CS 4803 / 7643 Deep Learning, Fall 2020

Reinforcement Learning: Module 1/3

Presented by Nirbhay Modhe

Reinforcement Learning Introduction

Supervised Learning

- Train Input: $\{X, Y\}$
- Learning output: $f: X \to Y, P(y|x)$
- e.g. classification

Unsupervised Learning

- Input: {X}
- Learning output: P(x)
- Example: Clustering, density estimation, etc.

Reinforcement Learning

- Evaluative feedback in the form of reward
- No supervision on the right action

RL: Sequential decision making in an environment with evaluative feedback.

- **Environment** may be unknown, non-linear, stochastic and complex.
- Agent learns a policy to map states of the environments to actions.
 - Seeking to maximize cumulative reward in the long run.

RL: <u>Sequential decision</u> making in an environment with <u>evaluative feedback</u>.

Evaluative Feedback

- Pick an action, receive a reward (positive or negative)
- No supervision for what the "correct" action is or would have been, unlike supervised learning

Sequential Decisions

- Plan and execute actions over a sequence of states
- Reward may be delayed, requiring optimization of future rewards (long-term planning).

RL: Environment Interaction API

- At each time step t, the agent:
 - Receives observation o_t
 - Executes action a_t
- At each time step t, the environment:
 - Receives action a_t
 - Emits observation o_{t+1}
 - Emits scalar reward r_{t+1}

Slide credit: David Silver

Signature Challenges in Reinforcement Learning

- Evaluative feedback: Need trial and error to find the right action
- Delayed feedback: Actions may not lead to immediate reward
- Non-stationarity: <u>Data distribution</u> of visited states changes when the policy changes
- Fleeting nature of time and online data

Slide adapted from: Richard Sutton

Robot Locomotion

Figures copyright John Schulman et al., 2016. Reproduced with permission.

- Objective: Make the robot move forward
- State: Angle and position of the joints
- Action: Torques applied on joints
- Reward: +1 at each time step upright and moving forward

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Atari Games

- Objective: Complete the game with the highest score
- State: Raw pixel inputs of the game state
- Action: Game controls e.g. Left, Right, Up, Down
- Reward: Score increase/decrease at each time step

Figures copyright Volodymyr Mnih et al., 2013. Reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Go

- Objective: Defeat opponent
- State: Board pieces
- Action: Where to put next piece down
- Reward: 1) if win at the end of game, 0 otherwise

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Markov Decision Processes

MDPs: Theoretical framework underlying RL

- MDPs: Theoretical framework underlying RL
- An MDP is defined as a tuple $(\mathcal{S}, \mathcal{A}, \mathcal{R}, \mathbb{T}, \gamma)$

 ${\cal S}$: Set of possible states

 ${\cal A}\,$: Set of possible actions

 $\mathcal{R}(s,a,s')$: Distribution of reward

 $\mathbb{T}(s,a,s')$: Transition probability distribution, also written as p(s'ls,a)

 γ : Discount factor

- MDPs: Theoretical framework underlying RL
- An MDP is defined as a tuple $(\mathcal{S}, \mathcal{A}, \mathcal{R}, \mathbb{T}, \gamma)$

 ${\cal S}$: Set of possible states

 \mathcal{A} : Set of possible actions

 $\mathcal{R}(s, a, s')$: Distribution of reward

 $\mathbb{T}(s, a, s')$: Transition probability distribution, also written as p(s'ls,a)

 γ : Discount factor

Interaction trajectory: $\ldots s_t, a_t, r_{t+1}, s_{t+1}, a_{t+1}, r_{t+2}, s_{t+2}, \ldots$

- MDPs: Theoretical framework underlying RL
- An MDP is defined as a tuple (S, A, R, T, γ)

 \mathcal{S} : Set of possible states

 \mathcal{A} : Set of possible actions

 $\mathcal{R}(s,a,s')$: Distribution of reward

 $\mathbb{T}(s,a,s')$: Transition probability distribution, also written as p(s'ls,a)

 γ : Discount factor

- Interaction trajectory: ... $s_t, a_t, r_{t+1}, s_{t+1}, a_{t+1}, r_{t+2}, s_{t+2}, ...$
- Markov property: Current state completely characterizes state of the environment
- Assumption: Most recent observation is a sufficient statistic of history

$$p(S_{t+1} = s' | S_t = s_t, A_t = a_t | S_{t-1} = s_{t-1}, \dots S_0 = s_0) = p(S_{t+1} = s' | S_t = s_t, A_t = a_t)$$

