CS 4803/ 7643: Deep Learning

Topics:
— Linear Classifiers
— Loss Functions

Dhruv Batra
Georgia Tech



R
Administrativia

* Notes and readings on class webpage
— https://www.cc.gatech.edu/classes/AY2020/cs7643 fall/

* HWO solutions and grades released

. 'Issues from PSO submission
— Instructions not followed = not graded

1. We will be using Gradescope to collect your assignments. Please read the following instructions
for submitting to Gradescope carefully! Failure to follow these instructions may result in parts
of your assignment not being graded. We will not entertain regrading requests for failure to

i follow instructions.

e For Section 1: Multiple Choice Questions, it is mandatory to use the BTEX template
provided on the class webpage (https://www.cc.gatech.edu/classes/AY2020/cs7643_
fall/assets/ps0.zip). For every question, there is only one correct answer. To mark
the correct answer, change \choice to \CorrectChoice

e For Section 2: Proofs, each problem/sub-problem is in its own page. This section has 5
total problems/sub-problems, so you should have 5 pages corresponding to this section.
Your answer to each sub-problem should fit in its corresponding page.

¢ For Section 2, IATEX'd solutions are strongly encouraged (solution template available at
https://www.cc.gatech.edu/classes/AY2020/cs7643_fall/assets/ps0.zip), but scanned
handwritten copies are acceptable. If you scan handwritten copies, please make sure to
append them to the pdf generated by I#TEX for Section 1.
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https://www.cc.gatech.edu/classes/AY2020/cs7643_fall/

Recap from last time [
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-
Image Classification: A core task in Computer Vision

(assume given set of discrete labels)
{dog, cat, truck, plane, ...}

> cat

d

This image by Nikita is
licensed under CC-BY 2.0

X

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/

An image classifier

def classify_image(image):

return class_label

Unlike e.g. sorting a list of numbers,

no obvious way to hard-code the algorithm for
recognizing a cat, or other classes.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




-
Supervised Learning

* Input: x (images, text, emails...)
* Qutput: y (spam or non-spam...)

* (Unknown) Target Function
— . XY __(the “true” mapping / reality)

* Data
- {(Xl Y1), (X2,¥2), --.r (XnoYn) }
* Model/ mcmss
— H=¢{h

— e.g. Y = h(x) = sign(wTx)
* Less+unction —

— How-geed-s-a-medelwr-ry-data Dp———-]
E Learmimy = Searchirhypothesis-space—

— Find best+ir-modelelass———-
(C) Dhruv Batra 6



Error Decomposition

AlexNet

horse ““perso
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-
First classifier: Nearest Neighbor

def train(images, labels): Memorize all
| data and labels

return model

def predict(model, test_images): Predict the label
> of the most similar
training image

return test labels

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Nearest Neighbour

g

\ L -
b
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BEEENSE BN



-
Instance/Memory-based Learning

Four things make a memory based learner:
* A distance metric

E' How many nearby-retghbors to look at?

C _

* A weighting function (optional)

{ o

* How to fit with the local points?

(C) Dhruv Batra Slide Credit: Carlos Guestrin 10



Hyperparameters

Your Dataset

Idea #4: Cross-Validation: Split data into folds, X
try each fold as validation and average the results k: f\

fold 1 fold 2 fold 3 fold 4 Mj test

fold 1 fold 2 fold 3 fold 5 test

fold 1 fold 2 fold 5 test

L4

Useful for small datasets, but not used too frequently in deep learning

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



-
Problems with Instance-Based Learning

* Expensive
— No Learning: most real work done during testing

— For every test sample, must search through all dataset —
very slow!

" — Must use tricks like approximate nearest neighbour search

*~Doesn’t work well when large number of irrelevant
features
— Distances overwhelmed by noisy features

* "Curse of Dimensionality
— Distances become meaningless in high dimensions
— (See proof in next lecture)

(C) Dhruv Batra 12



Plan for Today

r . .
* Linear Classifiers
— Linear scoring functions

Loss Functions
— Multi-class hinge loss
— Softmax cross-entropy loss

o\

(C) Dhruv Batra 13



Linear Classification



Linear
classifiers

This image is CCO 1.0 public domain

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


http://maxpixel.freegreatpicture.com/Play-Wooden-Blocks-Tower-Kindergarten-Child-Toys-1864718
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Visual Question Answering

B o - }p\d' Neural Network
Image Embedding fVGGNeﬁD LEM Softmax

1 4096-dim ) over top K answers

N —
S <
Say
N N
X [
X
=t 3 _RN
= " - -

Pooling Layer Convolution Layer Pooling Layer Fully-Connected MLP

(L(wstion Embedding (LSTM) |

“How many horses are in this image?’

