CS 4803 / 7643: Deep Learning

Topics:
— Unsupervised Learning |
— Generative Models (PixelRNNs, VAEs) \

Dhruv Batra
Georgia Tech
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« HW3 Grades Released
— Regrade requests close: 11/09, 11:59pm

« Grade histogram: 4803
— Max possible: 34.5 (regular) + 10.5 (extra credit)
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MINIMUM MEDIAN MAXIMUM MEAN STD DEV

23.25 375 44.0 36.9 3.51
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Administrativia

- | Project submission instructions
— Due: 11/24, 11:59pm
— Last deliverable in the class

— Can'’t use late days
L— https://www.cc.gatech.edu/classes/AY2021/cs7643_fall/
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Administrativia

« Guest Lecture: Emily Denton (Google Al)
— Next class (11/10)
— Ethics in Al

https://cephaloponderer.com/
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Overview

e Unsupervised Learning

e Generative Models
o PixelRNN and PixelCNN
o Variational Autoencoders (VAE)
o Generative Adversarial Networks (GAN)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



R EEEEEEm———m————SSSS
Supervised vs Reinforcement vs Unsupervised

Learning

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Supervised
Learning

Supervised Learning l,___aD-——‘ Y

Data: (x, y)
X is data, y is label

Goal: Learn a function to map@

Examples: Classification, g B
regression, object detection, Classification
semantic segmentation, image
captioning, etc.

— (Cat

Thisi s CCO . .

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Supervised vs Unsupervised Learning

—~\
upervised Learning | & 7
Data: (x, y) A

X is data, y is label

Goal: Learn a functionto map x 2 y

GRASS, ,
TREE, SKY

Examples: Classification,
regression, object detection,
semantic segmentation, image Semantic Segmentation
captioning, etc.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
X is data, y is label

Goal: Learn a function to map x =2y

e . A cat sitting on a s;u:tcase on the floor (
Examples: Classification, 7 a
regression, object detection, .
semantic segmentation, image Image captioning

captioning, etc.

Image 15 CCO Public domain

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


https://github.com/karpathy/neuraltalk2
https://pixabay.com/en/luggage-antique-cat-1643010/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

I

Goal: Maximize expected reward

e

Reinforcement Learning 19

Given: (e, r)

Examples: Robotic control, video
games, board games, etc.

Reinforcement
Learning

A BCDEFGH )] KLMNUOP QRST

nvironment e, Reward functionr| 15
(evaluative feedback)

=N W & U N ®

\IJ

—> (A
SJC ~_ £ @ ( ]\P‘ R
\ Q_k’
~©

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Unsupervised

Learning

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction,

feature learning, density
estimation, etc.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Unsupervised

Learning

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, K-means clustering
feature learning, density
estimation, etc.

Thisi cco . .

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


https://commons.wikimedia.org/wiki/File:ClusterAnalysis_Mouse.svg
https://creativecommons.org/publicdomain/zero/1.0/deed.en

.
Unsupervised

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data
naden Structur

Examples: Clustering,
dimensionality reduction,
feature learning, density
estimation, etc.

Learning

original data space

component space

[2-d

Principal Component Analysis
(Dimensionality reduction)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

o
M::E i .


http://phdthesis-bioinformatics-maxplanckinstitute-molecularplantphys.matthias-scholz.de/fig_pca_illu3d.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Unsupervised

Learning x— P
{e>
Unsupervised Learning
Data: x .. e /\

Just data, no labels!

Goal: Learn some underlyinjj
hidden sfructure of the d

1-d density estimation
Examples: Clustering,
dimensionality reduction,

feature learning, density

—
estimation, etc. 7—’[‘\ --- idJ T

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


https://commons.wikimedia.org/wiki/File:Bivariate_example.png
https://www.flickr.com/photos/omegatron/8533520357
https://creativecommons.org/publicdomain/zero/1.0/deed.en

s
Tasks

Supervised Learning

X o)  Classificati m— y Discrete

-—

X )  Regression )y Continuous

Unsupervised Learning

X Clustering mmm— C Discrete

— —

X —) Dimensionality ) - ContinLous

_Reduction e

X ) Density mmmmm=) p(X)  Onsimplex !

