Shape: Nx x Nx) E;; = Q; - K;/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) Q; Q, Q3
Output vectors: Y = AV (Shape: Ny x Dy) Y; = AV, t t t

Slide credit: Justin Johnson

-
Self-Attention Layer

One query per input vector
Inputs:
Input vectors: X (Shape: Ny x Dy)
Key matrix: W, (Shape: Dy x Dq)
Value matrix: Wy (Shape: Dy x Dy)
Query matrix: W, (Shape: Dy x D)

Computation:
Query vectors: O = XW, Ko
Key vectors: K = XW, (Shape: Ny x Dq)

Value vectors: V = XW,, (Shape: Ny x Dy) K
Similarities: E = QK™ (Shape: Nx x Nx) E;; = Q; - K;/ sqrt(Dq)

Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) Q; Q, Q3
Output vectors: Y = AV (Shape: Ny x Dy) Y; = AV, t t t

Slide credit: Justin Johnson

-
Self-Attention Layer

One query per input vector

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x Dq)
Value matrix: Wy, (Shape: Dy x Dy)
Query matrix: W, (Shape: Dy x Dg)

Computation:
Query vectors: O = XW, Ko = Eq2 Eso Es»
Key vectors: K = XW, (Shape: Ny x Dq)

Value vectors: V = XW, (Shape: Nx x Dy)

Similarities: E = QKT (Shape: Ny x Ny) E;; = Q; - K;/ sqrt(Dg) t t t
Attention weights: A = softmax(E, dim=1) (Shape: Nx x Ny) Q; Q, Q3
Output vectors: Y = AV (Shape: Ny x Dy) Y; = JA;,V, t t t

X1 X2 X3

Slide credit: Justin Johnson

-
Self-Attention Layer

One per input vector
. Az Az | Ass
Inputs: :
Input vectors: X (Shape: Nx x Dx) Aol (A | Ass
Key matrix: W, (Shape: Dy x Dq)
Value matrix: Wy (Shape: Dy x Dy) A1 Ay Az
Query matrix: W, (Shape: Dy x Dg) t
Softmax(])
t

Computation:
Query vectors: O = X Ky = Eq» Es» Es»
Key vectors: K = XW, (Shape: Ny x Dq)

Value vectors: V = XW, (Shape: Nx x Dy) :

Similarities: E = (Shape: Ny x Ny) E;; = / sqrt(Dq) t t t
Attention weights: A = softmax(E, dim=1) (Shape: Nx x Ny) Q; Q, Q3
Output vectors: Y = AV (Shape: Ny x Dy) Y; = JA;,V, t t t

Slide credit: Justin Johnson

-
Self-Attention Layer

One query per input vector

Inputs: Vs |7 As | Az Asg
Input vectors: X (Shape: Ny x Dy) Vo = AL Al | Asy
Key matrix: W, (Shape: Dy x Dq) ' ' '
Value matrix: W, (Shape: Dy x Dy) Vi A Az Az
Query matrix: W, (Shape: Dy x D) — ntaX(T)

t

Computation:
Query vectors: O = XW Ky = Eq» Es» Es»
Key vectors: K = XW, (Shape: Ny x Dq)

Value vectors: V = XW,, (Shape: Ny x Dy)

Similarities: E = QKT (Shape: Ny x Ny) E;; = Q; - K;/ sqrt(Dq) t t t
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) Q; Q, Q3
Output vectors: Y = AV (Shape: Ny x Dy) Y; = AV, t t t

X1 X2 X3

Slide credit: Justin Johnson

Self-Attention Layer

One query per input vector

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x Dq)
Value matrix: Wy (Shape: Dy x Dy)
Query matrix: W, (Shape: Dy x D)

Computation:

Query vectors: O = XW,

Key vectors: K = XW, (Shape: Ny x Dq)

Value vectors: V = XW,, (Shape: Ny x Dy)

Similarities: E = QK™ (Shape: Nx x Nx) E;; = Q; - K;/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x Dy) Y; = AV,