-
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Recall CIFAR10

airplane ' )ﬁ==-i.

automobile {5 55 £ 69 E07 o I 5 S5 160

it HRET EETH RS

cat ﬂ.'uﬂﬁﬂﬁﬂﬂ 50,000 training images
deer Bl s B gEE  eachimageis 32x32x3
log Eﬂklﬂlm 10,000 test images

vy DENSSCDESEE —

orse v ) PO 10 I TR 5

ship [ o o e i P

ruck @ RN =B

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Parametric Approach
H={h: )L-—)Jj

Image

10 numbers givin
> f(x, W) > == Jving
— = class scores
T e

Array of 32x32x3 numbers :'S" - 5;

(3072 numbers total) W = | .
parameters S |
or weights

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Parametric Approach: Linear Classifier

f(x,W) = WX +[b

Image
10 numbers givin
> f(x,W) g JVIN9
(e class scores
g .o S
Array of 32x32x3 numbers T
numbers total)
ser2 W
e
parameters
or weights

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Parametric Approach: Linear Classifier

I%age -§ f(X,W) :ﬁl 10x1 {)ru/

Ox1 iﬁx3
10 numbers givin
> f(x,W) > g
class scores
Array of 32x32x3 numbers T
(3072 numbers total) W
parameters
or weights

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Stretch pixels into column

Input image Z.I “‘f

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Stretch pixels into column

-, T I~ '_:"\.._‘
e ——— 56,
02 | 05| 0.1 | 200 E&i Cat score
T —
231-
24 . o
0 0.25| 0.2 | -0.3 -1.2 61.95 Ship score
Input image 2
Bt Rl Bxl

W = b S

/Wt , X 7 bc"a\j.' ::'Sc'at

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



+ 3.2.

02 |-05| 01 | 20 56

15 | 1.3 | 21 | 0.0 231
0 |[025| 02 |-03 24
w_ 2

£
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b~

new, single W

_1:.\1#}2 -EL_) b [T:JT b] :5?-
1

02 | 05|01 |20 | 1.1 56
15| 13 | 21 | 00 | 32 231
0 |025] 02 |-03|-1.2 24
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Error Decomposition

AlexNet

horse ™Perso
— Model class L <

(C) Dhruv Batra 24



Error Decomposition

9 [Reality !

horse ““perso
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Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

[Algebraic Viewpoint]

(f0cw) = wix + b}

Stretch pixels into column

56
) 02 | -05| 01 | 2.0 11 -96.8 | Cat score
h¥ﬁ3tﬂ 231
) p\
24!“;', 15 | 1.3 | 21 | 0.0 + 3.2 | = | 437.9 | Dog score
P 24
gy 0 025| 0.2 | -0.3 -1.2 61.95 | Ship score
Input image 2

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Input image
Algebraic Viewpoint o)
(723
2.} 2)
f(x,W) =Wx + Db } e
A v
1.5 1.3 0 .25
Stretch pixels into column
L
2.1 0.0 0.2 -0.3
h -0.5 | 0.1 -ﬂ . 1.1 -96.8 | Cat score
231
B 1.3 21 0.0 3.2 = 437.9 Dog score l l
025| 0.2 | -0.3 . 1.2 61.95 | Ship score 32 1.2
2
w X b 1 1
437.9 61.95

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



-
Interpreting a Linear Classifier

airplane ﬂ )@==ﬁ-ﬁ. Input image
automobile!ﬁ@ﬁg

bird R EETHGE

cat 0 0 0 Y

deer 1 e 0 Y

dog  WEIREFHER AN

g  DIENa® RIS E

horse  ugy e [ 5 O 1R IR 5% R

ship n T-;‘ e H l ; ’ E E Score |-9%.38 437.9 61.95
vuck @ RNRENCsB

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



airplane
automobile
bird

cat

deer

dog

frog

horse

shlp
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.
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Interpreting a Linear Classifier:

