Topics:
e Neural Networks

* Backpropagation

CS 4803-DL / 7643-A
ZSOLT KIRA

* Assignment 1 out!
* Due Feb 7t
e Start now, start now, start now!
e Start now, start now, start now!
e Start now, start now, start now!

 Piazza
e Be activel!ll
e Extra credit!

e Office hours

* Let us know special topic requests (e.g. PSO, Assignment 1, research paper
discussion, etc.)

Example with an image with 4 pixels, and 3 classes (cat/dog/)

Stretch pixels into column

56
0.2 | -05| 0.1 2.0 11 -96.8 | Cat score
231
15|13 | 21 | 0.0 +| 3.2 | = | 437.9 | Dog score
24
Input image 0 [025] 0.2 | -0.3 -1.2 61.95 | Ship score
2
|14 b

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

) Example Gegraia)

We can find the steepest descent direction by
computing the derivative (gradient):

fla+h) - f(a)
h

Steepest descent direction is the negative
gradient

f'(a) = lim

Intuitively: Measures how the function
changes as the argument a changes by a small
step size

As step size goes to zero

In Machine Learning: Want to know how the
loss function changes as weights are varied

Can consider each parameter separately
by taking partial derivative of loss
function with respect to that parameter

) Derivatives

Ax

Image and equation from:
https://en.wikipedia.org/wiki/Derivative#/media/
File:Tangent_animation.gif

Georgia

Tech

JL

This idea can be turned into an algorithm (gradient descent)
Choose a model: f(x, W) = Wx

Choose loss function: L; = |y — Wx;|?

Calculate partial derivative for each parameter: oL

aWi
Update the parameters: w; = w; — aavl;_
Add learning rate to prevent too big of a step: w; = w; — aaavl;_

Repeat (from Step 3)
) Gradient Descent SEE

Often, we only compute the gradients across a small subset of
data

1
Full Batch Gradient Descent L = NZ L (f(xi, W), yi)

1
Mini-Batch Gradient Descent L = MZ L(f(x;;W),y;)
Where M is a subset of data
We iterate over mini-batches:

Get mini-batch, compute loss, compute derivatives, and
take a set

) Mini-Batch Gradient Descent

Georgia

Tech

JL

http://demonstrations.wolfram.com/VisualizingTheGradientVector/

w, A

— original W
>

negative gradient direction

Gradient Descent Geqe Al

For some functions, we can analytically derive the partial derivative

Example: Derivation of Update Rule
d
Function Loss L= B wix0® Gw = Z ,w, O™ W R
N
f(W, xi) = WTxi (yi — wai)z Gradient descent tells us Z Z(Yk —w xk)_(yk —wlx)

we should update w as

(Assume w and x; are column vectors, so same as W - X;) follows to minimize L:

= -2 Z Sk—W Xk
Dataset: N examples (indexed by k) W« wj - ,,:_L s ..where...
Wj k=YK — W Xi
Update Rule N
N So what’s %? =2 ; 6"a_w,-Z Wiki
J = i=
W]<—W]+21]Z6kxk] ZEN:S
— = — kxk]
k=1

) Manual Differentiation Ge%%ﬁ&

If we add a non-linearity (sigmoid), derivation is more complex

-

First, one can derive that: o' (x) = a(x)(1 — o(x))

fx) =0 (Zk: wkxk> 2
L:Z<yi_a<zwkxik)> . -4 2 o 2 4
i k

oL 5 The sigmoid perception update rule:
_:ZZ yi—0'<Zkaik) _a_l/l’ja(Zkaik)

j «— W] + 27] z 6i0'i(1 - O'i)xi]-

w
; 0 =1
=z—2 Yi— 0O Zwkxik o Zwkxik a—z WiXik - m
- w;
i X 3 7 z
=0 ijij
j=1

where 0;
_ z ~28,0(d;)(1 - a(dy))x;;

o)

i

where §; = y; — f(x;) d; = Zkaik 6; =y;i—0;

) Adding a Non-Linear Function Gogrola)

A linear classifier can be broken down into:
Input
A function of the input
A loss function

It's all just one function that can be decomposed into building blocks

- : N (p) -
X ™ w-x |— -—» —lo —
1+e™ o
Input Model Loss Function

) What Does a Linear Classifier Consist of?

