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\— Generative Adversarial Networks (GANs)
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Administrativia

[- Last class today

(* Project submission
— Due: 11/24, 11:59pm
— Last deliverable in the class

—Can'tuse-late-days 8 free late days
L — https://www.cc.gatech.edu/classes/AY2021/cs7643_fall/
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Generative Adversarial
Networks (GAN)



Types of Learning

+ Supervised learning 7,_%@ j_(ﬁ»:ﬂ

— Learning from a “teacher”
— Training data includes desired outputs

L—

/ Reinforcement learning f\C’Sp@ &_M>
— Learning to act under evaluative feedback (rewards)

* Unsupervised learning

— Discover structure in data
— Training data does not include desired outputs

‘_V
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Taxonomy of Generative Models

Direct
GAN

Generative models

\

Implicit density

e

Markov Chain

Explicit density

/\

Tractable density Approximate density
Fully Visible Belief Nets N \ GSN
- NADE — .
- MADE Variational . Markov Chain
- | PixelRNN/CNN Variational Autoencoder Boltzmann Machine

Change of variables models

nonlinear ICA
( ) Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



So far...

/PierCNNs deflne tractable density function, optimize likelihood of training data:
po(Tilz1, ... Tiz1)
) o H Fé ()

deflne intractable density function with latent z: C?’ =
/
IPG ‘ pe LL‘lZ dz E ~r “V.Myw MJ/E _I :

Cannot opt|m| dlrectly, derive and optlmlze lower bound on likelihood instead

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



So far...

PixelCNNs define tractable density function, optimize likelihood of training data:

po(z) = | | po(@ile1, ... mi—1)
=1

VAEs define intractable density function with latent z:
po(a) = [ po(2Ipo(al2)dz
Cannot optimize directly, derive and optimize lower bound on likelihood instead

What if we give up on explicitly modeling density, and just want ability to sample?

%~ [P GO %~ [Block box |

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



So far...

PixelCNNs define tractable density function, optimize likelihood of training data:

po(z) = | | po(@ile1, ... mi—1)
=1

VAEs define intractable density function with latent z:

po(z) = / po(2)po(z]2)dz

Cannot optimize directly, derive and optimize lower bound on likelihood instead

What if we give up on explicitly modeling density, and just want ability to sample?

GANSs: don’t k with explicit density function
r s: don’t work with any explici ity fu |D [Pe (_2)] <
S - -

R 1> ) x

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Generative Adversarial Networks (GANSs)

GANs are a combination of the following ideas:

3f Loar {3
A 1[Learn|ng to Sample -~

(High-level) Connection to Inverse Transform Sampling

—

K /E Adversarial Training ) ( >
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Easy Interview Question

h(ueCa 533
. Igiveyo@'*U(Oﬂ) } - b-on

* Use uto produce a sample x ~ Bern(@ Qzas b<l

———-——/\ —

Blr=1>=6
def  Uny 3Ban (0 P,:Cx—w -6
\4) v > Cl-ed g |
P i' "’—"—"
Jae o! ’I“h 4 i

sk O v

(C) Dhruv Batra 10



Slightly Harder Interview Question

« | give you u~ U(0,1)

k-buvrs
Lw I(M—
\)/’ \

O’m.’S EZ— =
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-
Slightly Harder Interview Question

« | give you u~ U(0,1)

« Use u to produce a sample x ~ Cat(m)
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Harder Interview Question
« | give youlu ~ U(O,Tiﬂ

» Use u to produce a sampl{l ~.(x) R
i
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Harder Interview Question

« | give you u~ U(0,1)

 Use uto produce a sample X ~ |F¢(X)

I o) \ 2L

U(O/J\ v U ?Hﬁ’NN«X - - - ’L"Z_<— S
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L
Generative Adversarial Networks

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution. No direct
way to do this!

Solution: Sample from a simple distribution, e.g. random noise. Learn transformation to
training distribution.