Y1 Y2 Y3
1 % 4

Product(—), Sum(})

v

Ais Azj Ass
Ao Ao As-

Ar,; Az As1
t

Softmax(])

Q; Q, Qs
t 1) t

Slide credit: Justin Johnson

-
Self-Attention Layer T T

Consider permuting , - !
Inputs: the input vectors:
Input vectors: X (Shape: Ny x Dy) . —
Key matrix: W, (Shape: Dy x Dq)
Value matrix: Wy, (Shape: Dy x Dy) -
Query matrix: W, (Shape: Dy x Dg) — ntaX(T)
t
Computation: -
Query vectors: O = XW —
Key vectors: K = XW, (Shape: Ny x Dq)
Value vectors: V = XW, (Shape: Ny x Dy) -
Similarities: E = QKT (Shape: Ny x Ny) E;; = Q; - K;/ sqrt(Dg) t t t
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x Dy) Y; = JA;,V, $ t $
X3 X X5

Slide credit: Justin Johnson

-
Self-Attention Layer), S

t
Consider permuting , -
Inputs: the input vectors:
Input vectors: X (Shape: Ny x Dy) . —
Key matrix: W (Shape: Dy x Dq) Queries and Keys will
Value matrix: Wy (Shape: Dy x Dy) be the same, but -
Query matrix: W, (Shape: Dy x Dq) permuted t
Softmax(])
t
C inn: e K2 >
omputation:
Query vectors: O = XW, -+ K; |+
Key vectors: K = XW, (Shape: Ny x Dq)
Value Vectors: V = XW,, (Shape: Ny x Dy) MK 1
Similarities: E = QKT (Shape: Ny x Ny) E;; = Q; - K;/ sqrt(Dq) + + +
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) Qs Q; Q,
Output vectors: Y = AV (Shape: Ny x Dy) Y; = AV, $ 1 t
X3 X X5
-

Slide credit: Justin Johnson

-
Self-Attention Layer), S

Consider permuting . - !
Inputs: the input vectors:
Input vectors: X (Shape: Ny x Dy) . —
Key matrix: Wy (Shape: Dy x Do) Similarities will be the
Value matrix: W, (Shape: Dy x Dy) same, but permuted -
Query matrix: W, (Shape: Dy x D) — ntaX(T)
4

Computation: Ko ||| Esz SF! B2z
Query vectors: O = XW Ki [+ Es; E; Esq
Key vectors: K = XW, (Shape: Ny x Dq)
Value vectors: V = XW,, (Shape: Ny x Dy) * Ks |77 Ess S Eas
Similarities: E = QK™ (Shape: Ny x Ny) E;; = O; - K/ sqrt(Dg) t t t
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) Qs Q; Q
Output vectors: Y = AV (Shape: Ny x Dy) Y; = AV, t t t
X3 X1 X2
-

Slide credit: Justin Johnson

Self-Attention Layer

Consider permuting

Inputs: the input vectors:
Input vectors: X (Shape: Ny x Dy)

Key matrix: W, (Shape: Dx x D) Attention weights will
Value matrix: Wy (Shape: Dy x Dy) be the same, but
Query matrix: W, (Shape: Dy x D) permuted

Computation:

Query vectors: O = XW,

Key vectors: K = XW, (Shape: Ny x Dq)

Value vectors: V = XW,, (Shape: Ny x Dy)

Similarities: E = QK™ (Shape: Nx x Nx) E;; = Q; - K;/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x Dy) Y; = AV,

1 1 %

Product(—), Sum(})
4

Aszs Ais Azs

T

Softmax(])

Qs Q, Q,
t 1) t

Slide credit: Justin Johnson

-
Self-Attention Layer) St

Consider permuting . A
Inputs: the input vectors: V2 Asa | [Az | | As2
Input vectors: X (Shape: Ny x Dy) o Va | Agy A A;
Key matrix: W (Shape: Dy x Dq) Values will be the ‘ ' '
Value matrix: Wy (Shape: Dy x Dy) same, but permuted 1 Vs [Tl Asa| [Aia] |Ass
Query matrix: W, (Shape: Dy x D) — ntaX(T)
t