Visual Viewpoint

Pt

/1

KD

0.2

0.1

-96.8

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

437.9




Interpreting a Linear Classifier: Geometric Viewpoint

N
. L ‘
airplane classifier @ ,
W
G .
‘0“”‘:‘:‘0 - -
<

1 =
/ _ Array of 32x32x3 numbers

(3072 numbers total)

Plot created using Wolfram Cloud ’ 1 Cat image by Nikita is licensed under CC-BY 2.0
€ DA, —
'F’J“m S A b
—

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

2 deer classifier



https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
https://sandbox.open.wolframcloud.com/app/objects/26bc9cd9-50a8-42a9-8dbf-7a265d9e79c8

Hard cases for a linear classifier

Class 1:
Three modes

Class 2:
Everything else

&

L=

Class 1. Class 1.
First and third quadrants 1 <=L2 norm <= 2
Class 2: Class 2_:
Second and fourth quadrants Everything else
+ 4,
£ £
e
X

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Linear Classifier: Three Viewpoints

Algebraic Viewpoint

f(x,W) =Wx + Db
Y B
Input image W n o

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Visual Viewpoint [

One template
per class

El car kird cat deer
4
" E:
-
frog horse ship truck

Geometric Viewpoint

L

Hyperplanes
utting up space




So far: Defined a (linear) score function

f(x,W) =|Wx + b

airplane r* -3. 45? -0.51 3.472
automobile -8.87 6.04 4.64
bird 0.09 5.31 2.65
cat -4.22 5.1
deer 4.48 -4.19 2.64
dog 18.02 3.58 5.55
frog -78 4.49 -4.34
horse 1.06 -4 .37 -1.5
ship -0.36 -2.09 -4.79
truck -0.72 -2 .93 6.14
Catimage by Nikita is licensed unde 20 n; Frog image s

Example class
scores for 3
Images for
somg_\_{v_:_

R
How can we tell
whether this W
IS good or bad?

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
https://www.pexels.com/photo/audi-cabriolet-car-red-2568/
https://creativecommons.org/publicdomain/zero/1.0/
https://en.wikipedia.org/wiki/File:Red_eyed_tree_frog_edit2.jpg

So far: Defined a (linear) score function

airplane
automobile
bird

cat

deer

dog

frog

horse

ship

truck

-3.45
-8.87

0.09
2.9
4.48
8.02
3.78
1.06
-0.36
-0.72

CC-BY 2.0

-0.51
6.04
5.31

-4.,22

-4.19
3.58
4.49

-4.,37

-2.09

-2.93

CC01.0

Frog image

3.42
4.04
2.65
5.1
2.64
5.55
-4.34
-1.5
-4.79
6.14

TODO: [ZQ[E’ Dﬁ)

1[ Define a loss function

that quantifies our
unhappiness with the

scores across the training

i

data. —

—

L

2. Come up with a way of
efficiently finding the
parameters that minimize
the Joss function.
(optimization)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


https://www.flickr.com/photos/malfet/1428198050
https://www.flickr.com/photos/malfet/
https://creativecommons.org/licenses/by/2.0/
https://www.pexels.com/photo/audi-cabriolet-car-red-2568/
https://creativecommons.org/publicdomain/zero/1.0/
https://en.wikipedia.org/wiki/File:Red_eyed_tree_frog_edit2.jpg

-
‘Supervised Learning

* Input: x (images, text, emails...)
* Qutput: y (spam or non-spam...)

* (Unknown) Target Function
- L XM&Y (the “true” mapping / reality)

* Data
= (Xu,Y1), (X2,¥2), «.vr (XnuYn)

* Model / Hypothesis Class
- {h: X & Y}
— e.g. Y = h(x) = sign(wTx)

i‘ Loss Function
— How good is a modelwrtmy data D2

* Learning = Search in hypothesis space
— Find best h in model class.