The same two-layered neural network
corresponds to adding another
weight matrix

We will prefer the linear algebra
view, but use some terminology
from neural networks (& biology)

input layer

hidden layer
X W1 Wz

[, Wy, W3) =o(W0(W1x))

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

00
The Linear Algebra View Gogroid £

Large (deep) networks can be built by
adding more and more layers

Three-layered neural networks can
represent any function

The number of nodes could grow
unreasonably (exponential or worse)
with respect to the complexity of the
function

We will show them without edges:

output
layer

input

hidden
layer

layer 1 layer 2

hidden

V/‘ M
\ 7\ /N
XA X
AN OAY
S\ o Z8\

|ayer hidden
layer 1

hidden
layer 2

fx, W, Wy, W3) = o(W,o(Wqx))

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

),

Adding More Layers!

o
(=4

Geor ‘:‘ﬂ =
Test’:h W

Demo
* http://playground.tensorflow.org

DATA + — 2 HIDDEN LAYERS OUTPUT
ch dataset do Test loss 0.511
you want to use? i = s Training loss 0.517

. 7 neurons 2 neurons
. IIIE}

X2

OO0

Ratio of training to
test data 50%

—

Noise: 0

Batch size: 10

—

REGENERATE

weight values

L G

[Showtestdata [] Discretize output

Computation

Graphs

A%
Georgié =
Tegc S

Functions can be made arbitrarily complex (subject to memory and

computational limits), e.g.:
fx, W) =o(Wsa(W4o(W30(W,0(Wqx))

We can use any type of differentiable function (layer) we want!
At the end, add the loss function

Composition can have some structure

Loss
Function

Adding Even More Layers

The world is compositional!
We want our model to reflect this

Empirical and theoretical
evidence that it makes learning
complex functions easier

Note that prior state of art
engineered features often had
this compositionality as well

VISION
pixels edge texton motif part object
SPEECH
sample spectral formant motif phone word
band
NLP
character word NP/VP/.. clause sentence story

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Pixels -> edges -> object parts -> objects

) Compositionality

We are learning complex models with significant amount of
parameters (millions or billions)

How do we compute the gradients of the loss (at the end) with
respect to internal parameters?

Intuitively, want to understand how small changes in weight deep
inside are propagated to affect the loss function at the end

Loss
Function

Given a library of simple functions

—> —log

complicate function 1

Compose into a

u 1

1+e™u

—1 —log(p)

) Decomposing a Function

Adapted from slides by: Marc'Aurelio Ranzato, Yann LeCun

Georgia

Tech

411

To develop a general algorithm for
this, we will view the function as a
computation graph

Graph can be any directed acyclic
graph (DAG)

Modules must be differentiable to
support gradient computations
for gradient descent

A training algorithm will then
process this graph, one module at a
time

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

) A General Framework

Directed Acyclic Graphs (DAGSs)

* Exactly what the name suggests
— Directed edges
— No (directed) cycles
— Underlying undirected cycles okay

Georgia |
Tech)

Directed Acyclic Graphs (DAGSs)

* Concept

— Topological Ordering

Directed Acyclic Graphs (DAGSs)

f(x1,x32) = In(xq) + x1x, — sin(x;)

w-x [— —log(p) —

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Machine Learning Example

Backpropagation

Given this computation graph, the training
algorithm will:

Calculate the current model’s outputs Input Function Output
(called the forward pass)

-1
Calculate the gradients for each h
module (called the backward pass)

Backward pass is a recursive algorithm that:

Starts at loss function where we know
how to calculate the gradients

Progresses back through the modules w

Ends in the input layer where we do Parameters

not need gradients (no parameters)
This algorithm is called backpropagation

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

) Overview of Training

Step 1: Compute Loss on Mini-Batch: Forward Pass

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

3 Neural Network Training

Step 1: Compute Loss on Mini-Batch: Forward Pass

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

3 Neural Network Training

Step 1: Compute Loss on Mini-Batch: Forward Pass

Note that we must store the intermediate outputs of all layers!