—

Q: What can we use to
represent this complex
transformation?

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Generative Adversarial Networks

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution. No direct
way to do this!

Solution: Sample from a simple distribution, e.g. random noise. Learn transformation to
training distribution.

Q: What can we use to Output: Sample from ~_
represent this complex training distribution

transformation?

A: A neural network! Generator
- Network

*

Input: Random noise ©--Z ol \}é[ )
—e———— =,
N(o,\)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Generative Adversarial Networks (GANS)

GANSs are a combination of the following ideas: /\/@

E Learning to Sample Z”_D/Ji?

Connection toﬂn\Le_rse Transform Samplirlg:l B

E. Adversarial Training L C y )
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-
Training GANs: Two-player game

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014
___f

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real andlf images

Spmaxb

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Training GANs: Two-player game

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

1 O gc@d)

Real or Fake

—— \
,I/Biscriminator Network | %

| BB : | Real Images A
2 : (from training set) >~ WCS
Generato; Netwo%x ea

Random noise z U
No, 35

Fake Images
(from generator)

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Training GANs: Two-player game

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Train jointly in minimax game 1‘. /&\O’J}}l? @ P(Zj\l\

Minimax objective function: / } /)\

/
%&[gq@logped E!log (1— D, (Go, (2 )))] \Z/

%

~ ,.Ql-‘ i(’oa N(o,I) \\?\)‘Jﬁ )
T AL )
Mo

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Training GANs: Two-player game

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Train jointly in minimax game
Discriminator outputs likelihood in (0,1) of real image
Minimax objective function:

min max

1inm [Exwpdm log Do, (z) + B,z log(1 — D, (Go, (z)))]
g d I_l_l l 1

Discriminator output
for real data x

Discrimina'tor output for
generated fake data G(z)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Training GANs: Two-player game

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Train jointly in minimax[game )

Minimax objective function:

Discriminator outputs likelihood in (0,1) of real image

inmax |Eznpy,., 108 Do, () + E.up(z) log(1 — Dy, (G, (z)))]

I
Discriminator output Discriminator output for
for real data x generated fake data G(z)

Discriminator (84) wants to maximize objective such that D(x) is close to 1 (real) and
D(G(z)) is close to O (fake)

Generator (6,) wants to minimize objective such that D(G(z)) is close to 1
(discriminator is fooled into thinking generated G(z) is real)

] [F

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Training GANs: Two-player game

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Minimax objective function:

min max []Emdiata ].Og Ded (3)) + ]EZNP(Z) log(]‘ T Ded (Gog (Z))):|

0, 6a

[ Alternate between: o 1 A 00(
1. Gradient ascent on discriminator aLgML J W
@[Emdm 108 Dy, (7) + Exvpy lou(1 = Dy, (Go, (2)))] | DL |
d

— — 01 . 22Z)
2. Gradient descent on generator FLR /L @o‘ va@d ——~Oq
’_—‘_—'
B II;}JII ]Ezrvp(z) log(l — D@d (Ggg (Z))) 9 AL

//

’ %%

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



.
Training GANs: Two-player game

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Minimax objective function:

ngin ngl‘x [Emdiata ].Og ng (',I;) + Esz(z) log(l o Ded (Gog (Z))):|

Alternate between:

1. Gradient ascent on discriminator

Gradient signal
max [Emrvpdam log Dy, (x) + Ezwp(z) log(1 — Dg, (Geg (z)))] dominated by region

04 .
where sample is

i - ’ 3 Iread d
2. Gradient ?Iescent on generator roa)CI /b(\ ’already goo
minE () log(1 ~ Dy, (Go, (2)) |

When sample is likely:f

fake, want to learn
In practice, optimizing this generator objective from it to improve :
does not work well! generator. But
gradient in this region”|
|S relat|ve|y ﬂatl o 02 04 o 06 08 10

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Training GANs: Two-player game