(C) Dhruv Batra 35



Loss Functions




Suppose: 3 training examples, 3.classes.
With some W the scores f(z, W) =Wz are:

cat 3.2 1.3 2.2
car 5.1 4.9 2.5
frog -1.7 2.0 -3.1

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



loss function tells how

With some W the scores f p”’ W) =Wz are: good our current classifier is

Suppose: 3 training examples, 3 classes. LA
-(..-:: 2 =D

Given a dataset of examples

@zayz)}i\;l ]

Where I; is image and

cat r\32 ) 1.3 2 9 Y; is (integer) label
car @ 4.9 25 Loss over the dataset is a
] ' sum of loss over examples:
frog V‘l_._?_) 20 '3.1
.
S,

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Suppose: 3 training examples, 3 classes.
With some W the scores f(z, W) =Wz are:

cat 3.2 1.3 2.2
car 5.1 4.9 2.5
frog -1.7 2.0 -3.1

J—

Nulticlass SVM loss:

Given an example (:}33', yz-)
where x; is the image and
where y; is the (integer) label,

and using the shorthand for the
scores vector: § = f(mia W)

the SVM loss has the form:

g G 85— 8y T 1 otherwise

= Z max(0,s; — sy, + 1)
JF#Yi

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z, W) =Wz are:

= 1

car

frog

Given an example (:}33', yz-)
where x; is the image and
where y; is the (integer) label,

and using the shorthand for the
scores vector: § = f(mia W)

9m4~‘“f}(‘75"

+1 0therw1se '"9»

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



mort (0,%D = ’

Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z, W) =Wz are:

Given an example (:}33', yz-)
where x; is the image and
where y; is the (integer) label,

and using the shorthand for the
scores vector: § = f(mia W)

cat if 5, > s; + 1
L%_Z< 1syz_.83—|—
car 5.1 2o |85 — sy 1 otherwise
-1.7
frog = max (0, s; — sy, + 1)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z, W) =Wz are:

LC “Hinge loss”

sj Y :5?—
cat 32 13 22 |
LiZZ{O lfsin.Sj—i—]_
car 5 1 4_9 25 2o 185 — 8wt 1 otherwise
frog -1.7 2.0 -3.1 5 ; max(0, sj — sy, + 1)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Suppose: 3 training examples, 3 classes.

With some W the scores f(z, W) =Wz are:

cat 3.2 1.3
car 5.1 4.9
frog -1.7 2.0

L1 l l

2.2
2.5
-3.1

L%

YOG,

Multiclass SVM loss:

“Hinge loss”
Sy; .
S .
71
I — {O s, —rs 1l
G 85— 8y T 1 otherwise

0
Q.
I
<

ax(0,s; — sy, + 1)

delta

=y

1]
11 1

scores for other classes

.|. >
| score
S correct class

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z, W) =Wz are:

Given an example (:}33', yz-)
where x; is the image and
where y; is the (integer) label,

and using the shorthand for the
scores vector: § = f(mia W)

the SVM loss has the form:

cat 3.2 1.3 2.2 @
car 5.1 4.9 2.5
frog -1.7 2.0 -3.1

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z, W) =Wz are:

Given an example (:}33', yz-)
where x; is the image and
where y; is the (integer) label,

and using the shorthand for the
scores vector: § = f(mia W)

the SVM loss has the form:

cat 2.2
L; :E #y! max(O,.s_j — 3y, + 1)
car 2.0 —==max(0,51-32+1)
3.1 ~— tmax(Q,-1,7-3.2 + 1)
frog -9. +rmax—(0, 3.9)
. =2.9%+ 0.

Losses: —

—

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z, W) =Wz are:

Given an example (:}33', yz-)
where x; is the image and
where y; is the (integer) label,

and using the shorthand for the
scores vector: § = f(mia W)

the SVM loss has the form:
Li = ;,, max(0,s; — + 1)
car 5.1 4.9 2.5 = max(0, 1.3 - 4.9 + 1)

+max(0,2.0-4.9+ 1)
.0 -3.1 = max(0, -2.6) + max(0, -1.9)
=0+0 -

2
Losses: 2.9 0 gt
Ly

cat

frog -1.7

’.--"

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z, W) =Wz are:

Given an example (:}33', yz-)
where x; is the image and
where y; is the (integer) label,

and using the shorthand for the
scores vector: § = f(%'a W)

the SVM loss has the form:

cat 3.2 1.3 2.2 Li =} ., max(0,s; — sy, +1)
car 5.1 49 25 =max(0, 2.2 -(-3.1) + 1)