Estimation
(C) Dhruv Batra 16



Unsupervised
Learning

Unsupervised Learning Supervised Learning

Data: x .. Data: (x,y)

Just data, no labels! < ( X is data, y is label

Goal: Learn some underlying Goal: Learn a function to map x 2 y
hidden structure of the data (

Examples: Clustering, ( Examples: Classification,
dimensionality reduction, regression, object detection,
feature learning, density semantic segmentation, image
estimation, etc. } captioning, etc.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Unsupervised

Learning
Unsupervised Learning Supervised Learning
Q’raining data is cheaﬂ
Dafa: x \ Foly grail: Solve Data: (x, y)

Just data, no labels!  unsupervised leaming x js data, y is label
=> understand structure

of visual world .
Goal: Learn some underlying Goal: Learn a function to map x 2 y

hidden structure of the data

Examples: Clustering, Examples: Classification,
dimensionality reduction, regression, object detection,
feature learning, density semantic segmentation, image
estimation, etc. captioning, etc.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Unsupervised
Learning
Unsupervised Learning
Data: x m
Just data, no labels! ) f*@
Goal: Learn some underlying : ﬁii “{z
hidden structure of the data T

Examples: Clustering,
dimensionality reduction, K-means clustering
feature learning, density
estimation, etc.

Thisi cco . .

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


https://commons.wikimedia.org/wiki/File:ClusterAnalysis_Mouse.svg
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Auton’s Graphics
x1
Some Data &
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(C) Dhruv Batra Slide Credit: Carlos Guestrin 20



Auton’s Graphics
K-means |-
0.8 T
1. | Ask user how many
clusters they'd like.
(e.g. k=5)
0.6 T
0.4 T
0,2 T
% t t t t t
| 0 0,2 0.4 0.6 0.8 1 |
x0

(C) Dhruv Batra Slide Credit: Carlos Guestrin 21



K-means

1. Ask user how many
clusters they'd like.
(e.g. k=5)

2. | Randomly guess k
cluster Center
locations

(C) Dhruv Batra

Auton’s Graphics

x1

0.8

0.6

0.4

0,2

——
—
o

——

0.6

——

0.8

——

%07

Slide Credit: Carlos Guestrin
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— Auton’s Graphics

K-means [«

1. Ask user how many B

clusters they'd like.
(e.g. k=5)

2. Randomly guess k | *¢
cluster Center
locations

3. Each datapoint finds | .4

out which Center it’s
closest to. (Thus

each Center “owns”

a set of datapoints) | .2

%07

(C) Dhruv Batra Slide Credit: Carlos Guestrin 23



— Auton’s Graphics

K-means [«

1. Ask user how many i

clusters they'd like.
(e.g. k=5)

2. Randomly guess k | °¢
cluster Center
locations

3. Each datapoint finds | .4
out which Center it’s
closest to.

4.( Each Center finds
the centroid of the
points it owns

0,2

%07

(C) Dhruv Batra Slide Credit: Carlos Guestrin 24



— Auton’s Graphics

K-means [«

1. Ask user how many | o
clusters they'd like.
(e.g. k=5)

2. Randomly guess k

0,6 T
cluster Center
locations
3. Each datapoint finds 0
40T

out which Center it's
closest to.