This is because we will need them to compute the gradients (the gradient
equations will have terms with the output values in them)

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Neural Network Training

In the backward pass, we seek to oL
calculate the gradients of the loss with dht-1
respect to the module’s parameters

Assume that we have the
gradient of the loss with respect
to the module’s outputs (given
to us by upstream module)

Problem:
We will also pass the gradient of

W te local gradients:
the loss with respect to the € can compute local gradients

oh’ an’
module’s inputs G 3w
This is not required for We are given: 6_L£
update the module’s weights, aL"h .
but passes the gradients Compute: {ahf_l o

back to the previous module

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

) Backward Pass Computations

oht ahf}
ant—1’ gw

We can compute local gradients: {

This is just the derivative of our function with respect to its
parameters and inputs!

Example: If h* = Wht1

dh?

ah€—1 — W

then

'
and 28 = pe-17
aw,-

Computing the Local Gradients: Example

JdL JdL

We want to to compute:
Pute: 551)
dL daL e dL
; 1oL
:) W

We will use the chain rule to do this:

Chain Rul 0z 0z 0y
ain Rule: —~ 3y ox

2 Computing the Gradients of Loss

oL 6L}
oht—1’ ow

We will use the chain rule to compute: {

|

.] oL dL dhn?’ Gi b ¢
Gradient of loss w.r.t. inputs: = L iven by upstream
P dht~1 ot on‘-1 module (upstream

, gradient)
JL dL Oh

ow dht ow

Gradient of loss w.r.t. weights:

oL
ah{’—l

oL
dht

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Computing the Gradients of Loss

Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Neural Network Training

Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Neural Network Training

Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Neural Network Training

Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass
Step 3: Use gradient to update all parameters at the end

dlL Backpropagation is the application of
gradient descent to a computation
graph via the chain rule!

x>

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Tech

‘ _:: Georgia LGJ

Backpropagation: a simple example

f(z,y,2) = (z +y)z

Georgia |
Teéh ||

Backpropagation: a simple example

X

q

f(z,y,2) = (z +y)z

¥

Z

Georgia |
Teéh ||

Backpropagation: a simple example

X -2

q 3

f(m,y,Z):(m_l_y)z y5
eg.x=-2,y=95,z=4

zZ 4

Georgia |
Te¢h |

Backpropagation: a simple example

X -2

q 3

f(m,y,Z):(m_l_y)z y5
eg.x=-2,y=95,z=4

zZ 4

~0f of Oof
Want: 50! Oy’ B

Georgia |
Tech|)

Backpropagation: a simple example

X -2

q 3

f(m,y,Z):(m_l_y)z y5
eg.x=-2,y=95,z=4 =
zZ 4
_ 9 . Oqg _
q=T+vy %_1’%_1
af Of of

Want: 50! Oy’ B

Georgia |
Te¢h)

Backpropagation: a simple example

X -2

f(z,y,2) = (z +y)z - 9.
e.g.x=-2,y=95,z=-4 f -12
g=z+y FL=1,7=1 -

f=qz g—gzz,%:q

Want: gi,gi,gﬁ

) Georgia |
Tedch u

Backpropagation: a simple example

X -2
q 3
f(a:’y?z):(m_l—y)z y5
f_
eg.x=-2,y=95,z=4 -
Z -4
d d /
g=z+y 3—221,%21 l
of
of af of
f=gz g ~ 8 4
~0f of Oof
Want: 50! Oy’ B

) Georgia |
Teeh|)

Backpropagation: a simple example

f(z,y,2) = (z +y)z
eg.x=-2,y=95,z=4

_ d . 0qg V /
==l F Sy =1 l
of
of of of
f=gz g ~ 8 4
~0f of Oof
Want;: 50! Oy’ B

) Georgia |
Te¢h)