+max(0, 2.5 - (-3.1) + 1)

frog L7 2.0 -3.1 = max(0, 6.3) + max(0, 6.6)
Losses: 2.9 0 12.9 : ?23?9+ 6.6

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Suppose: 3 training examples, 3 classes.
=Wz are:

With some W the scores f(z, W)

cat 3.2 1.3 2.2
car 5.1 ZLS) 2.5
frog -1 ! -3.1
12.9

Losses:

Multiclass SVM loss:
Given an example (:}33', yz-)
where x; is the image and
where y; is the (integer) label,
and using the shorthand for the

scores vector: § = f(mia W)

the SVM loss has the form:

Li =} ., max(0,s; — sy, +1)

Loss over full dataset is average:

¥ 2ict Li

L = %29+O+129)/3
55. -~

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z, W) =Wz are:

Given an example (:}33', yz-)
where x; is the image and
where y; is the (integer) label,

and using the shorthand for the
scores vector: § = f(mia W)

the SVM loss has the form:

Li = 3, max(0, 57— 5, 1 1)

Q: What happens to

cat 3.2 1.3% 2.2
car 5.1 4.9% 25

frog -1.7 2.0°% -3.1 loss if car image
Losses: .«._2__9, 0 12.9 scores change a bit?

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z, W) =Wz are:

Given an example (:}33', yz-)
where x; is the image and
where y; is the (integer) label,

and using the shorthand for the
scores vector: § = f(mia W)

the SVM loss has the form;

cat 3.2 1.3 2.2 L=, m 0] ) D
car 5.1 4.9 2.5 Q2: what is the

frog -1.7 2.0 -3.1 min/max possible
Losses: 2.9 0 12.9 loss?

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z, W) =Wz are:

Given an example (:}33', yz-)
where x; is the image and
where y; is the (integer) label,

and using the shorthand for the
scores vector: § = f(mia W)

the SVM loss has the form:

cat 3.2 1.3 2.2 L@-:]z.#_max(o,%—?y.ﬁ’)
car 510 4.9 2.5 v

Q3: At initialization W |
frog -1.7 20 3.1 is small so all s = 0.
Losses: 2.9 0 12.9 What is the loss?

Hclbigq -1

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z, W) =Wz are:

Given an example (:}33', yz-)
where x; is the image and
where y; is the (integer) label,

and using the shorthand for the
scores vector: § = f(mia W)

the SVM loss has the form:
cat 3.2 1.3 22 =Tmmax(0, 553, {D)
—— =

car 0.1 4.9 2.9 Qél: What if the sum

frog -1.7 20 31 was over all classes?
Losses: 2.9 0 12.9 (including j =y_1) 41
Z-C‘ ﬂ"‘“é@‘iﬂ

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Suppose: 3 training examples, 3 classes. Multiclass SVM loss:
With some W the scores f(z, W) =Wz are:

Given an example (:}33', yz-)
where x; is the image and
where y; is the (integer) label,

and using the shorthand for the
scores vector: § = f(%'a W)

the SVYM loss has the form:
cat 3.2 1.3 2.2 I éJZ#;hmax(O,sj D)
car 5.1 4.9 2.5 =

55: What if we used
frog -1.7 2.0 -3.1 mean instead of
Losses: 2.9 0 12.9 sum?

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



f(z, W) :__W.’I,'

£ N %_Z?;l Z#yi@@?ﬂajﬁ W); _77:(553'5 W)y, +1)

T
E.g. Suppose that we found a W such thatﬂL = O]
Q7:[ls this W unique?)
L\C""’) =0
=> LGW)=0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



flx, W) =Wx
L= % Zf; Zj;éyi max (0, f(zi; W); — f(zs; W)y, +1)

E.g. Suppose that we found a W such that L = 0.
Q7: Is this W unique?