Computation:

Query vectors: O = XW Ki |— Ess E1q Es;
Key vectors: K = XW, (Shape: Ny x Dq)
-\ = - Ks |= | Esz | | Ei3 Eos
Value vectors: V = XW,, (Shape: Ny x Dy) . . .
Similarities: E = QK™ (Shape: Ny x Ny) E;; = O; - K/ sqrt(Dq) t t t
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) Qs Q; Q
Output vectors: Y = AV (Shape: Ny x Dy) Y; = AV, t t t
X3 X1 X,

Slide credit: Justin Johnson

Self-Attention Layer

Consider permuting

Inputs: the input vectors:
Input vectors: X (Shape: Ny x Dy)

Key matrix: Wy (Shape: Dx x Do) Outputs will be the
Value matrix: Wy, (Shape: Dy x Dy) same, but permuted

Query matrix: W, (Shape: Dy x Dg)

Computation:

Query vectors: O = XW

Key vectors: K = XW, (Shape: Ny x Dq)

Value vectors: V = XW, (Shape: Nx x Dy)

Similarities: E = QK™ (Shape: Nx x Nx) Ej; = Q; - K;/ sqrt(Dg)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x Dy) Y; = JA;,V,

v

Ys3 Y, Y,
IProduc’t(—T>), Sum(T)I
t
Az A Ajo
Az A1 Aj
Ass A3 A
t
Softmax(])
1
Es» E1- Eso
Es E11 E;
Ess Ei3 Eos
1 1) 1)
Qs Q, Q,
t t t
X3 X1 X5

Slide credit: Justin Johnson

Self-Attention Layer), St

t
Consider permuting IV, =
Inputs: the input vectors: 2 Asa | [Aiz| [
Input vectors: X (Shape: Ny x Dy) o Vi |= | Agy A A,
Key matrix: W, (Shape: Dy x Dq) Outputs will be the ‘
Value matrix: Wy (Shape: Dy x Dy) same, but permuted 1 Vs (= Asa| [Aiz] |Ass
Query matrix: W, (Shape: Dy x Dg) < ﬂf o
Self-attention layer is 2 TaXT
Permutation , -
Computation: Equivariant Ko Es» Eq E22
Query vectors: O = XW, f(s(x)) = s(f(x)) Ki |— Ess E1q Es
Key vectors: K = XW, (Shape: Ny x Dq)
Value vectors: V = XW, (Shape: Nx x Dy) " Ks |= | Ess Ei3 E2s
Similarities: E = QK™ (Shape: Ny x Nx) Ej; = Q; - K;/ sqrt(Dq) t t t
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) Qs Q; Q,
Output vectors: Y = AV (Shape: Ny x Dy) Y; = JA;,V, t t t
X3 X1 X,
-

Slide credit: Justin Johnson

Y4 Y, Y3

Self-Attention Layer T T

Self attention doesn’t “know” Vs = Aq; Ao As3

Inputs: no
Input vectors: X (Shape: Ny x Dy) the order of the vectors it is

Vo [= A Ago Az

ing!
Key matrix: W, (Shape: Dy x Dq) processing:
Value matrix: W, (Shape: Dy x Dy) Vi = Ay Az Az
Query matrix: W, (Shape: Dy x Dg) t
Softmax(])
t

Computation:
Query vectors: O = XW, Ko = Eq2 Eso Es»
Key vectors: K = XW, (Shape: Ny x Dq)

Value vectors: V = XW, (Shape: Nx x Dy)

Similarities: E = QKT (Shape: Ny x Ny) E;; = Q; - K;/ sqrt(Dg) t t t
Attention weights: A = softmax(E, dim=1) (Shape: Nx x Ny) Q; Q, Q3
Output vectors: Y = AV (Shape: Ny x Dy) Y; = JA;,V, t t t

X1 X2 X3

Slide credit: Justin Johnson

Self-Attention Layer

Self attention doesn’t “know”
the order of the vectors it is
processing!