Fully observed MDP

- Agent receives the true state
 s_t at time t
- Example: Chess, Go

Partially observed MDP

- Agent perceives its own partial observation of the state state states e.g. with an RNN
- Example: Poker, Firstperson games (e.g. Doom)

Source: https://github.com/mwydmuch/ViZDoom

Fully observed MDP

- Agent receives the true state
 stat time t
- Example: Chess Go

Partially observed MDP

 Agent perceives its own partial observation o_t of the state s_t at time t, using past

We will assume fully observed MDPs for this lecture

Source: https://github.com/mwydmuch/ViZDoom

- In **Reinforcement Learning**, we assume an underlying **MDP** with unknown:
 - Transition probability distribution
 - ullet Reward distribution ${\mathcal R}$

$$\mathsf{MDP} \\ (\mathcal{S}, \mathcal{A}, \mathcal{R}, \mathbb{T}, \gamma)$$

- In **Reinforcement Learning**, we assume an underlying **MDP** with unknown:
 - Transition probability distribution T
 - Reward distribution \mathcal{R}

Evaluative feedback comes into play, trial and error necessary

- In Reinforcement Learning, we assume an underlying MDP with unknown:
 - Transition probability distribution
 - Reward distribution ${\cal R}$

$$\mathsf{MDP} \\ (\mathcal{S}, \mathcal{A}, \mathcal{R}, \mathbb{T}, \gamma)$$

- Evaluative feedback comes into play, trial and error necessary
- For this lecture, assume that we know the true reward and transition distribution and look at algorithms for **solving MDPs** i.e. finding the best policy
 - Rewards known everywhere, no evaluative feedback
 - Know how the world works i.e. all transitions

Figure credits: Pieter Abbeel

Agent lives in a 2D grid environment

Figure credits: Pieter Abbeel

- Agent lives in a 2D grid environment
- State: Agent's 2D coordinates
- Actions: N, E, S, W
- Rewards: +1/-1 at absorbing states

Figure credits: Pieter Abbeel

- Agent lives in a 2D grid environment
- State: Agent's 2D coordinates
- Actions: N(E)S, W
- Rewards: +1/-1 at absorbing states
- Walls block agent's path
- Actions to not always go as planned
 - 20% chance that agent drifts one cell left or right of direction of motion (except when blocked by wall).

Figure credits: Pieter Abbeel

Solving MDPs by finding the best/optimal policy

Solving MDPs by finding the best/optimal policy

Formally, a **policy** is a mapping from states to actions

e.g.

State	Action
Α —	→ 2
В —	→ 1

- Solving MDPs by finding the best/optimal policy
- Formally, a **policy** is a mapping from states to actions
 - Deterministic $\pi(s) = a$

$$n = |\mathcal{S}|$$
$$m = |\mathcal{A}|$$

- Formally, a **policy** is a mapping from states to actions
 - Deterministic $\pi(s) = a$

$$n \boxed{\begin{array}{c|c} 1 \\ \pi \end{array}}$$

- Solving MDPs by finding the **best/optimal policy**
- Formally, a **policy** is a mapping from states to actions

 - Deterministic $\pi(s) = a$ Stochastic $\pi(a|s) = \mathbb{P}(A_t = a|S_t = s)$

$$n = |\mathcal{S}|$$

$$m = |\mathcal{A}|$$

$$?$$

$$\pi$$

Solving MDPs by finding the best/optimal policy

 $n = |\mathcal{S}|$ $m = |\mathcal{A}|$

- Formally, a policy is a mapping from states to actions
 - Deterministic $\pi(s) = a$
 - Stochastic $\pi(a|s) = \mathbb{P}(A_t = a|S_t = s)$

- Solving MDPs by finding the best/optimal policy
- Formally, a policy is a mapping from states to actions
 - Deterministic $\pi(s) = a$
 - Stochastic $\pi(a|s) = \mathbb{P}(A_t = a|S_t = s)$
- What is a good policy?
 - Maximize current reward? Sum of all future rewards?
 - Discounted sum of future rewards!
 - Discount factor: γ

Worth Now

 γ^2

Worth Next Step

Worth In Two Steps

Today, we saw

- MDPs: Theoretical framework underlying RL, solving MDPs
- Policy: How an agents acts at states (to be continued in next lecture)

Next Lecture:

- Value function (Utility): How good is a particular state or state-action pair?
- Algorithms for solving MDPs (Value Iteration)
- Departure from known rewards and transitions: Reinforcement Learning

