CS 4803/ 7643: Deep Learning

Topics:
— (Finish) Convolutional Neural Networks
— Transposed convolutions |
— Recurrent Neural Networks (RNNS)

Dhruv Batra
Georgia Tech



R
Administrativia

* 5 min talk by Vadini Agrawal (of CS + Social Good)
— Talk on Ethical considerations within deep learning
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R
Administrativia

* HW3 Reminder
— Due: 10/07 11:59pm

— Theory: Convolutions, Representation Capacity, Double
Descent

— Implementation: Saliency methods (e.g. Grad-CAM) in
Python and PyTorch/Captum
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Thoughts on Zhang et al. ICLR17

(C) Dhruv Batra 4



Error Decomposition

horse _perso
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-
Regqularization: Prefer Simpler Models

Regularization pushes against fitting the data
too well so we don't fit noise in the data

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Thoughts on Zhang et al. ICLR17

* IRandomization testing.is a powerful taal

What does Wandam_lab%l&mﬁéal_

— No-optinization error
— Ne-approximatiorinoedeling-error __-}

Expheitregtarizatien-tshelpful, but not essential———

Inductive bias

— Conv is a specific inductive bias, but even when data doesn’t-satisfy-that,
theTrmOdET Class is expressive enough

E ITplicit regularization of SGD

— See HW3 56

E These results are not specific to deep learning / NN ]

(C) Dhruv Bat&lso known to happen for decision trees



Plan for Today

* (Finish) Convolutional Neural Networks
l — Transposed convolutions

* Recurrent Neural Networks (RNNS)

— A new model class
— Learning: BackProp Through Time (BPTT)
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Other Computer Vision Tasks

Semantic 2D Object 3D Object
Segmentation Detection Detection

QRASS_,_ , gar
TREE, SKY _ _ | _
- Object categories + Object categories +
No objects, just pixels 2D bounding boxes 3D bounding boxes

This image is CCO public domain

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Semantic Segmentation ldea: Fully Convolutional

Design a network as a bunch of convolutional layers (ﬂ‘at g

to make predictions Tor pixets-airaroncel g /_\_}
— Y

4 L

Conv Conv Conv | argmax
[ 3 L - & :

- - . - L
G G J

Y Scores: Predictions:
" CxHxW !H X W ,

3nn

onvolutions!

o

Dx HxW [~ logg= — 5»:)

AL
N

Problem: convolutions at
original image resolution wil
be very expensive ...

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Semantic Segmentation ldea: Fully Convolutional

Design_network as abunch of canvolutional layers, with
downsamplin and|n3|de the network!
d-res Med-res:
% D\}I%ZN-W D,x H/4 x W/4%

Low-resr=
W == "D Haxwia =y UL

o/
Input: High-res: High-res: P ictions:
Predictions:
3XxHXW D xH2xW/2 ‘ DX H2 X W2 3 Hx W
' ot cflotsas

Long, Shelhamer, and Darrell, “Fully Convolutional NetworksfarSenser tation”, CVPR 2015
Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Semantic Segmentation ldea: Fully Convolutional

Downsampling: Design network as a bunch of convolutional layers, with Upsampling:
Pooling, strided downsampling and upsampling inside the network! 292
convolution
———— Med-res: Med-res:
D, x H/4 x W/4 D, x H/4 x W/4%
5 [ -]
Low-res: 9 1o
LA D,x H/4 x W/4 L
Input: High-res: High-res: Predictions:
3XHXW D, x H/2 x W/2 D, x H/2 x W/2 H x W

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015
Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



In-Network upsampling: “Unpooling”

Nearest Neighbor ﬁp 2 | 2 “Bed of Nails” el 2|6
11 2 1 112 2 1 2 0 ofjo o
2 1 N
3 4 3 3 4 4 3 4 3 0 4 0
3 314 4 0 O|lO O
Input: 2 x 2 Output: 4 x 4 Input: 2 x 2 Output: 4 x 4

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



In-Network upsampling: “Max Unpooling”

Max Pooling

: Max Unpoolin
Remember which element was max! P 9

Use positions from

1 216 3 pooling layer
3 @2 1 5 6 I 1 i 2
1 2|12 1
[/ 8 Rest of the network 3 4
7 314 8
Input: 4 x 4 Output: 2 x 2 l Input: 2 x 2

Corresponding pairs of
downsampling and
upsampling layers

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

0
0
0
3

0O 2 O
0O O
O O O
O 0 4
Output: 4 x 4




-
Transposed Convolutions

* Deconvolution (bad)

* Upconvolution

* Fractionally strided convolution
* Backward strided convolution

(C) Dhruv Batra 15



Learnable Upsampling: Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 1 pad 1

o - >

Dot product
between filter

and input \#

Input: 4 x 4 Output: 4 x 4

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Learnable Upsampling: Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 2 pad 1

e —

‘5%] Yy (o, ()