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x Dq)
Value matrix: Wy, (Shape: Dy x Dy)

Query matrix: W, (Shape: Dy x Dg) In order to make processing

position-aware, concatenate
input with positional encoding

Computation:

Query vectors: O = XW

Key vectors: K = XW, (Shape: Ny x Dq)
Value vectors: V = XW, (Shape: Nx x Dy)
Similarities: E = QK™ (Shape: Nx x Nx) Ej; = Q; - K;/ sqrt(Dg)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x Dy) Y; = JA;,V,

E can be learned lookup table,
or fixed function

Y4 Y, Y3

1 % 1
Product(—), Sum(})
t

Ais Azj Ass
Ao Ao As-
Aq A;; As

Q; Q, Qs
t 1) t

E(T) E@2) [EE)

Slide credit: Justin Johnson

N
Big cat [END]

t t t
Masked Selt-Attention Layer f——
Inputs: Va |=|L 0 0 As3
w:yu:n‘ﬁ?it,zrs' X(éf]r;?)ﬂ?'D':f(ng)x) Don't let vectors “look V2 0 Aoz | | Az
Value matrix: Wy (Shape: Dy x Dy) ahead” in the sequence Vi = A Agy Az
Query matrix: W, (Shape: Dy x Dg) t
Used for language Softmax(])
modeling (predict next
Computation: word) 9 (p Ks |=|| - "0 Ess
Query vectors: O = X Ky |—|| -00 Es» Es»
Key vectors: K = XW, (Shape: Ny x Dq)
Value vectors: V = XW, (Shape: Nx x Dy) Ki 1= B Ea; Es,;
Similarities: E = (Shape: Ny x Ny) E;; = / sqrt(Dg) t t t
Attention weights: A = softmax(E, dim=1) (Shape: Nx x Ny) Q; Q, Q3
Output vectors: Y = AV (Shape: Ny x Dy) Y; = JA;,V, t t t

[START] Big cat

Slide credit: Justin Johnson

Multihead Self-Attention Layer |

Inputs: Concat
Input vectors: X (Shape: Ny x Dy)
Key matrix: W, (Shape: Dy x Dq) . o R
Value matrix: Wy (Shape: Dy x Dy) : S EEE —eELE —eEEE
Query matrix: W, (Shape: Dy x Dg) Use H |.ndependen’F ?i HE ii HE ?3 e
“Attention Heads" in e T e
parallel FERE |WEEE EEE
Computation:
Query vectors: O = XW, 3
Key vectors: (Shape: Ny x Dq) R
Value vectors: V = XW,, (Shape: Ny x D) Split
Similarities: E = QK™ (Shape: Nx x Nx) Ej; = Q; - K;/ sqrt(Dg)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x Dy) Y; = JA;,V,
X Xy | | X

Slide credit: Justin Johnson

Three Ways of Processing Sequences

Recurrent Neural Network

Yi ™ Yo /™ Y3 /™ Vs

I

X1 X9 X3 X4

Works on Ordered Sequences

(+) Good at long sequences: After
one RNN layer, hy "sees” the
whole sequence

(-) Not parallelizable: need to
compute hidden states
sequentially

Slide credit: Justin Johnson

Three Ways of Processing Sequences

Recurrent Neural Network

Yo T Yo T Y3 T Y4

I

X1 X9 X3 X4

Works on Ordered Sequences

(+) Good at long sequences: After
one RNN layer, hy "sees” the
whole sequence

(-) Not parallelizable: need to
compute hidden states
sequentially

1D Convolution

IX XX

Works on Multidimensional Grids
(-) Bad at long sequences: Need
to stack many conv layers for
outputs to “see” the whole
sequence