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Minimax objective function:
ngin Hba‘x [Emdiata ].Og ng (',I;) + EZNP(Z) log(l o Ded (Gog (Z)))]
g d

Alternate between:
1. Gradient ascent on discriminator

H(lga‘x [Em"’pdata log Dy, (:L’) + ]Ezwp(z) log(l — Dg, (GGQ (z)))]
d

2. Instead: Gradient ascent on generator, different objective
- 5 —
max E,~p(z) log(De,(Go,(2)))
g —
T o | 7
Instead of minimizing likelihood of discriminator being correct, now High gradient signal
maximize likelihood of discriminator being wrong.
Same objective of fooling discriminator, but now higher gradient . , , ‘
signal for bad samples => works much better! Standard in practice. 7 Lowgradient signal

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



.
Training GANs: Two-player game

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Minimax objective function:

ngin Hba‘x [Emdiata ].Og ng (',I;) + Esz(z) log(l o Ded (Gog (Z))):|

‘ d

’ Aside: Jointly training two
tworks is challengi

Alternate between: ZZnW[;)er jn';gblae enging.

1. Gradient ascent on discriminator Choosing objectives with
max [Emfvpdam log ng (g;) + ]EZNp(z) log(l — Dod (Ggg (z)))] better loss landscapes

04 helps training, is an activ
area of research.

— log(1-D(G() ||
—  —logD(G(2)

2. Instead: Gradient ascent on generator, different objective

n%?x ]Ez,\,p(z) 1Og(D9d (Geg (Z)))

/
Instead of minimizing likelihood of discriminator being correct, now High gradile'nt signal
maximize likelihood of discriminator being wrong. I
Same objective of fooling discriminator, but now higher gradient

signal for bad samples => works much better! Standard in practice.

Low gradient signal

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Training GANs: Two-player game

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguijh between real and fake images

—F =
/ Real or Fakg,\)
—_— T

Discriminator Network

>\
I~ Real Images
| e (from training set)
f

Generator Network

7

Fake Images
(from generator) |

| —

After training, use generator network to
generate new images

Random noise z

- -
p— I

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



GANSs

« Demo
— https://poloclub.github.io/ganlab/



https://poloclub.github.io/ganlab/

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Generative Adversarial Nets
Generated samples

Nearest neighbor from training set

-—/\

Figures copyright lan Goodfellow et al., 2014. Reproduced with permission.
»

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Generative Adversarial Nets: Convolutional Architectures

\ =

0

5
il Stride 2 =
Project and reshape O Stride 2
B CONV 3
CONV 4 -
Generator 6@)
R

Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016
~———

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Generative Adversarial Nets: Convolutional Architectures

Samples
from the
model look
much
better!

Radford et al,
ICLR 2016

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Generative Adversarial Nets: Convolutional Architectures

Interpolating W ' e w,@ wg 'm

between
random B v L “' T i
. . "—"»- n ||b
points in L, o T W “ ’
latent space -
P o g n O J’ “fT T Ti J
al - ~1 |
iy ! '_;.
Radford et al, "i’ '
ICLR 2016

— L r——

7 =3

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Results over the years

2014

/

The Malicious Use of Artificial Intelligence: Forecasting, Prevention, and Mitigation, 2018.
https://arxiv.org/abs/1802.07228 -



Large Scale GAN Training for High Fidelity Natural Image Syn/ibfgis
18

Andrew Brock, Jeff Donahue, Karen Simonyan https://arxiv.org/abs 9.11096



28, )
YIE & 31

(2) 128 128 T (b) 256x256  (0)512x512

Figure 4: Samples from our model with truncation threshold 0.5 (a-c) and an example of class
leakage in a partially trained model (d).