>

Dot product
between filter
and input

Input: 4 x 4 Output: 2 x 2

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Filter moves 2 pixels in
the input for every one
pixel in the output

Stride gives ratio
between movement in
input and output



Learnable Upsampling: Transpose Convolution

3 x 3 transpose convolution,lstride gpad 1

(i 2 2\ 1 {
N

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Figure Credit: https://medium.com/apache-mxnet/transposed-convolutions-
(C) Dhruv Batra explained-with-ms-excel-52d13030c7e8 19



Transpose Convolution: 1D Example

Output
In pUt Filter e Output contains
g_X copies of the filter
weighted by the
X input, summing at
a - where at overlaps in
— the output
y +|bx P
b Need to crop one
Z by pixel from output to
\ make output exactly

!

b 2X input

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



In-Network upsampling: “Unpooling”

Nearest Neighbor 2 “Bed of Nails”
1 2 2 1 2
 anill —> —>
3 4 3 3|14 4 3 4
3 3|4 4
Input: 2 x 2 Output: 4 x 4 Input: 2 x 2

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

0|2 O
OJ]0 O
014 O
0|0 O
Output: 4 x 4




-
Why this operation?

(C) Dhruv Batra 22



e
Why is it called “transposed convolution”?

(C) Dhruv Batra 23



Toeplitz Matrix

* Diagonals are constants

(C) Dhruv Batra ) 24



-
Why do we care?

* (Discrete) Convolution = Matrix Multiplication

——— ©
— w_i_th Toeplitz Matrices

wW, . - """lu___ W 0 0 0 ]
wi os MeWeg we ..o 000

Wi—2 WEe—-1 ... 0 0

& y=fwsadl 1 n o r T

. I
0 w1 WE—1 Wk .
. T, | A
4
\
0 0 w1 Wwo
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with_itself2.gif

"Convolution of box signal with itself2" by Convolution_of box_signal_with_itself.gif: Brian Ambergderivative work: Tinos (talk)
- Convolution_of box_signal_with_itself.gif. Licensed under CC BY-SA 3.0 via Commons -
https://commons.wikimedia.org/wiki/File:Convolution_of _box_signal_with_itself2.gif#/media/File:Convolution_of box_signal_
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woy woz 0wy wyy wip 0 wpp wyy wyz 0 0 0 0 0 T
0 wpo woi1 wo2 0 wip wiy wiz 0 wep woy wos 0 0 0 0 %)
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0 0 0 0 1] wo,p Wol Ino 1] wyp w1 w2 0 wap w1l w22 '
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L
Figure Credit: Dumoulin and Visin, https://arxiv.org/pdf/1603.07285.pdf 7



Why is it called “transposed convolution”

~ “ A ‘
£ | ) 2

|
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Transpose Convolution: 1D Example

Input Filter

\

/
A

N "<

—
—

Output

ax

ay
az

+|bx

bz

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Output contains
copies of the filter
weighted by the
input, summing at
where at overlaps in
the output

Need to crop one
pixel from output to
make output exactly
2X input



What is deconvolution?

* (Non-blind) Deconvolution

(gnv

nd/
> jgnblind - Given B0l ™

(C) Dhruv Batra 30



.
[ What is deconvolution?

i ) (s E‘LL"\'O” '—T
+ (Non-blind) Det Decodr]yplutlon Yz wx. -::;J—--_g
w=}-1 0+ 3 A0S
[’1 ]'L whd” '”_Q 0 0°
ko || ud| ... 0 0
= lwgy 1 0 0
@ 1:..!. © L |
Yy=wx*x : : ; ; : T3 |
O H w1 Wik -1 Wi |
\ ’
\ + 0 0 w1 (100
| )
S0 Lo 0w
X2 A
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.
What does “deconvolution” have to do with “transposed

convolution”?

(C) Dhruv Batra 32



transposed convolution|is

A plix 13

We can express convolution in
terms of a matrix multiplication

_QZ*&’:X&'

0
_CE‘ﬂZOOO_al_
0 =z y =z 0 O B
0 0 z_y_2z O -
0 0 0 =z y z|ld] |

0

Example: 1D cony, kernel

ay + bz

bl ax + by + cz
cl bx +cy + dz

cx + dy

size=3, stridef_l, padding_:_l

'-H ]

e

convolution!
I o ol

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

7 Gt



“transposed convolution” is a convolution!