(+) Highly parallel: Each output
can be computed in parallel

Slide credit: Justin Johnson

Three Ways of Processing Sequences

Recurrent Neural Network

Yo T Yo T Y3 T Y4

I

X1 X9 X3 X4

Works on Ordered Sequences

(+) Good at long sequences: After
one RNN layer, hy "sees” the
whole sequence

(-) Not parallelizable: need to
compute hidden states
sequentially

1D Convolution

XXX

Works on Multidimensional Grids
(-) Bad at long sequences: Need
to stack many conv layers for
outputs to “see” the whole
sequence

(+) Highly parallel: Each output
can be computed in parallel

Self-Attention

Works on Sets of Vectors

(+) Good at long sequences: after
one self-attention layer, each
output “sees” all inputs!

(+) Highly parallel: Each output
can be computed in parallel

(-) Very memory intensive

Slide credit: Justin Johnson

Three Ways of Processing Sequences

Recurrent Neural Network 1D Convolution

Self-Attention

Attention is all you need

Vaswani et al, NeurlPS 2017

Works on Ordered Sequences Works on Multidimensional Grids
(+) Good at long sequences: After (-) Bad at long sequences: Need
one RNN layer, h; "sees” the to stack many conv layers for
whole sequence outputs to “see” the whole

(-) Not parallelizable: need to sequence

compute hidden states (+) Highly parallel: Each output
sequentially can be computed in parallel

Works on Sets of Vectors

(+) Good at long sequences: after
one self-attention layer, each
output “sees” all inputs!

(+) Highly parallel: Each output
can be computed in parallel

(-) Very memory intensive

Slide credit: Justin Johnson

The Transformer

Vaswani et al, “Attention is all you need”, NeurlPS 2017

Slide credit: Justin Johnson

The Transformer

t
All vectors interact Self-Attention
with each other t t t t
1 1 1 1
X1 X X3 X4

Vaswani et al, “Attention is all you need”, NeurlPS 2017

Slide credit: Justin Johnson

Y1 Y2 Y3 Ya

The Transformer [el [e

Vaswani et al, “Attention is all you need”, NeurlPS 2017

. t t t t

MLP independently YTV MLP MLP

on each vector
t t t t

t

All vectors interact Self-Attention

with each other t t t t
1 1 1 1
X1 X X3 X4

Slide credit: Justin Johnson

The Transformer

MLP independently
on each vector

Residual connection

All vectors interact
with each other

Vaswani et al, “Attention is all you need”, NeurlPS 2017

Y1 Y2 Y3 Ya

t t t t

t t t t
MLP MLP MLP MLP

t t t t

4
Self-Attention

t t t t

1 1 1 1
X1 X X3 X4

Slide credit: Justin Johnson

The Transformer

Recall Layer Normalization:
Given h,, .., hy (Shape: D)

scale: y (Shape: D) .

shift: 8 (Shape: D) MLP independently

ui = (1/D)3; h, (scalar) on each vector

o; = (3 (hy; - 1;)?)V/? (scalar)

zi = (hi-w) / o

=1y * 7

Yi=yrzith Residual connection
All vectors interact

Ba et al, 2016 with each other

Vaswani et al, “Attention is all you need”, NeurlPS 2017

Y1 Y2 Y3 Ya
t t t t
t
[[[I
MLP MLP MLP MLP
|
Layer Normalization

:
Self-Attention
t t t t
I I I I
X4 Xo X3 X4

Slide credit: Justin Johnson

The Transformer

MLP independently
on each vector

Residual connection

All vectors interact
with each other

Vaswani et al, “Attention is all you need”, NeurlPS 2017

Y1 Y2 Y3 Ya
t t t t
t
[[[I
MLP MLP MLP MLP
|
Layer Normalization

:
Self-Attention
t t t t
I I I I
X4 Xo X3 X4

Slide credit: Justin Johnson

The Transformer

Residual connection

MLP independently
on each vector

Residual connection

All vectors interact
with each other

Vaswani et al, “Attention is all you need”, NeurlPS 2017

Y1 Y2 Y3 Ya
I | I I
Layer Normalization
:

[[[I
MLP MLP MLP MLP
Layer Normalization
:
Self-Attention
t t t t
I I I I
X4 Xo X3 X4

Slide credit: Justin Johnson

The Transformer AR e

Layer Normalization
Transformer Block: ‘ G:D

Input: Set of vectors x

Output: Set of vectors 'y I [[I
MLP MLP MLP MLP

Self-attention is the only
interaction between vectors!

