
CS 4803 / 7643: Deep Learning

Dhruv Batra 

Georgia Tech

Topics: 
– Recurrent Neural Networks (RNNs)

– RNN visualizations

– Image Captioning, Beam Search

– LSTMs



Administrativia

• HW3 Reminder
– Due: 10/20 11:59pm

– Theory: Convolutions, Representation Capacity, Double 
Descent

– Implementation: Saliency methods (e.g. Grad-CAM) in 
Python and PyTorch/Captum

• HW2 grades coming soon

(C) Dhruv Batra 2



Administrativia

• Guest Lecture: Ishan Misra (FAIR)
– Thurs 10/21

– Self-Supervised Learning for Vision
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http://imisra.github.io/



Administrativia

• Guest Lecture: Michael Auli (FAIR)
– Tue 10/26

– Self-Supervised Learning for Speech

(C) Dhruv Batra 4

https://michaelauli.github.io/



Administrativia

• Guest Lecture: Arjun Majumdar
– Thurs 10/28

– Transformers, BERT, ViLBERT
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https://arjunmajum.github.io/



Recap from last time
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Recurrent Neural Network

x

RNN

y
usually want to 
predict a vector at 
some time steps

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



(Vanilla) Recurrent Neural Network

x

RNN

y

The state consists of a single “hidden” vector h:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
Sometimes called a “Vanilla RNN” or an “Elman RNN” after Prof. Jeffrey Elman



Example: 
Character-level
Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Example: 
Character-level
Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Training Time: MLE / “Teacher Forcing” 



Example: 
Character-level
Language Model
Sampling

Vocabulary:
[h,e,l,o]

At test-time sample 
characters one at a 
time, feed back to 
model
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Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Test Time: Sample / Argmax / Beam Search
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Plan for Today

• Recurrent Neural Networks (RNNs)
– (Finish) Visualization in Character RNNs

– Inference: Beam Search
• Example: Image Captioning

– Multilayer RNNs

– Problems with gradients in “vanilla” RNNs

– LSTMs (and other RNN variants)
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x

RNN

y

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



train more

train more

train more

at first:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Generated 
C code

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Searching for  interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Searching for  interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Searching for  interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

quote detection cell

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Searching for  interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

line length tracking cell

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Searching for  interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

if statement cell

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Searching for  interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

quote/comment cell

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Searching for  interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

code depth cell

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Plan for Today

• Recurrent Neural Networks (RNNs)
– Inference: Beam Search

• Example: Image Captioning

– Multilayer RNNs

– Problems with gradients in “vanilla” RNNs

– LSTMs (and other RNN variants)
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Neural Image Captioning
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Convolution Layer
+ Non-Linearity

Pooling Layer Convolution Layer
+ Non-Linearity

Pooling Layer Fully-Connected MLP

Image Embedding (VGGNet)
4096-dim



Neural Image Captioning
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Convolution Layer
+ Non-Linearity

Pooling Layer Convolution Layer
+ Non-Linearity

Pooling Layer Fully-Connected MLP

4096-dim

Image Embedding (VGGNet)



Neural Image Captioning
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Beam Search Demo

• http://dbs.cloudcv.org/captioning&mode=interactive
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A cat sitting on a 
suitcase on the floor

A cat is sitting on a tree 
branch

A dog is running in the 
grass with a frisbee

A white teddy bear sitting in 
the grass

Two people walking on 
the beach with surfboards

Two giraffes standing in a 
grassy field

A man riding a dirt bike on 
a dirt track

Image Captioning: Example Results

A tennis player in action 
on the court

Captions generated using 
neuraltalk2
All images are CC0 Public domain: 
cat suitcase, cat tree, dog, bear, 
surfers, tennis, giraffe, motorcycle

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Image Captioning: Failure Cases

A woman is holding a 
cat in her hand

A woman standing on a 
beach holding a surfboard

A person holding a 
computer mouse on a desk

A bird is perched on 
a tree branch

A man in a 
baseball uniform 
throwing a ball

Captions generated using neuraltalk2
All images are CC0 Public domain: fur 
coat, handstand, spider web, baseball

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Image Captioning with Attention

CNN

Image: 
H x W x 3

Features: 
L x D

h0

Xu et al, “Show, Attend and Tell: 
Neural Image Caption Generation with 
Visual Attention”, ICML 2015

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



CNN

Image: 
H x W x 3

Features: 
L x D

h0

a1

Distribution over 
L locations

Xu et al, “Show, Attend and Tell: 
Neural Image Caption Generation with 
Visual Attention”, ICML 2015

Image Captioning with Attention

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



CNN

Image: 
H x W x 3

Features: 
L x D

h0

a1

Weighted 
combination 
of features

Distribution over 
L locations

z1
Weighted 

features: D

Xu et al, “Show, Attend and Tell: 
Neural Image Caption Generation with 
Visual Attention”, ICML 2015

Image Captioning with Attention

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



CNN

Image: 
H x W x 3

Features: 
L x D

h0

a1

z1

Weighted 
combination 
of features

h1

Distribution over 
L locations

Weighted 
features: D

y1

First wordXu et al, “Show, Attend and Tell: 
Neural Image Caption Generation with 
Visual Attention”, ICML 2015

Image Captioning with Attention

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



CNN

Image: 
H x W x 3

Features: 
L x D

h0

a1

z1

Weighted 
combination 
of features

y1

h1

First word

Distribution over 
L locations

a2 d1

Weighted 
features: D

Distribution 
over vocab

Xu et al, “Show, Attend and Tell: 
Neural Image Caption Generation with 
Visual Attention”, ICML 2015

