Self-supervised learning in computer vision

Ishan Misra

Facebook Al Research

Success story of supervision: Pre-training

 Features from networks pre-trained on ImageNet can be used for a variety of different downstream tasks

Learn a representation

2

Success story of supervision: Recipe for good solutions

- Pre-train on a large supervised dataset.
- Collect a dataset of "supervised" images
- Train a ConvNet

The promise of "alternative" supervision

- Getting "real" labels is difficult and expensive
 - ImageNet with 14M images took 22 human years.
- Obtain labels using a "semi-automatic" process
 - Hashtags
 - GPS locations
 - Using the data itself: "self"-supervised

- What about complex concepts?
 - Video?
- Labelling cannot scale to the size of the data we generate

Rare concepts?

Different Domains?

ImageNet pre-training may not work

What is "self" supervision?

- Obtain "labels" from the data itself by using a "semi-automatic" process
- Predict part of the data from other parts

What is "self" supervision?

Supervised

implausible label

Unsupervised

limited power

Self-Supervised

derives label from a co-occuring input to another modality

Word2vec

Fill in the blanks

Softmax classifier

Hidden layer

Projection layer

Success of self-supervised learning in NLP

- Fill in the blanks is a powerful signal to learn representations
- Sentence/Word representations: BERT Devlin et al., 2018

Why self supervision?

- Helps us learn using observations and interactions
- Does not require exhaustive annotation of concepts
- Leverage multiple modalities or structure in the domain

In the context of Computer Vision

Pretext task

- Self-supervised task used for learning representations
- Often, not the "real" task (like image classification) we care about

Pretext task

Pretext task

- Using images
- Using video
- Using video and sound

Pretext task

- Using images
- Using video
- Using video and sound

Relative Position of patches

Relative Position: Nearest Neighbors in features

Predicting Rotations

Colorization

signal

Fill in the blanks

Self-supervision in computer vision

- Using images
- Using video
- Using video and sound

Video

- Video is a "sequence" of frames
- How to get "self-supervision"?

- Predict order of frames
- Fill in the blanks
- Track objects and predict their position

Time

"Sequence" of data

Temporally Correct order

Temporally Incorrect order

Given a start and an end, can this point lie in between?

Nearest Neighbors of Query Frame (fc7 features)

Query

ImageNet

Shuffle & Learn

Random

Fine-tune on Human Keypoint Estimation

Fine-tune on Human Keypoint Estimation

Initialization (AlexNet)	End task	
	FLIC Dataset Keypoints AUC	MPII Dataset Keypoints AUC
ImageNet Supervised	51.3	47.2
Shuffle and Learn (Self-supervised)	49.6	47.6

Odd-one-out Networks

Self-supervision in computer vision

- Using images
- Using video
- Using video and sound

Audio-Visual co-supervision

Train a network to predict if image and audio clip correspond

Correspond?

What can be learnt?

- Good representations Visual features
- Audio features

- Intra- and cross-modal retrieval
- Aligned audio and visual embeddings
- "What is making the sound?"
- Learn to localize objects that sound

What would make this sound?

Note, no video (motion) information is used

Understanding what the "pretext" task learns

Are they complementary?

Initialization (ResNet101)	End task	
	ImageNet top-5 accuracy	VOC07 Detection mAP
Relative Position	59.2	66.8
Colorization	62.5	65.5
Relative Position + Colorization (Multi-task)	66.6	68.8

Information predicted: varies across tasks

Less

Pretext tasks

Contrastive/Clustering

Generative

AutoEncoder, VAE, GAN, BiGAN

Predict more information

Scaling self-supervised learning

Jigsaw puzzles (Noorozi & Favaro, 2016)

Evaluating the representation

Evaluating the representation

• Train a Linear SVM on **fixed feature** representations

sheep

Use the VOC07 image classification task

plant

sofa

tv

Increasing amount of information predicted

(Higher is better)

Surface Normal Estimation

- Predict surface normals on NYU-v2
 - Same optimization parameters for all methods (including supervised)
 - PSPNet Architecture
 - Train last few layers only (res5 onwards)

Input

Output

Surface Normal Estimation

Initialization	Median Error (Lower better)	% correct within 11.25° (higher better)
ImageNet Supervised	17.1	36.1
Jigsaw Flickr 100M	13.1	44.6

What is missing from "pretext" tasks? Or in general "proxy" tasks

Pretext tasks

Rotation

(Gidaris et al., 2018)

Jigsaw puzzles

(Noroozi et al., 2016)

The hope of generalization

We really <u>hope</u> that the pre-training task and the transfer task are "aligned"

Pre-training
Self-supervised

Transfer Tasks

The hope of generalization

We really <u>hope</u> that the pre-training task and the transfer task are "aligned"

#sun #nofilter #fun #tree #aruba

Pre-training

Weak or self-supervised

Transfer Tasks

Why should solving Jigsaw puzzles teach about "semantics"?