Layer Normalization

Layer norm and MLP work :@:9
independently per vector

Self-Attention
Highly scalable, highly -t t t t
parallelizable 1 1 1 1
X4 Xo X3 X4

Vaswani et al, “Attention is all you need”, NeurlPS 2017

Slide credit: Justin Johnson

The Transformer

Transformer Block:
Input: Set of vectors x
Output: Set of vectors 'y

Self-attention is the only
interaction between vectors!

Layer norm and MLP work
independently per vector

Highly scalable, highly
parallelizable

Vaswani et al, “Attention is all you need”, NeurlPS 2017

A Transformer is a

sequence of transformer

blocks

! ! ! !

Layer Normalization

I

M| mep | (mep | e |

Layer Normalization

i

Self-Attention
t t t 1

R
I —

Layer Normalization

|

I
‘Mp | M| mee | MLP |

Layer Normalization

il

Self-Attention
1 1 1 t

R N
[—

Layer Normalization

I

‘Mp| (me | e MLP |

Layer Normalization

i

Self-Attention
t t 1 1

B N

Slide credit: Justin Johnson

Output
Probabilities
'he Transformer
Linear
4 h
l Add & Norm |<ﬁ
Feed
Forward
Vs ~\ Add & Norm
_ .
Add & Norm Multi-Head
Feed Attention
Forward D D) N x
ot il]
Nix Add & Norm
(—>| Add & Norm l VI
Multi-Head Multi-Head
Attention Attention
=) A=)
_ J _ —
Positional @_@ @ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Vaswani et al, “Attention is all you need”, NeurlPS 2017 E n CO d e r- D e CO d e r

e
Benchmark

GLUE

Rank Name CoLA SST-2 MRPC STS-B QQP MNLI-m MNLI-mm
1 HFLIFLYTEK MacALBERT + DKM 90.7 74.8 97.0 94.5/92.6 92.8/92.6 74.7/90.6 91.3 91.1 97.8 92.0 94.5 52.6
+ 2 Alibaba DAMO NLP StructBERT + TAPT C);' 90.6 753 97.3 93.9/91.9 93.2/92.7 74.8/91.0 90.9 90.7 97.4 91.2 94.5 49.1
+ 3 PING-AN Omni-Sinitic ALBERT + DAAF + NAS 90.6 73.5 97.2 94.0/92.0 93.0/92.4 76.1/91.0 91.6 91.3 97.5 91.7 94.5 51.2
4 ERNIE Team - Baidu ERNIE g 90.4 74.4 97.5 93.5/91.4 93.0/92.6 75.2/90.9 91.4 91.0 96.6 90.9 94.5 51.7
5 T5Team- Google T5 C);' 90.3 71.6 97.5 92.8/90.4 93.1/92.8 75.1/90.6 922 91.9 96.9 92.8 94.5 53.1
6 Microsoft D365 Al & MSR Al & GATECH MT-DNN-SMART U 89.9 69.5 97.5 93.7/91.6 92.9/92.5 73.9/90.2 91.0 90.8 99.2 89.7 94.5 50.2
+ 7 Zihang Dai Funnel-Transformer (Ensemble B10-10-10H1024) g 89.7 70.5 97.5 93.4/91.2 92.6/92.3 75.4/90.7 91.4 91.1 95.8 90.0 94.5 51.6
+ 8 ELECTRA Team ELECTRA-Large + Standard Tricks C};' 89.4 71.7 97.1 93.1/90.7 92.9/92.5 75.6/90.8 91.3 90.8 95.8 89.8 91.8 50.7
+ 9 Huawei Noah's Ark Lab NEZHA-Large 89.1 69.9 97.3 93.3/91.0 92.4/91.9 74.2/90.6 91.0 90.7 95.7 88.7 93.2 47.9
+ 10 Microsoft D365 Al & UMD FreeLB-RoBERTa (ensemble) g 88.4 68.0 96.8 93.1/90.8 92.3/92.1 74.8/90.3 91.1 90.7 95.6 88.7 89.0 50.1
11 Junjie Yang HIRE-RoBERTa g 88.3 68.6 97.1 93.0/90.7 92.4/92.0 74.3/90.2 90.7 90.4 95.5 87.9 89.0 493
12 Facebook Al RoBERTa C’l 88.1 67.8 96.7 92.3/89.8 92.2/91.9 74.3/90.2 90.8 90.2 95.4 88.2 89.0 48.7
+ 13 Microsoft D365 Al & MSR Al MT-DNN-ensemble C);' 87.6 68.4 96.5 92.7/90.3 91.1/90.7 73.7/89.9 87.9 87.4 96.0 86.3 89.0 42.8
14 GLUE Human Baselines GLUE Human Baselines g 87.1 66.4 97.8 86.3/80.8 92.7/92.6 59.5/80.4 92.0 92.8 91.2 93.6 95.9 -
15 Stanford Hazy Research Snorkel MeTal g 83.2 63.8 96.2 91.5/88.5 90.1/89.7 73.1/89.9 87.6 87.2 93.9 80.9 65.1 39.9