We can express convolution in Convolution transpose multiplies by the
terms of a matrix multiplication transpose of the same matrix:
rxa=Xa gl d=X"a
) R z 0 0 O] i ax |
r_y 2 0 0 Offa [ ay+bz y 1z 0 Of |a ay + bx
0 =z _y =z 0 Offs _ |ax+by+cz z ly jz O] |[b| |az+by+ecx
0 0 z_y_ 2z Olfc bx + cy + dz 0tz Jy x| [c| |bz+cy+dx
00 0 =z y z||d | crt+dy 0 0'z Ju| |d cz + dy
0] 0 0 0 [z o dz |
Example: 1D conv, kernel T
size=3, stride=1, padding=1 ]
[2 3 >
j
[x oy 2]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



-
“transposed convolution” is a convolution!

We can express convolution in Convolution transpose multiplies by the
terms of a matrix multiplication transpose of the same matrix:
r*xa=Xa s+l d=X"a
) R x 0 0 O] i ax 1
x y z 0 0 Olla [ ay+bz | y z 0 0] |a ay + bx
O =z y 2z 0 Of{o| |ax+by+ecz z y z 0] |bl  |az+by+cx
0 0 =z y 2z Offc bx + cy + dz 0 z y x| |c| |bz+cy+dx
_0 0O 0 =z Yy Z_ d i cr + dy | 0 0 z d cz + dy
U 0 0 0 2z | dz
Example: 1D conv, kernel When stride=1, convolution transpose
size=3, stride=1, padding=1 IS just a regular convolution (with

different padding rules)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Plan for Today

*i (Finish) Convolutional Neural Networks
— Transposed convolutions

Recurrent Neural Networks (RNNS)

— Anew model class
— Learning: BackProp Through Time (BPTT)

(C) Dhruv Batra 42



-
New Topic: RNNs

one to one one to many many to one many to many many to many

INFINITE RECLURSION

INFINITE RECLURSION

INFINITE RECURSION

URSION

'CURSION
YOu GOTTA KNOW WHEN TO QUIT
INFINITE RECURSION

(C) DhI’UV Batra YOoUu GOTTA KNOW WHEN TO QUIT 43




New Words

i__‘__B_e:Currgprt Neural Networks (RNNS) (> —
— General family; think graphs instead of chains. @

* Recursive Neural Networks

* Types:
— “Vanijlla” Elman Networks)

— Long ShortFerm-Memory (LSTMS)
— Gated Recurrent Lnits (GRUS)

* Algorithms

— BackProp.Through Time (BPTT) |
— BackProp Through Structure (BPTS)

(C) Dhruv Batra 44



What's wrong with ML Ps?

* Problem 1: Can’t model sequences
— Fixed-sized Inputs & Outputs
— No temporal structure

(C) Dhruv Batra 45



-
What's wrong with MLPs?

* Problem 1: Can’t model sequences
— Fixed-sized Inputs & Outputs
— No temporal structure

*{ Problem 2: Pure feed-forward processing
— No “memory”, no feedback -

O
Output Layer fl ?

w—

Hidden Layers

Input Layer jxa\ *‘ﬂ

(C) Dhruv Batra 46



Why model sequences’7

Figure Credit: Carlos Guestrin




-
Why model sequences?

e beten

(C) Dhruv Batra 48



Sequences are everywhere...

7’3 ' E E M//e/ _> FOREIGN MINISTER.

ﬁ

W el THE SOUND OF

a=2 ay=0 ay=1 ay;=3 a;=4 Gg=2 a7=H
b]]JJEEIl sie  bitte das auto zuriick

\\g%/

— please return

(C) Dhruv Batra 49



-
Even where you might not expect a sequence...

Classify images by taking a
series of “glimpses”

Ba, Mnih, and Kavukcuoglu, “Multiple Object Recognition with Visual Attention”, ICLR 2015. i
Gregor et al, “DRAW: A Recurrent Neural Network For Image Generation”, ICML 2015

Figure copyright Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan Wierstra, 2015. Reproduced with
permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Even where you might not expect a sequence...

* Output ordering = sequence

(C) Dhruv Batra Image Credit: Ba et al.; Gregor et al



-
Sequences in_Input or Output?

* It's a spectrum...

one to one

o,

——

Input: No
sequence

Output: No
sequence

Example:
“standard”
classification

regression

E&bﬁmv Batra o4



Sequences In Input or Output?

* It's a spectrum...

one to one one to many

8 M |B

i

>
Input: No | N
sequence nput: No sequence
Output: No Output: Sequence
sequence Example:
Example: m2Caption
“standard”

classification /

regression

E&bﬁmv Batra 55



-
Sequences In Input or Output?

* It's a spectrum...

one to one one to many many to one

f Pt T
f

Input: No

sequence Input: No sequence Input: Sequence
Output; No Output: Sequence Output: No
sequence Example: sequence
Example: Im2Caption Example: sentence

“standard” classification,
classification / muf |ple-ch0|c¢
question answering

regression

E&bﬁmv Batra 56



Sequences In Input or Output?