Large Scale GAN Training for High Fidelity Natural Image Synthesis
Andrew Brock, Jeff Donahue, Karen Simonyan https://arxiv.org/abs/1809.11096
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.
Explosion of GANs

“The GAN Zoo”

¢ GAN - Generative Adversarial Networks

Context-RNN-GAN - Contextual RNN-GANSs for Abstract Reasoning Diagram Generation
C-RNN-GAN - C-RNN-GAN: Continuous recurrent neural networks with adversarial training

« 3D-GAN - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

CS-GAN - Improving Neural Machine Translation with Conditional Sequence Generative Adversarial Nets
CVAE-GAN - CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training
CycleGAN - Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

* acGAN - Face Aging With Conditional Generative Adversarial Networks

* AC-GAN - Conditional Image Synthesis With Auxiliary Classifier GANs

+ AdaGAN - AdaGAN: Boosting Generative Models

* AEGAN - Learning Inverse Mapping by Autoencoder based Generative Adversarial Nets

DTN - Unsupervised Cross-Domain Image Generation

DCGAN - Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks

. . DiscoGAN - Learning to Discover Cross-Domain Relations with Generative Adversarial Networks
« AffGAN - Amortised MAP Inference for Image Super-resolution ¢

. . . DR-GAN - Disentangled Representation Learning GAN for Pose-Invariant Face Recognition
¢ AL-CGAN - Learning to Generate Images of Outdoor Scenes from Attributes and Semantic Layouts

DualGAN - DualGAN: Unsupervised Dual Learning for Image-to-Image Translation
e ALl - Adversarially Learned Inference

EBGAN - Energy-based Generative Adversarial Network
« AM-GAN - Generative Adversarial Nets with Labeled Data by Activation Maximization

f-GAN - f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
* AnoGAN - Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery ¢ FF-GAN - Towards Large-Pose Face Frontalization in the Wild
« ArtGAN - ArtGAN: Artwork Synthesis with Conditional Categorial GANs GAWWN - Learning What and Where to Draw
o . . G GAN - Gi GAN: L ing Object T fi ti d Attribute Sub f U ired Dat.
¢ b-GAN - b-GAN: Unified Framework of Generative Adversarial Networks ene ene earning Lbject Transtiguration an ribute Subspace from Unpaired bata
. . . - Geometric GAN - Geometric GAN
« Bayesian GAN - Deep and Hierarchical Implicit Models

GoGAN - Gang of GANs: Generative Adversarial Networks with Maximum Margin Ranking
* BEGAN - BEGAN: Boundary Equilibrium Generative Adversarial Networks GP-GAN - GP-GAN: Towards Realistic High-Resolution Image Blending
* BiGAN - Adversarial Feature Learning

IAN - Neural Photo Editing with Introspective Adversarial Networks

« BS-GAN - Boundary-Seeking Generative Adversarial Networks iGAN - Generative Visual Manipulation on the Natural Image Manifold

« CGAN - Conditional Generative Adversarial Nets IcGAN - Invertible Conditional GANs for image editing

. . . . . . . . * ID-CGAN - | De-raining Usi Conditional Gi tive Ad ial Network
¢ CaloGAN - CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters mage De-raining Lsing a Londitional Generative Adversarial Networ

. . . * Improved GAN - Improved Techniques for Training GANs
with Generative Adversarial Networks P P q ¢

. . . . . . . InfoGAN - InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
¢ CCGAN - Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks

LAGAN - Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics
* CatGAN - Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks Synthesis

* CoGAN - Coupled Generative Adversarial Networks LAPGAN - Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks

https://github.com/hindupuravinash/the-gan-zoo

Also see https://paperswithcode.com/task/image-generation/latest

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


https://paperswithcode.com/task/image-generation/latest

GANSs

Don’t work with an explicit density function
Take game-theoretic approach: learn to generate from training distribution through 2-player

game

Pros:
- Beautiful, state-of-the-art samples!

—

T

Cons: \[(

- [Trickier / more unstable to train |
- Can’t solve inference queries such as|p(x), p(z|x) [

—

Active areas of research:
- Better loss functions, more stable training (Wasserstein GAN, LSGAN, many others)

- Conditional GANs, GANSs for all kinds of applications

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Plan for Today

EGenerative Adversarial Networks (GANSs)

L * Closing the loop
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-
So what /s Deep (Machine) Learning?