Image Captioning with Attention

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



CNN

Image: 
H x W x 3

Features: 
L x D

h0

a1

z1

Weighted 
combination 
of features

y1

h1

First word

Distribution over 
L locations

a2 d1

h2

z2 y2
Weighted 

features: D

Distribution 
over vocab

Xu et al, “Show, Attend and Tell: 
Neural Image Caption Generation with 
Visual Attention”, ICML 2015

Image Captioning with Attention

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



CNN

Image: 
H x W x 3

Features: 
L x D

h0

a1

z1

Weighted 
combination 
of features

y1

h1

First word

Distribution over 
L locations

a2 d1

h2

a3 d2

z2 y2
Weighted 

features: D

Distribution 
over vocab

Xu et al, “Show, Attend and Tell: 
Neural Image Caption Generation with 
Visual Attention”, ICML 2015

Image Captioning with Attention

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Soft attention

Hard attention

Image Captioning with Attention

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
Figure copyright Kelvin Xu, Jimmy Lei Ba, Jamie Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Benchio, 2015. Reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Image Captioning with Attention

Xu et al, “Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015
Figure copyright Kelvin Xu, Jimmy Lei Ba, Jamie Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Benchio, 2015. Reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Typical VQA Models
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Convolution Layer
+ Non-Linearity

Pooling Layer Convolution Layer
+ Non-Linearity

Pooling Layer Fully-Connected MLP

4096-dim

Embedding (VGGNet)

Embedding (LSTM)

Image

Question
“How   many   horses    are      in       this     image?”

Neural Network 
Softmax

over top K answers



Zhu et al, “Visual 7W: Grounded Question Answering in Images”, CVPR 2016
Figures from Zhu et al, copyright IEEE 2016. Reproduced for educational purposes.

Visual Question Answering: RNNs with Attention

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Plan for Today

• Recurrent Neural Networks (RNNs)
– Inference: Beam Search

• Example: Image Captioning

– Multilayer RNNs

– Problems with gradients in “vanilla” RNNs

– LSTMs (and other RNN variants)
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time

depth

Multilayer RNNs

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



ht-1

xt

W

stack

tanh

ht

Vanilla RNN Gradient Flow Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



ht-1

xt

W

stack

tanh

ht

Vanilla RNN Gradient Flow
Backpropagation from ht

to ht-1 multiplies by W 
(actually Whh)

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Computing gradient 
of h0 involves many 
factors of W
(and repeated tanh)

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Largest singular value > 1: 
Exploding gradients

Largest singular value < 1:
Vanishing gradients

Computing gradient 
of h0 involves many 
factors of W
(and repeated tanh)

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Largest singular value > 1: 
Exploding gradients

Largest singular value < 1:
Vanishing gradients

Gradient clipping: Scale 
gradient if its norm is too bigComputing gradient 

of h0 involves many 
factors of W
(and repeated tanh)

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Computing gradient 
of h0 involves many 
factors of W
(and repeated tanh)

Largest singular value > 1: 
Exploding gradients

Largest singular value < 1:
Vanishing gradients

Change RNN architecture

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Long Short Term Memory (LSTM)

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 
1997

Vanilla RNN LSTM

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Meet LSTMs

(C) Dhruv Batra 57Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)



LSTMs Intuition: Memory

• Cell State / Memory

(C) Dhruv Batra 58Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)



LSTMs Intuition: Forget Gate

• Should we continue to remember this “bit” of 
information or not?

(C) Dhruv Batra 59Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)



LSTMs Intuition: Input Gate

• Should we update this “bit” of information or not?
– If so, with what?

(C) Dhruv Batra 60Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)



LSTMs Intuition: Memory Update

• Forget that + memorize this

(C) Dhruv Batra 61Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)



LSTMs Intuition: Output Gate

• Should we output this “bit” of information to “deeper” 
layers?

(C) Dhruv Batra 62Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)



LSTMs Intuition: Additive Updates

(C) Dhruv Batra 63Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

Backpropagation from 
ct to ct-1 only 
elementwise 

multiplication by f, no 
matrix multiply by W



LSTMs Intuition: Additive Updates

(C) Dhruv Batra 64Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

Uninterrupted gradient flow!



LSTMs Intuition: Additive Updates

(C) Dhruv Batra 65Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

Uninterrupted gradient flow!

Input

Softm
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3x3 conv, 64

7x7 conv, 64 / 2

FC
 1000

Pool

3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 128
3x3 conv, 128 / 2

3x3 conv, 128
3x3 conv, 128

3x3 conv, 128
3x3 conv, 128

...

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

Pool

Similar to ResNet!



LSTMs

• A pretty sophisticated cell

(C) Dhruv Batra 66Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)



LSTM Variants #1: Peephole Connections

• Let gates see the cell state / memory

(C) Dhruv Batra 67Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)



LSTM Variants #2: Coupled Gates

• Only memorize new if forgetting old

(C) Dhruv Batra 68Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)



LSTM Variants #3: Gated Recurrent Units

• Changes: 
– No explicit memory; memory = hidden output

– Z = memorize new and forget old

(C) Dhruv Batra 69Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)



Other RNN Variants

[An Empirical Exploration of 
Recurrent Network Architectures,
Jozefowicz et al., 2015]



Summary

- RNNs allow a lot of flexibility in architecture design
- Vanilla RNNs are simple but don’t work very well
- Common to use LSTM or GRU: their additive interactions 

improve gradient flow
- Backward flow of gradients in RNN can explode or vanish. 

Exploding is controlled with gradient clipping. Vanishing is 
controlled with additive interactions (LSTM)

- Better/simpler architectures are a hot topic of current research
- Better understanding (both theoretical and empirical) is needed.