4. Each Center finds
the centroid of the | ©:2
points it owns...

——

—i—
—

—o—
—o—
o

5. ...andjumpsthere | 0.2 0.4 0.6 0.8 1

%07

6. ...Repeat until
(C) bhruv BA@rminated! Slide Credit: Carlos Guestrin 25



K-means

[ Randomly initialize k centers
—_ ﬂ@) = E,I(O),___, HK(O) I‘:Ael

« Assign:
— Assign each point ie{1,...n} to nearest center:

—|C@) — arg;”nin ’J:i - Hj& ) ,_LQ,SCZV‘ ) E’U%))

* Recenter:
— W becomes)m of points assigned to cIusLerj

—

(C) Dhruv Batra Slide Credit: Carlos Guestrin

26




K-means
 Demo
— http://stanford.edu/class/ee103/visualizations/kmeans/kmean
S.html

(C) Dhruv Batra 27


http://stanford.edu/class/ee103/visualizations/kmeans/kmeans.html

What is K-means optimizing?

* Objective/F(u,C)! function of centers p and point

allocations C: CC) € {, L /lﬁ
— F(u,0) =[S s — 1P Y -
)z 1 wﬁ) C(_" [ (5 ] é"ﬁ/ﬁ:{ % ‘
&C’L\ ) AL)B "6 C-(i\=3

— 1-of-k encoding [ F(p,a) ZZ%I@)MJ@ [ ]
1= 1] 1

. Qtl mal K-means: " se cong o liem

m|n wmin, [F(p,a)

wﬂxa mwn. M

@f'(ﬁ/a': M__O\

(C) Dhruv Batra 28



Unsupervised
Learning

PGy

1-d density estimation

Goal: Learn some underlying ; ° ;
hidden structure of the data s A .
Examples: Clustering, ThoEE

dimensionality reduction,
feature learning, density
estimation, etc. p——

Unsupervised Learning

Data:(x
Just data, no labels!

2-d density estimation

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


https://commons.wikimedia.org/wiki/File:Bivariate_example.png
https://www.flickr.com/photos/omegatron/8533520357
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Generativ els

Given training data, generate new samples from same distribution

Mﬁ’l] - J’f + ~(>moa,sxo~>

Training data Generated samples ~ Pmogel(X
b"{il ,,«;ing Want to Iearn3|m|Iart Daata(X )— bgl g [, oo,

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



e
Generative Classification vs
Discriminative Classification vs
Density Estimation

» Generative Classification , £ ( )
— Model p(x, y); estimate p(x|y) and p(y) P(x ‘ P j
— Use Bayes Rule to predict y 5(5\ 1> e I@P(‘:D
— E.g Naive Bayes /P(:y

« Discriminative Classification (w) >
— Estimate p(y|x) directly \P 5 >

— E.g. Logistic Regression w

* Density Estimation

— Modelp(x) &

E.g. VAEs

(C) Dhruv Batra 34



Generative Models

Given training data, generate new samples from same distribution

A g.q

-

Training data ~ pyata(X) Generated samples ~ Progel(X)

Want to learn ppogel(X) similar to pyaia(X)

Addresses density estimation, a core problem in unsupervised learning

Several flavors:

- Explicit density estimation: explicitly define and solve for?pmodel(x) l
- Implicit density estimation: learn model that can sample ﬂ;()TnFmode|(x) w/o explicitly defining it

[z Page |
|

—

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Why Generative Models? —
p(x1y)
(POL\> \JPC/X_L’_‘_’)

- Realistic samples for artwork, super-resolution, colorization, etc.

¢ 5% "% I

of time-series data can be used for simulation and
planning (reinforcement learning applications!) P(’L)

- Training generative models can also enable inference of Iateﬂ
representations that can be useful as general features

Flgures from L-R are copyright: (1) Alec Radford et al. 2016 (?) David Berthelot et al. 2017: Phillip Isola et al, 2017 Reproduced with authors permission

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


https://arxiv.org/abs/1511.06434
https://arxiv.org/pdf/1703.10717.pdf
https://phillipi.github.io/pix2pix/

Taxonomy of Generative Models #leck box

’\7 C"b \ Generative models

Explicit densit¥

Implicit density

Markov Chain

| Tractable density | Approximate density)

GSN

Fully Visible Belief Nets / \
- NADE . .