No! 2W is also has L = 0!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Suppose: 3 training examples, 3 classes. fos == Z#y_ max(0, 55 — 8y, + 1)
With some W the scores f(z, W) =Wz are: 1

Before:

=max(0, 1.3-4.9+1)
+max(0, 2.0 - 4.9 + 1)

= max(0, -2.6) + max(0, -1.9)

=0+0 |
=0
cat 3.2 1.3 2.2 With W twice as large: 1
car 5.1 4.9 2.5 ] Trigiib%% ?§8++1)1)
fr()g 1.7 20 _31 : (r)nix(go, -6.2) + max(0, -4.8) j
Losses: 2.9 0 =0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Multiclass SVM Loss: Example code

——

iz imax(0,s; — sy, + 1)

def L_i vectorized(x, y, W):

scores = ﬂ;dot(x)

margins = np.maximum(©®, scores - scores[y] + 1)
ar ins[

loss 1 = np.sum(margins)
return loss i

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Eoftmax}lassifier (Multinomial Logistic Regression)

== Want to interpret raw classifier scores as probabilities

cat

car

frog

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Softmax Classifier (Multinomial Logistic Regression)

- Want to interpret raw classifier scores as probabhilities

3= fles W) |PUSHX=2) =55

Softmax function

cat 3.2
car 5.1
frog -1.7

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Softmax Classifier (Multinomial Logistic Regression)

== Want to interpret raw classifier scores as probabilities
8 = f(j_j“ W) P(Y — k|X — g[;,&) — e’k | Softmax

sJ .
Zj € Function

Probabilities
must be >=0

24.5
1@_4___0

0.18

Tnnormalized
l probabilities

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities
— . S " - X e - e’k ) f
s= flzs;W)| |PY )X =2:) = gzj | Softmax

Function
Probabilities Probabillities
must be >=0 must sum to 1 # f
cat 24.5|, . d
exp normalize &——é
car - 164.0 — p
frog O_];S 1) . Q
unnd@maliZed probabilities
probabilities

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities
8 = f(j_j“ W) P(Y — k|X — g[;,&) — e’k | Softmax

SJ .
Zj € Function

Probabilities Probabilities

must be >=0 mustsumtQ 1
cat 3.2 24.5 0.13

exp

car 5.1 H164.0|"""% 0.87
frog -1.7 0.18 0.00

Unnormalized log- unnormalized probabilities
probabilities / logits probabilities ’

gyt

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Softmax Classifier (Multinomial Logistic Regression)

. Want to interpret raw classifier scores as probabilities
= fles W) [P =HX=2) =5

ca 3.2
car 51 E’i — _ngf(Z_fM|X = fBZ)L)

frog -1.7 insummary:  L; = — log(,)
—

Maximize log-prob of the correct class =
Maximize the log likelihood =

Minimize the negative log likelihood

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Softmax Classifier (Multinomial Logistic Regression)

» Want to interpret raw classifier scores as probabilities
‘ 8 = f(;;[:“ W) P(Y — k|X — g[;,&) — e’k | Softmax

SJ .
Zj € Function

Probabilities Probabillities
must be >=0 must sumto 1
cat 3.2 24.5 0.13

exp

car 5.1 H164.0|"""% 0.87
frog -1.7 0.18 0.00

Unnormalized log- unnormalized probabilities
probabilities / logits probabilities

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Softmax Classifier (Multinomial Logistic Regression)

cat
car

frog

== Want to interpret raw classifier scores as probabilities

13.2

15.1
\-1.7

exp

Unnormalized log-
probabilities / logits

\4

164.0

10.18

unnormalized

probabilities

normalize

probabilities

10.87
10.00

_ . _ — p.) — €% | Soft
5= flai W) [P0 =KX= 2i) = 2] some
Probabilities Probabilities o L .
must be >= 0 must sum to 1 L= —logP(F =gl =)
\!
24.5 10.13} . L = -logf0i3
— —

— 01
e -
<O, )

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



EEEEEEE————————————————
Log—LikeIihood / KL-Divergence// Cross-Entropy

F‘ ff';‘, - Y= % 1)
Pal22 [ 3, W)
- 2 pﬁ(y___ | 2¢

ma RLCPITE = 2 f@; ")
Cn& o

\_ ..