Backpropagation: a simple example

X -2

q 3
f(a:’y?z):(m_l—y)z y5
f_
eg.x=-2,y=95,z=-4 112
a a =
qg=—x+vYy 6—2:1,%:1 —
of
of of 0z
f=gz g ~ 8 4
~ of of of
Want: 50! Oy’ B

) Georgia |
Te¢h |

Backpropagation: a simple example

X -2

q 3
f(a:’y?z):(m_l—y)z y5
f_
eg.x=-2,y=95,z=-4 112
a 8 =
q:a‘;—l—y 6—2:1’%:1 3 —
of
of of 0z
f=gz g ~ 8 4
~0f of Oof
Want: 50! Oy’ B

) Georgia |
Te¢h|)

Backpropagation: a simple example

f(z,y,2) = (z +y)z
eg.x=-2,y=95,z=4

_ d . O0q
of of
f=gqz 0= %5 — 4
~0f of Oof
Want:; 50! Oy’ B

) Georgia |
Te¢h)

Backpropagation: a simple example

f(z,y,2) = (z +y)z
eg.x=-2,y=95,z=4

_ d . O0q
of of
f=gqz 0= %5 — 4
~0f of Oof
Want:; 50! Oy’ B

) Georgia |
Te¢h)

Backpropagation: a simple example

f(z,y,2) = (z +y)z
eg.x=-2,y=5,z=+4

_ 9 _ . 9q _
qg=T+Yy 5—1,%—1
_ of _ _ of _ Chain rule: Ay
f—qz aq—zaaz_q ﬂ_af 9q
~0f of Oof Oy~ dq By
Want: 5z By’ 0z

ol X
Upstream Local
gradient gradient

>

Backpropagation: a simple example

f(z,y,2) = (z +y)z
eg.x=-2,y=5,z=+4

_ 9 _ . 9q _
qg=T+Yy 5—1,%—1
_ of _ _ of _ Chain rule: Ay
f—qz aq—zaaz_q ﬂ_af 9q
~0f of Oof Oy~ dq By
Want: 5z By’ 0z

ol X
Upstream Local
gradient gradient

>

Backpropagation: a simple example

f(z,y,2) = (z +y)z
eg.x=-2,y=95,z=4

- 9 _ , Oq

f=gz ag — © 3 9 af __ of dq
of of of O 0O Oc

Want: dx’ By’ Bz Upstream LScal

gradient gradient

) Georgia |
Teéh|)

Backpropagation: a simple example

f(z,y,2) = (z +y)z
eg.x=-2,y=95,z=4

- 9 _ , Oq

f=gz ag — © 3 9 af __ of dq
of of of O 0O Oc

Want: dx’ By’ Bz Upstream LScal

gradient gradient

) Georgia |
Tech|)

Backpropagation: a simple example

Georgia |
Tech|)

Backpropagation: a simple example

1000 5\ _ -20.00
_/

Georgia |
Tech|)

Patterns in backward flow

1000 5\ _ -20.00
_/

Georgia |

Tech)

Patterns in backward flow

Q: What is an add gate? x 3.00

1000 %5\ _-20.00
200 _/ 1.00

Georgia |

Tech)

Patterns in backward flow

add gate: gradient distributor x 3.00

-10_00@ -20.00
200 _/ 1.00

Georgia |
Tech)

Patterns in backward flow

add gate: gradient distributor x 3.00
Q: What is a max gate?

-10_00@ -20.00
200 _/ 1.00

Georgia |
Tech)

Patterns in backward flow

add gate: gradient distributor x 3.00
max gate: gradient router

-W0.00@ -20.00
200 _/ 1.00

0.00

Georgia |
Tech)

Patterns in backward flow

add gate: gradient distributor x 3.00
max gate: gradient router

Q: What is a mul gate?

-wo_oo@ -20.00
200 _/ 1.00

0.00

Georgia |
Tech)

Patterns in backward flow

add gate: gradient distributor
max gate: gradient router

mul gate: gradient switcher

-wo_oo@ -20.00
200 _/ 1.00

Georgia |
Tech)

Gradients add at branches

7

Duality in Fprop and Bprop

Deep Learning = Differentiable Programming

e Computation = Graph
— Input = Data + Parameters
— Output = Loss
— Scheduling = Topological ordering

e What do we need to do?

