CS 4650/7650 Fall 2020: Homework 3

September 22, 2021

Instructions

1. This homework has two parts: questions 1-3 are theory questions, and Q4 is a
programming assignment with some written components within a Jupyter Notebook.

We will be using Gradescope to collect your assignments. Please read the following
instructions for submitting to Gradescope carefully!

(a) Each subproblem must be submitted on a separate page. When submitting to
Gradescope (under), make sure to mark which page(s) correspond
to each problem or subproblem. For instance, Q2 has four subproblems, so the
solution to each must start on a new page.

(b) For the coding problem (Q3), please upload ‘hw3_skeleton_char.py’ to
on Gradescope.

You will also need to attach a pdf export of ‘word_embedding.ipynb’, including
outputs, to your writeup, as well as copying outputs from other iPython notebooks
into your write-up for Q3b and Q3c.

(c) Note: This is a large class and Gradescope’s assignment segmentation features
are essential. Failure to follow these instructions may result in parts of your
assignment not being graded. We will not entertain regrading requests for
failure to follow instructions.

2. HTgX solutions are strongly encouraged (a solution template is available on the class
website), but scanned handwritten copies are also acceptable. Hard copies are not
accepted.

3. We generally encourage collaboration with other students. You may discuss the
questions and potential directions for solving them with another student. However,
you need to write your own solutions and code separately, and not as a group activity.
Please list the students you collaborated with on the submission site.

Homework 1 CS 4650/7650
Deadline: October 6, 3:29pm ET Natural Language

Questions

1. Consider the term-document matrix for four words in three documents shown in
Table 1. The whole document set has N = 30 documents, and for each of the four
words, the document frequency df; is shown in Table 2.

term-document | Docl | Doc2 | Doc3
car 21 7 23
insurance 0 20 5
auto 2 35 29
best 10 30 0

Table 1: Term-document Matrix

df
car 12
insurance | 8
auto 16
best 10

Table 2: Document Frequency

(a) Compute the tf-idf weights according to the definitions in Jurafsky and Martin’s
Textbook (equations 6.12-14) for each of the words car, auto, insurance and best
in Doc1, Doc2, and Doc3. [5 pts]

(b) Use the tf-idf weight you got in (a) to represent each document with a vector,
and calculate the cosine similarities between these three documents. [3 pts]

(c) Suppose we train the word vectors of four words “stocks”, “currency”, “can”,
“will” using word2vec and with tf-idf. Which one of the following two word
pairs, (“stocks”, “currency”) and (“can”, “will”), may have a high tf-idf cosine
similarity but a low word2vec cosine similarity? And which one may have a low
tf-idf cosine similarity but a high word2vec cosine similarity? Explain why. [2

pts]

20f6

Homework 1 CS 4650/7650
Deadline: October 6, 3:29pm ET Natural Language

2. Sobchak Industries, a dog-grooming supplies production company, is planning to
train a word embedding model which will help power its support chatbot. To this
end, it intends to run a skipgram with negative sampling model over a corpus of
ten million words containing 80,000 unique word types. Larry, the chief designer of
the system, set the hyperparameters at 6 training epochs, 200 hidden dimensions,
and a window size of 5.

Donny, ajunior research engineer, is worried about the out-of-vocabulary problem.
He tells Larry that if they add a subword component to their embeddings, the model
will be better able to approximate vectors for new words it encounters during the
chat sessions.

(a) Donny’s suggestion is the following: each non-space character in the corpus
(there are 52 letters and 10 other characters) gets its own target embedding as a
‘word part’ (so, e.g. the character a has a separate embedding from the word a).
During training, each pass over a target word w; is augmented by an identical
and independent pass over each of the characters it contains, predicting the
same context words as for w; (so no context characters are considered). During
downstream inference (chatbot), a new word’s embedding is initialized as the
average of its characters’ ‘word part’ embeddings.

The average character length of a word in the corpus is 6.2. Answer the following:
what is the percentage increase of training Donny’s suggested model in terms
of space? In terms of time? If we reduce the hidden dimensions parameter
to 100 and only train 4 epochs, and want to change the window size so that
the time costs are closest to the originally planned model, what window size
should we choose? [2+2+3 pts]

Note: You may ignore window effects of document boundaries; assume these
are negligible.