source: https://gluebenchmark.com/leaderboard

e
Benchmark

GLUE

Rank Name CoLA SST-2 MRPC STS-B QQP MNLI-m MNLI-mm
1 HFLIFLYTEK MacALBERT + DKM 90.7 74.8 97.0 94.5/92.6 92.8/92.6 74.7/90.6 91.3 91.1 97.8 92.0 94.5 52.6
+ 2 Alibaba DAMO NLP StructBERT + TAPT C}Jl 90.6 75.3 97.3 93.9/91.9 93.2/92.7 74.8/91.0 90.9 90.7 97.4 91.2 94.5 49.1
+ 3 PING-AN Omni-Sinitic ALBERT + DAAF + NAS 90.6 /8% 97.2 94.0/92.0 93.0/92.4 76.1/91.0 91.6 91.3 97.5 91.7 94.5 51.2
4 ERNIE Team - Baidu ERNIE C}J. 90.4 74.4 97.5 93.5/91.4 93.0/92.6 75.2/90.9 91.4 91.0 96.6 90.9 94.5 51.7
5 T5Team- Google T5 C)J' 90.3 71.6 97.5 92.8/90.4 93.1/92.8 75.1/90.6 922 91.9 96.9 92.8 94.5 53.1
6 Microsoft D365 Al & MSR Al & GATECH MT-DNN-SMART C}J' 89.9 69.5 97.5 93.7/91.6 92.9/92.5 73.9/90.2 91.0 90.8 99.2 89.7 94.5 50.2
+ 7 Zihang Dai Funnel-Transformer (Ensemble B10-10-10H1024) C}J. 89.7 70.5 97.5 93.4/91.2 92.6/92.3 75.4/90.7 91.4 91.1 95.8 90.0 94.5 51.6
+ 8 ELECTRA Team ELECTRA-Large + Standard Tricks C}J' 89.4 71.7 97.1 93.1/90.7 92.9/92.5 75.6/90.8 91.3 90.8 95.8 89.8 91.8 50.7
+ 9 Huawei Noah's Ark Lab NEZHA-Large 89.1 69.9 97.3 93.3/91.0 92.4/91.9 74.2/90.6 91.0 90.7 95.7 88.7 93.2 47.9
+ 10 Microsoft D365 Al & UMD FreeLB-RoBERTa (ensemble) C}Jl 88.4 68.0 96.8 93.1/90.8 92.3/92.1 74.8/90.3 91.1 90.7 95.6 88.7 89.0 50.1
11 Junjie Yang HIRE-ROBERTa C}J' 88.3 68.6 97.1 93.0/90.7 92.4/92.0 74.3/90.2 90.7 90.4 95.5 87.9 89.0 49.3
12 Facebook Al RoBERTa C}J. 88.1 67.8 96.7 92.3/89.8 92.2/91.9 74.3/90.2 90.8 90.2 95.4 88.2 89.0 48.7
+ 13 Microsoft D365 Al & MSR Al MT-DNN-ensemble C}Jl 87.6 68.4 96.5 92.7/90.3 91.1/90.7 73.7/89.9 87.9 87.4 96.0 86.3 89.0 42.8
GLUE Human Baselines GLUE Human Baselines { . ! .8 86.3/80.8 92.7/92.6 59.5/80.4
15 Stanford Hazy Research Snorkel MeTaL CJ 83.2 63.8 96.2 91.5/88.5 90.1/89.7 73.1/89.9 87.6 87.2 93.9 80.9 65.1 39.9