— Generic code for representing the graph of modules
— Specify modules (both forward and backward function)

Georgia |
Tech |}

Modularized implementation: forward / backward API

Graph (or Net) object (rough psuedo code)

class ComputationalGraph(object):

def forward(inputs):

1. [pass inputs to input gates...]
2. forward the computational graph:
for gate in self.graph.nodes_topologically sorted():
gate.forward()
return loss # the final gate in the graph outputs the loss
def backward():
for gate in reversed(self.graph.nodes_topologically sorted()):

gate.backward() # little piece of backprop (chain rule applied)

return inputs_gradients

Modularized implementation: forward / backward API

class MultiplyGate(object):

X def forward(x,y):
zZ = x*y
return z
def backward(dz):
#dx = ... #toz\
y # dy = ... #todo %
return [dx, dy] 2
(x,y,z are scalars) . ,\y
OL

Ox

Modularized implementation: forward / backward API

class MultiplyGate(object):
X def forward(x,y):
zZ = x*y
self.x = x # must keep these around!
self.y = y
recurn 2
)/ def backward(dz):

(x,y,z are scalars)

dx = self.y * dz # [dz/dx * dL/dz]
dy = self.x * dz # [dz/dy * dL/dz]
return [dx, dy]

>

Example: Caffe layers

master~ | caffe | src | caffe Crestanewfie Uplosdfies Findfie History

I shelhamer committad on Github Mar - a4 300 o
accuracy_layer.con sismantie layer heod

argmax_layer.ci

base_co

ayer.ce o o, an Joye antle .
1 4 cuDNN o
2 yoar ago aretle Layer head ot 2
cop antie la '
eueide ioyor.cs aritle Layer heade ot 5
0 th exp o po

Caffe is licensed under BSD 2-Clause

2 <cmath>
<vector>

"caffe/layers/sigmoid_layer.hpp"

te <typename Dtype»
1d(Dtype x) {

* exp(-x));

Dtype>
oidLayer<Dtype>::Forward _cpu
>*>& top) {
t Dtype* bottom data = bottom[8]->cpu_data();
Dtype* top_data = top[d]-»mut t

= bottom[8]->

15t vector<Blob<Dtype>*>& bot

(1 < count; ++1) {

Dtype>
r<Dtype>: :Backward_cpu(c
1>& propagate_down,
vector<Blob<Dtype>*> bottom) {
(propagate_down[0]) {
const Dtype* top_data = top[8]
onst Otype* top_diff = to
Dtype* bottom diff = botto
on count = bottoa[8]->co
ki 1 < count; *+i) {
Dtype sigmoid x = top data[i];
Tr(1] = top_aire[sigmoid_x

1 1 ':.s;gn:nr);""
:

top_data[1] = sigeoid(bottos data{1]); ‘/
)

Caffe Sigmoid Layer

(1-o(z))o(z)

#ifdef CPU_ONLY
(StgmoidLayer);

(SigmoldLayer);

Caffe is licensed under BSD 2-Clause

* top_diff (chain rule

Backpropagation

and Automatic
Differentiation

Backpropagation does not really spell out how to efficiently
carry out the necessary computations

But the idea can be applied to any directed acyclic graph
(DAG)

Graph represents an ordering constraining which paths
must be calculated first

Given an ordering, we can then iterate from the last module
backwards, applying the chain rule

We will store, for each node, its gradient outputs for
efficient computation

We will do this automatically by computing backwards
function for primitives and as you write code, express the
function with them

This is called reverse-mode automatic differentiation

) A General Framework

Computation = Graph
Input = Data + Parameters
Output = Loss
Scheduling = Topological ordering

Auto-Diff

A family of algorithms for
Implementing chain-rule on computation graphs

&@
=@

) Deep Learning = Differentiable Programming Georaif] <

f(x1,%2) = x1x2 + sin(xy)

Example

We want to find the partial
derivative of output f (output)
with respect to all intermediate
variables