A few different ideas:

(Hierarchical) Compositionality
— Cascade of non-linear transformations
— Multiple layers of representations

End-to-End Learning
— Learning (goal-driven) representations
— Learning to feature extraction

. Distributed Representations

~ No single neuron “encodes” everything
- Groups of neurons work together

(C) Dhruv Batra 46



Building A Complicated Function

Given a library of simple functions

ldea 2: Compositions
Compose into a

' ,

complicate function
« Scattering transforms...

« Deep Learning

« Grammar models

f(@) = gi(ga(- - (gal) ...))

———
—_————— —_—

—_— — —p —p| | | | | —p
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Differentiable Computation Graph

allowed!

j Any DAG ofﬁifferentialble modulej is

.
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So what /s Deep (Machine) Learning?

A few different ideas:

(Hierarchical) Compositionality
— Cascade of non-linear transformations

— Multiple layers of representations

End-to-End Learning

— Learning (goal-driven) representations
— Learning to feature extraction

 Distributed Representations

— No single neuron “encodes” everything
— Groups of neurons work together

(C) Dhruv Batra 49



“Shallow” vs Deep Learning

 “Shallow” models

hand-crafted “Simple” Trainable
Eeature Extractcﬂ Classifier
‘ fixed learned

 Deep models

e ( —— B
% Trainable\ ‘M Trainable
T@ Feature- Feature-

1 | — | —
ransform / ransform | Transform |
Classifi Classifier | Classifier

J/\

Learned Internal Representations



Key Computation: Forward-Prop

CAN/
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Key Computation: Back-Prop
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So what /s Deep (Machine) Learning?

A few different ideas:

(Hierarchical) Compositionality
— Cascade of non-linear transformations
— Multiple layers of representations

End-to-End Learning

— Learning (goal-driven) representations
— Learning to feature extraction

Distributed Representations

— No single neuron “encodes” everything
— Groups of neurons work together

(C) Dhruv Batra 53



Distributed Representations Toy Example

« Can we interpret each dimension?

(a)

e O O O O
“/\ @000
" Yeole
()| co@O
—/ 0o0e

(C) Dhruv Batra

(b)

no pattern

o4




Power of distributed representations!

Local "O.=VR+HR+HE=?

/

pisributed @ @ O @ = +H+El: O
2 72

N \)C/>
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What is this class about?
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s
What is this class about?

* Introduction to Deep Learning

 (Goal:

— After finishing this class, you should be ready to get started
on your first DI research praject.
« CNNs
* RNNs
. Deep Reinforcement Learning
» Generative Models (VAEs, GANs)

(C) Dhruv Batra 57



s
What did we learn?

« Background & Basics
* Neural Networks, Backprop, Optimization (SGD)

* Module 1: Convolutional Neural Networks (CNNs
« Architectures, Pre-training, Fine-tuning '

. Vis?lizalio_ns, Fooling CNSS, Adversarial examples

» Different tasks: detection CNNs, segmentation CNNs

* Module 2: Recurrent Neural Networks (RNNs)|

« Difficulty of learning; “Vanilla” RNNs, LSTMs, GRU

* RNNs for Sequence-to-Sequence (machine translation & image captioning, VQA,
Visual Dialog)

 Module 3: Deep Reinforcement Learning
 Overview, policy gradients
- Optimizing Neural Sequence Models for goal-driven rewards

* Module 4: Deep Unsupervised Learning
 Variational Inference ¢ —
- Variational Auto Encoders (VAESs)
* GANSs, Adversarial Learning /
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Arxiv Fire Hose

D
YO\ @ PhD Student

Deep
Learning

papers

arXiv.org
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Feedback

Ettp://b.gatech.ed u/ciosj



http://b.gatech.edu/cios

Thanks!

(We hope your future learnings are deep)
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