J
;Eim — fﬂ'a- ?63&3

(C) Dhruv Batra 67
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-
Log-Likelihood / KL-Divergence / Cross-Entropy

(C) Dhruv Batra 68



Softmax Classifier (Multinomial Logistic Regression)

. Want to interpret raw classifier scores as probabilities
8 = f(;[}“ W) P(Y — k|X — g;,&) — e’k | Softmax

sJ .
Zj € Function

Maximize probability of correct class Putting it all together:
Li=—1logPY =yl X=2;) [.—= — log et
cat 3.2 — ( 2 ¢ j_)

car 5.1
frog -1.7

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Softmax Classifier (Multinomial Logistic Regression)

. Want to interpret raw classifier scores as probabilities
8 = f(;[}“ W) P(Y — k|X — g;,&) — e’k | Softmax

sJ .
Zj € Function

Maximize probability of correct class Putting it all together:

Li = —log P(Y =yilX =xi) [, = —log(~Smms)
cat 3.2 — >{e)
car 51 Q: What IS the Ln__m/_m_ax

possible loss L _i7?

frog -1.7 T

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Softmax Classifier (Multinomial Logistic Regression)

s Want to interpret raw classifier scores as probabilities
8 = f(g_}“ W) P(Y — k|X — g;,&) — e’k | Softmax

sJ .
Zj € Function

Maximize probability of correct class Putting it all together:

Li = -logP(Y =il X =2:) [, = —log(=2-
cat 3_2 : g( ZJ- e )
car 51 Q: What is the min/max

' possible loss L_i?
fr -1.7 | A:min 0, max infinity
0]0) AV

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Softmax Classifier (Multinomial Logistic Regression)

=y Want to interpret raw classifier scores as probabilities
S = f(:l}h W) P(Y k|X_ €T ) — _€* | Softmax

sJ .
Zj € Function

Maximize probability of correct class Putting it all together:

1J~s0

a4 Li:—logP(Y:yﬂX:fEi) Lz:—log( e’Yi [)
cat 3.2k ¥y, i}
car 5 1R Q2: At !nltlallzatlon a.II S W|II_ be

aEprOX|mater equal; what is the loss?
frog -1. 7”0 -
5 [ ] o
L Vi

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Softmax Classifier (Multinomial Logistic Regression)

s Want to interpret raw classifier scores as probabilities
8 = f(g_}“ W) P(Y — k|X — g;,&) — e’k | Softmax

SJ .
Zj € Function

Maximize probability of correct class Putting it all together:
Li=—logP(Y =y|X=2;) [.—_] Vi |
cat 3_2 oE, Og( > e’ )
car 51 Q2: At initialization all s will be
' approximately equal; what is the loss?
frog -1.7 A: 10g(C), eg log(10) = 2.3

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




0.01 | -0.05 0.1 0.05 -15 0.0

0.28

07 | 02 | 005 | 0.16 29

Softmax vs. SVM hinge loss (SVM)
e e —_— -2.85
matrix multiply + bias offset max(0, -2.85 - 0.28 + 1) +
0.86 “ax(0, 0.86=0.28 £ 1)

+ 0.2

00 | -045| -02 | 0.03 44 0.3 cross-entropy loss (Softmax)

-2.85 0.058 0.016
W 56 b
" —_— exp normalize

o | 086 | —p| 236 | — 5 | 0.631 | -109(0.353)
:I:,_l (to sum =
z to one)
0.28 1.32 0.353 W
Maddl } = =

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Softmax vs. SVM

L; = —log( ey =] Li =) ,,, max(0,s; — sy, +1)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




-
Recap

- We have some dataset of (x.y)
- We have a score function: s = f(z;W) =Wz
- We have a loss function:;

Softmax

L; = —log(=

Z € & SVM regularization loss

o - W . :
LQ‘, = Zj?éyt IIl&X(O, Sj Syi _|_ ].) smrefunctlon f(:,'g“ ) data loss "*.Ir'z

1 N :I: | [ ]
L=+ L ‘|‘Full loss y"_
1

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Recap

}_ How do we find the best W

A
- We have some dataset of (X,y) eq. W
- We have a score function: s = f(z;W) =Wz - )
- We have a loss function: m{ S

sy, SOftmax
L' —_ —].0 < 3.5'-
(] g( Zj el ) SVM regularization loss
L; =) ., max(0,8; — sy +1 T score e S =
Z‘??’éyt ( ' 9 Y; ) > f(fﬂ“W) data loss "*L
1 N 3 ‘ '3
L==>:1L +RW) Fullloss 3;

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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