Why should performing a non semantic task produce good features?

The hope of generalization ...?

Pre-training

Weak or self-supervised

Higher layers do not generalize ...

mAP = mean Average
Precision
(Higher is better)

Pretext-Invariant Representation Learning (PIRL)

Ishan Misra, Laurens van der Maaten

Contain information Predict property about transform t of transform t Pretext task ConvNet

Image

Transform

Less Semantic **Features**

Underlying Principle for Pretext Tasks

- Apply known image transform t
- Construct task to predict t from transformed Image (It)
- Final layer representations must carry information about t
- Representations "covary" with t

How important has invariance been?

- Hand-crafted features like SIFT and HOG
- SIFT Scale Invariant Feature Transform
- Supervised systems are trained to be invariant to "data augmentation"

Pretext-Invariant Representation Learning (PIRL)

Be invariant to t

Pretext-Invariant Representation Learning (PIRL)

- Be invariant to t
- Representation
 contains no
 information about t

PIRL

- Representations from I and It should be similar
- t = Pretext Transforms
 (Jigsaw/ Rotation, combinations etc.)
- Use a contrastive loss to enforce similarity of features

 $L_{
m contrastive}(\mathbf{v_I},\mathbf{v_{I}}_t)$

Contrastive Learning

Groups of
Related and Unrelated
Images

Contrastive Learning

Groups of Shared network Image Features Related and Unrelated (Siamese Net) (Embeddings) Images

Contrastive Learning

Contrastive Loss Function

Loss Function

Embeddings from related images should be closer than embeddings from unrelated images

Good negatives are very important in contrastive learning

Contrastive learning -- what does it do?

How does this relate to "pretext" tasks?

PIRL - How it works

Better self-supervised learning objective

Object Detection

- Outperforms ImageNet supervised pre-trained networks
- Full fine-tuning, no bells & whistles
- No extra data, changes in model architecture, fine-tuning schedule

Linear Classification

Linear classifiers on fixed features. Evaluate on ImageNet-1K

Easily Multi-task

	Transfer Dataset					
Method	ImageNet-1M	VOC07	Places205	iNaturalist		
Jigsaw	46.0	66.1	41.4	22.1		
Rotation	48.9	63.9	47.6	23		
PIRL (Rot)	60.2	77.1	47.6	31.2		
PIRL (Jigsaw + Rot)	63.1	80.3	49.7	33.6		

The rise of contrastive learning

Contrastive Learning

How to define what images are "related" and "unrelated"?

Related and Unrelated Images

Frames of a video

Time

"Sequence" of data

Hadsell et al., 2005, DrLim van der Oord et al., 2018, CPC

Video & Audio

AVID - Morgado et al., ECCV 2020 GDT - Patrick et al., 2020

Tracking Objects

(a) Unsupervised Tracking in Videos

(b) Siamese-triplet Network

(c) Ranking Objective

Nearby patches vs. distant patches of an Image

van der Oord et al., 2018, Henaff et al., 2019 Contrastive Predictive Coding

Patches of an image vs. patches of other images

Is "contrastive" really important?

Swapping Assignments between Views (SwAV)

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, Armand Joulin

Grouping

Grouping

Prototypes

Code 2

Prototypes

Not contrastive!

Key Results

	Linear Classifier			Detection			
(Fixed Features)							
	ImageNet	Places	iNaturalist	VOC07+12	COCO		
Supervised	76.5	53.2	46.7	81.3	40.8		
Prior self-supervised	71.1 (-5.4)	52.1	38.9	82.5	42.0		
SwAV	75.3 (-1.2)	56.7	48.6	82.6	42.1		

Practical advantages of SwAV

- Trains on 4-8 GPUs
- Faster convergence than prior work (SimCLR, MoCov2)
 - Smaller compute requirements.
 - 2x faster than MoCo-v2 on 8 GPUs
 - 72% after 100h vs. 71% after 200h

Better results

Code & Models - https://github.com/facebookresearch/swav PyTorch Lightning implementation on the way

Combining clustering with contrastive learning

Audio Visual Instance Discrimination with Cross Modal Agreement (AVID + CMA)

Pedro Morgado, Nuno Vasconcelos, Ishan Misra

https://github.com/facebookresearch/AVID-CMA

Contrastive (Audio Video Instance Discrimination)

Positives

Negatives

Audio & Video (same sample)

Relate to other video/audio using negatives

Grouping using Audio-visual Agreements (CMA)

audio & video features

Grouping using Audio-visual Agreements (CMA)

Pretext tasks

Contrastive/Clustering

Generative

AutoEncoder, VAE, GAN, BiGAN

Predict more information