Assign intermediate variables

Simplify notation:
of

Denote bar as: a; = FPN
3

Start at end and move
backward

f(x1,x2) = x1x5 + sin(x;) a; = oF _ 1

aag
____df _ of daz _ Of d(ay+az) _ Of ., _
a, = = = = 1=a;3
aal 6a3 aal aag aal aag
__ df of daz —_
a, = = = Qa
2 aaz aag aa2 3
P1 af daq _
X =— —=a4q4 Cos\x
2 6a1 6x2 1 (2)
Gradients
a da a d(x1x2 — i
xIZ’Z _Of Qdap _ of 0(x1x2) _ azx from multiple
aaz axz aaz axz paths
summed
__ 3 day __
=— — =0a»X
1 aaz 6x1 272

Example

f(x1,%2) = x1x2 + sin(xy)

__ _df _ Of daz _ of d(ajtay) _ Of e
a, = = = = 1=a;3
aal aag aa1 aag aal aag
. 8f of daz __
a, = = = Qa
2 aaz aag aaz 3

Addition operation distributes gradients
along all paths!

Patterns of Gradient Flow: Addition

f(x1,%2) = x1x2 + sin(xy)

Multiplication operation is a gradient
switcher (multiplies it by the values of
the other term)

___ df da, Of OA(x1x2) __
= = = a2x1
aaz axz aaz 6x2

Patterns of Gradient Flow: Multiplication

Several other patterns as well, e.g.: 5 gradient

Max operation selects which path to
push the gradients through

Gradient flows along the path (Max 2 (Max)

that was “selected” to be max

This information must be

recorded in the forward pass 5 gradient

The flow of gradients is one of the most important aspects in deep
neural networks

If gradients do not flow backwards properly, learning slows or stops!

&

) Patterns of Gradient Flow: Other Ge%ggé

__ f day

2 =5~ o

Key idea is to explicitly store da; ax, — 1 c€os(xz)
computation graph in
memory and corresponding
gradient functions

Nodes broken down to basic
primitive computations
(addition, multiplication, log,
etc.) for which
corresponding derivative is
known

) Computational Implementation

Note that we can also do forward
mode automatic differentiation 1

Start from inputs and propagate W3 = Wit W2
gradients forward @

W1 = cos(xl)icl Wz = xle + xle

Complexity is proportional to input

However, in most cases our
inputs (images) are large and
outputs (loss) are small Cg éD

) Automatic Differentiation

A graph is created on the fly

torch.autograd Variable

x = Variable(torch.randn(1, 20))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))

W _x = Variable(torch.randn(20, 20))

i2h = torch.mm(W_x, x.t())
h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h

(Note above)

) Computation Graphs in PyTorch

Back-propagation uses the
dynamically built graph

torch.autograd Variable

x = Variable(torch.randn(1, 20))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))

W _x = Variable(torch.randn(20, 20))

i2h = torch.mm(W_x, x.t())

h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h

next_h = next_h.tanh()

next_h.backward(torch.ones(1, 20))
From pytorch.org

Computation Graphs in PyTorch Ge?ré%é

Convolutional network (AlexNet)

PP Ll

input image

weights

z | A=
Ll | Lals
loss 2
. | Bty *
oy R
& . e
-3
3 ——
ar a .
- I) - S
o e |
2] 4 Figure copyright Alex Krizhevsky, Ilya Sutskever, and
. Geoffrey Hinton, 2012. Reproduced with permission.

"
Guiood Buyood f
Yo __wi
LI L I\
\ [|
| . -
M e N| ik
N = \ N
|\ N
8

Georgia |

Tech|)

Neural Turing Machine

//

input image

Georgia |

Tech|)

Computation graphs are not
limited to mathematical
functions!

Software 1.0 \e,,;\\\)
Can have control flows (if \

statements, loops) and
backpropagate through
algorithms! Software 2.0\

Program Space

Can be done dynamically so
that gradients are computed,
then nodes are added, repeat

Differentiable programming

Adapted from figure by Andrej Karpathy

) Power of Automatic Differentiation Ge%;gé g