(b) Maude, another engineer, points out that language isn’t built simply on characters
which carry meaning. She proposes an affix-based method: collect the 1,000
most common prefixes (of any length) in the vocabulary, and the 1,000 most
common suffixes in the vocabulary, and during the pass over the corpus, any
word ending in one of the suffixes and/or starting with one of the prefixes
is averaged with the affix embedding(s) and the cross-entropy loss is used to
update all components of the embedding. This time, the change is applied
to both target and context embeddings. List all statistics which would help
calculate the added space and time complexities of this variant (an example
is: “number of word types in corpus with suffix xor prefix”). Assume each word
can only be associated with one prefix, one suffix, or one of each. [4 pts]

(c) Why is an exact calculation of the added complexities in Maude’s formulation
impossible, even given the entire training corpus? Can changing the training
regime to continuous bag-of-words (CBOW) remove this uncertainty? Explain.
[3 pts]

(d) The skipgram embeddings can be evaluated using extrinsic methods such as
measuring the performance of the chat bot or other downstream tasks, such as

30f6

Homework 1 CS 4650/7650
Deadline: October 6, 3:29pm ET Natural Language

sequence labeling. Another method of evaluation is using intrinsic methods,
which test whether the representations cohere with our intuitions about word
meaning. Describe at least two intrinsic evaluation methods that could be used
to assess the quality of the embeddings. [1 pt]

4 0of 6

Homework 1 CS 4650/7650
Deadline: October 6, 3:29pm ET Natural Language

3. In this assignment, we will be exploring word embeddings and language modeling.
Start by downloading this zip file: https://www.cc.gatech.edu/classes/
AY2022/cs4650_fall/programming/h3_lm.zip.

For all of these notebooks, you will need to export the PDF outputs and concatenate
them to your writing portion. The coding portion of this homework counts for 40
points, with 9 bonus points available.

(a) word_embeddings.ipynb [10 points]: We’ll start by looking at word2vec, a
technique to generate word vectors. You will not be training your own word
embeddings: instead you would be using pre-trained word embeddings from
GenSim. This programming assignment is designed to provide you a better
understanding of the vector space the word embeddings lie in. Specifically, you
will be looking at similarities, semantics, analogies, biases and visualization.
Download and complete the notebook, following the instructions provided therein.
Attach your notebook here to respond to 3a.

(b) ngram.ipynb [20 points + 7 bonus]:

i. Complete ‘hw3_skeleton_char.py.” Detailed instructions can be found in the
‘ngram.ipynb’ file in hw3.zip. You should also use test cases in ‘ngram.ipynb’
to get development results for parts (iii) and (iv) of this subproblem. Submit
‘hw3_skeleton_char.py’ to on Gradescope for [15 points].

As bonus, you can also complete ‘hw3_skeleton_word.py,” along with the
corresponding cells for word-based LMs in ‘ngram.ipynb’ [Bonus: 5pt]

ii. Observe the generation results of your character-level n-gram language
models (n > 1). The paragraphs which character-level n-gram language
models generate all start with F. Did you get such results? Explain what is
going on. [3 pts]

iii. [This question is a bonus, if you chose to do the word-level ngram
model] Compare the generation results of character-level and word-level
n-gram language models. Which do you think is better? Compare the
perplexity of ‘shakespeare_sonnets.txt’ when using character-level and word-level
n-gram language models. Explain what you found. [Bonus: 1 pt]

iv. When you compute perplexity, you can play with different sets of hyper-parameters
in both character-level and word-level n-gram language models. You can
tune n, k and). Please report here the best results and the corresponding
hyper-parameters in development sets. For character-level n-gram language
models, the development set is ‘shakespeare_sonnets.txt’ [2 pts].
[The following points are bonus if you chose to complete the word-level
implementation] For word-level n-gram language models, the development
sets are ‘shakespeare_sonnets.txt’ and ‘val_e.txt’ [Bonus: 1 pt].

(c) rnn.ipynb [10 points + 2 Bonus]:

i. For RNN language models, you should complete the forward method of the
RNN class in rnn.ipynb. You need to:

50of6

https://www.cc.gatech.edu/classes/AY2022/cs4650_fall/programming/h3_lm.zip
https://www.cc.gatech.edu/classes/AY2022/cs4650_fall/programming/h3_lm.zip

Homework 1 CS 4650/7650
Deadline: October 6, 3:29pm ET Natural Language

A. Figure out the forward pass and tune hyperparameters, [5 pts]

B. Copy a paragraph generated by your model here, [2 pts]

C. Report hyperparameters and perplexity on the development set
‘shakespeare_sonnets.txt’ here, [2 pts] and

D. Compare the results of character-level RNN language model and
character-level n-gram language model here. [1 pts]

E. Imagine you designed an RNN trained on word-level tokens from a
corpus similar to Gensim’s. How would the RNN’s hidden state for a
word x be similar to Gensim’s word vectors? How would it be different?
[Bonus: 2pts]

Export ‘word_embedding.ipynb,” ’ngram.ipynb’, and ’rnn.ipynb’ with output to a

PDF and attach all the PDFs to your writeup. Your writeup should be uploaded
to

60of6