-~ MADE | Variational Markov Chain

- | PixelRNN/CNN Variational Autoencoder Boltzmann Machine

Change of variables models | —
(nonlinear ICA)

Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



-
Taxonomy of Generative Models

Direct
We will discuss 3 most GAN
popular types of generative Generative models
models /\
Explicit density Implicit density
Tractable density Approximate density LEILEY Gl

Fully Visible Belief Nets N \ oSN

- NADE — ,

- MADE Variational Markov Chain

- [ PixelRNN/CNN Variational Autoencoder Boltzmann Machine

Change of variables models

nonlinear ICA
( ) Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



PixelRNN and PixelCNN



Fully Observable Model

. . - d
Explicit dEnsﬂy model 3t R

Use chain rule to decompose likelihood of an image x into product of 1-d

distributions: ‘, ) D) —

7.6 }p(w)—nfml, D)
© "T—“ T

—

Likelihood of Probability of i'th pixel value
image X given all previous pixels
Then maximize likelihood of training data 1

' o
>0, ... X, —> /E\’* 3 wfooa?éxt }'B

P()i{ X- - X)) |

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Fully Observable Model

Explicit density model

Use chain rule to decompose likelihood of an image x into product of 1-d

distributions: }
" Do

p(ﬂ?) — Hp(:_cjlf_la ey x’i—_l)

to=

Likelihood of Probability of i'th pixel value
image X given all previous pixels

Complex distribution over pixel values
Then maximize likelihood of training data => Express using a neural network!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Fully Observable Model

Explicit density model

Use chain rule to decompose likelihood of an image x into product of 1-d
distributions:

n
p(z) = | I p(zi|T1,. s Tio1)
=1 : : :
T T Will need to define ordering
Likelihood of Probability of i'th pixel value of “previous pixels”
image X given all previous pixels
Complex distribution over pixel values
Then maximize likelihood of training data => Express using a neural network!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



target chars: "€’ I 0
Example: i 7 =
Character-level output layer e i
Language Model ot 22,
HEEC
: [ _
Voca ry. hidden layer || -0.1 T—— (1)3 > _(())15 L 83
h,e,l,0] | o 03 0.7
T T
Example training 1 o 5 ;
sequence: input layer|| o \ : ; ;
“hello” — g j 0 8
> 0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



R
PixelRNN [van der Oord et al. 2016]

— -~
Generate image pixels starting from corner @ O O O O%_
J——
Dependency on previous pixels modeled © 0O ‘__9,_22@
using an RNN (LSTM) O O O O O
O O O O O
O O O O O

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



PixelRNN [van der Oord et al. 2016]

Generate image pixels starting from corner

-

o O O O O

Dependency on previous pixels modeled
using an RNN (LSTM)

o O O
o O O
o O O O O
O O O O O

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



PixelRNN [van der Oord et al. 2016]

’i}vl,c
Generate image pixels starting from corner Q>0 »0 O O
Dependency on previous pixels modeled }ﬂ" 149 S
using an RNN (LSTM) Q O O 0O

O O O O O
O O O O O

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



R R,
Test Time: Sample / Argmax / Beam Search

Example: sample ¢
Character-level o3
Soft .

Language Model oI

- A

Sampling o

output layer _23%

4.1

Vocabulary: T
[h,e,I,O] hidden layer [IERR—

0.9

At test-time sample I

characters one at a nputlayer | O

time, feed back to N

model

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



R EEEEEEEE—————
Test Time: Sample / Argmax / Beam Search

Example: Sample f\\
Character-level s
Soft .
Language Model oI
: A
Sampling o
output layer _23%
4.1
Vocabulary: T
[h €, | ’O] hidden layer {08
0.9
At test-time sample I :
characters one at a nputlayer | 0 1
time, feed back to NP, - \'(’
model

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



R EEEEEEEE—————
Test Time: Sample / Argmax / Beam Search

Character-level e
Soft | :