* It's a spectrum...

one to one one to many

Input: No | N
sequence nput: No sequence
Output: No Output: Sequence
sequence Example:
Example: Im2Caption
“standard”

classification /

regression

E&bﬁmv Batra

many to one

Input: Sequence

Output: No
sequence

Example: sentence
classification,
multiple-choice
question answering

many to man ny to many
S ant: ARy

L Wiy
F 1 NN

Output: Sequence

Example: machine translation, video classification,
video capTioming, opén-ended quéesiion answering

57



2 Key Ideas

fParameter Sharing

— In computation graphs = adding gradients

(C) Dhruv Batra 58



-
Computational Graph

(C) Dhruv Batra 59



Gradients add at branches

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



2 Key Ideas

lf .
* Parameter Sharing
- — In computation graphs = adding gradients
ra'"‘
— — In-computation graphs with parameter sharing

(C) Dhruv Batra 62



How do we model sequences?

* No input

(C) Dhruv Batra 63



How do we model sequences?

* With inputs

st = fo(st—1, zt)

St St+41
unfold |
£zt Lt+1

(C) Dhruv Batra 65




2 Key Ideas

* Parameter Sharing
— In computation graphs = adding gradients

* “Unrolling”
— in computation graphs with parameter sharing

* Parameter sharing + Unrolling
— Allows modeling arbitrary sequence lengths!
— Keeps numbers of parameters in check

(C) Dhruv Batra 66



Recurrent Neural Network

-

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Recurrent Neural Network

usually want to
predict a vector at
some time steps

-

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Recurrent Neural Network

We can process a sequence of vectors x by
applying a recurrence formula at every time step: y

he|= fW(ht—la 117t)
new state / old state input vector at 4
some time step
some function X

with parameters W

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Recurrent Neural Network

We can process a sequence of vectors x by
applying a recurrence formula at every time step: y

hy = fW(ht—la wt)

Notice: the same function and the same set X
of parameters are used at every time step.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



(Vanilla) Recurrent Neural Network

The state consists of a single “hidden” vector h:

y Yt = Whyht + by

$
Y S B
x '

ht — tanh(Whhht_l + thxt -+ bh)

Sometimes called a “Vanilla RNN” or an “Elman RNN” after Prof. Jeffrey Elman
Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



RNN: Computational Graph

—» =

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



RNN: Computational Graph

—» =
—» =

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



RNN: Computational Graph

—» =
—» =
—> =

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



RNN: Computational Graph

Re-use the same weight matrix at every time-step

—» =
—> =

s

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



RNN: Computational Graph: Many to Many

Y1 Y> Y3 Yr
f f i f
hy—f, —»h —»f, —»h —f, —»h — —» h,

—» =
—> =

s

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



RNN: Computational Graph: Many to Many

—» =

—» =
—> =

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Yy, — L, Y, ¥ L, Ys >

L,




RNN: Computational Graph: Many to Many __~ .

T -~
Y. > L Y. L Y: > Ls Yr —? Ls
f f i f
h, — f —>h1—>fW—>h2—>fW—>h3—> —» h,

s

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



RNN: Computational Graph: Many to One

—» =
—> =

s

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



RNN: Computational Graph: One to Many

A

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Sequence to Sequence: Many-to-one + one-to-many

Many to one: Encode input
sequence in a single vector

h0->fw—>h1->fw—>h2->fw—>h3>---—IE

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Sequence to Sequence: Many-to-one + one-to-many

One to many: Produce output

sequence from single input vector
Many to one: Encode input
sequence in a single vector

Y1 Y2

1

h0->fw—>h1->fw—>h2>fw—>h3>---—IE-> f, > h P f, P h, »f, —» ...

W, W,

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Example:
Character-level
Language Model

Vocabulary:

[h,e,l,0]

Example training 1 0

Sequence: input layer g (1)

{ 79 0 0
hello input chars:  “n” e

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

= [aag e
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Example:
Character-level
Language Model

Vocabulary:
[h,e,l,0]

Example training
sequence:
“hello”

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

hy = tanh(Wpnhe—1 + Wopa + by

hidden layer

input layer

input chars:

0.3
-0.1
0.9

1
0
0
0
“h”

Y

A

0.1

-0.5
-0.3

W_hh| -

= [aag e




-
Distributed Representations Toy Example

* Local vs Distributed

(a)

wmen QOO O
@000
o] Yele
) coeo
< 000 @
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-
Distributed Representations Toy Example

* Can we interpret each dimension?

(a) (b)

opatern () O O (O nopattem
@000
of JYeJe
) ococeo )
S 0000 O
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Power of distributed representations!

Local ..O.:VF{+HR+HE:?
Distributed ..o.=V+H+EzO

(C) Dhruv Batra 87
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