source: https://gluebenchmark.com/leaderboard

SYSTEM PROMPT (HUMAN-WRITTEN)

In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously unexplored valley,
in the Andes Mountains. Even more surprising to the researchers was the fact that the unicorns spoke
perfect English.

MODEL COMPLETION (MACHINE-WRITTEN, 10 TRIES)

The scientist named the population, after their distinctive horn, Ovid’s
Unicorn. These four-horned, silver-white unicorns were previously unknown to
science.

Now, after almost two centuries, the mystery of what sparked this odd
phenomenon 1s finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and
several companions, were exploring the Andes Mountains when they found a small
valley, with no other animals or humans. Pérez noticed that the valley had what
appeared to be a natural fountain, surrounded by two peaks of rock and silver
SNOW .

Pérez and the others then ventured further into the valley. “By the time we

reached the top of one peak, the water looked blue, with some crystals on top,”

said Pérez.
Source: OpenAl, “Better Language Models and Their Implications”
https://openai.com/blog/better-language-models/

Can Attention/Transformers be used
from more than text processing?

VILBERT: A Visolinguistic Transformer

pop artist performs at the a worker helps to clear blue sofa in the living
festival in a city. the debris. room.

Image and captions from: Sharma, Piyush, et al. "Conceptual captions: A cleaned,
hypernymed, image alt-text dataset for automatic image captioning.”" ACL. 2018.

VILBERT: A Visolinguistic Transformer

Faster R-CNN Multimodal Transformer
RPN h H B B BN
CN\NI o| RO Vision < Language
) Pool guad
S~ H B E BN
blue sofa in the living
room.

Lu et al "Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks." NeurlPS. 2019.
Ren et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." NeurlPS. 2015.

VILBERT Demo:
https.//vilbert.cloudcv.org/

https://vilbert.cloudcv.org/

Summary

Self-Attention Transformer Model VIiLBERT

Output
Probabilities

Y, Y, Y,
t t t

| Product(—), Sum(1)

t

Add & Norm
Az] [Aza] [Ass Feed

_’ A | | Ay Az, —
_. A A A |Add&Normﬁ H B B ‘- m
1,1 2,1 3,1 —>{_Add & Norm =
1 Multi-Head
| Softrrf\ax(T) | Fgl?vs;jrd }Atte;mon " o
Ks |~ [Exs | [Esa] [Ess i i = Vision e Language
Nix s orm
Ky |= | Ei2 Ez» Es» —(Add & Norm Masked
)~ [E] [E ODOoOOd NN
1 1,1 2,1 3,1 ention ttention
t t t =t —r
| (o] [ety
1 t t Positional D Positional
‘ X ‘ ‘ Xz ‘ ‘ X3 ‘ Encoding 2 Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