Language Model ]| s

. A A

Sampling ]| [os

output layer _23% g%

4.1 12

Vocabulary: T ]
[h’e’I’O] hidden layer .%_3; > (1):(3) -

0.9 0.1

At test-time sample I l

characters one at a nputlayer | 0 !

time, feed back to S \'(’

model

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



R EEEEEEEE—————
Test Time: Sample / Argmax / Beam Search

Example:
Character-level
Language Model
Sampling

Vocabulary:
[h,e,l,0]

At test-time sample
characters one at a
time, feed back to
model

Sample

Softmax

output layer

hidden layer

input layer

input chars:

!

“e:\ “O”
A A
.03 25 A1 A1
A3 20 A7 02
.00 .05 68 .08
84 50 03 79
A A A A
1.0 0.5 0.1 0.2
22 0.3 0.5 -1.5
-3.0 -1.0 1.9 -0.1
4.1 i -1.1 22
0 O O B
03 1.0 0.1 |w |hn|-03
-0.1 ~ 03 -0.5 |——+{ 0.9
0.9 0.1 -0.3 0.7
I A O O
1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 0
“h" ‘e’ 1 "
D

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



PixelRNN [van der Oord et al. 2016]

Generate image pixels starting from corner

Dependency on previous pixels modeled
using an RNN (LSTM)

\ Drawback: sequential generation is sIo@

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



PixelCNN [van der Oord et al. 2016]

—

Still generate image pixels starting from Lﬂ -
corner

: : Fimi
Dependency on previous pixels now
modeled using a CNN over context region /
;‘—u 7Y

Figure copyright van der Oord et al., 2016. Reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Conv-1

Conv-2

Conv-15

e

JaI\e|\xe 0s




s
Masked Convolutions

* Apply masks so that a pixel does not see
“future” pixels

O O D O  masked convolution

o\.—\.-.
|oo’u

(C) Dhruv Batra 54



PixelCNN [van der Oord et al. 2016]

Softmax loss at each pixel

Still generate image pixels starting from Lﬂ
corner

0 T 255
. . A A1
Dependency on previous pixels now — = =
modeled using a CNN over context region ) — —— /
[ 7 W7
Training: maximize likelihood of training !
images
—_— n
p(z) = || p(xiler, ..., zi1)
i=1
—

Figure copyright van der Oord et al., 2016. Reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




PixelCNN [van der Oord et al. 2016]

Still generate image pixels starting from Lﬂ
corner

255

f
Vw N

Dependency on previous pixels now /

modeled using a CNN over context region /

Training is faster than PixelRNN
(can parallelize convolutions since context region
values known from training images)

e

Generation must still proceed sequentially
=> still slow

Figure copyright van der Oord et al., 2016. Reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Generation Samples

R T S .IILI“EEIHII
HIE&II.PI ot BEEA 2

SEY ﬁﬂﬁﬁgi-h i

kS FT ).

Ele - e

e R

L - BLITE Eg

Ell'!lﬂllﬁ PG ER T

Figures copyright Aaron van der Oord et al., 2016. Reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Image Completion
P(i’m 0—) 1“‘?

occluded completlons , original

p(T)

Figure 1. Image completions sampled from a PixelRNN.



-
Results from generating sounds

 https://deepmind.com/blog/wavenet-generative-
model-raw-audio/



https://deepmind.com/blog/wavenet-generative-model-raw-audio/

PixelRNN and PixelCNN

Pros:
- Can explicitly compute
likelihood p(x) Improving PixelCNN performance
e e - Gated convolutional layers
- Explicit likelihood of - Short-cut connections
training data gives ngd - Discretized logistic loss
: - - Multi-scale
evaluation metric - Training tricks
- Good samples - Etc...
See
Con: - Van der Oord et al. NIPS 2016
wm : . - Salimans et al. 2017
Sequential generation (Pixel CNN++)
=> slow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




