CS 4803 / 7643 Deep Learning, Fall 2020

Reinforcement Learning: Module 3/3

Presented by Nirbhay Modhe

Previous Lecture

- MDPs: Value function, optimal quantities, algorithms for solving MDPs
- RL: No rewards and transitions (RL), function approximation (deep RL).

Today

- RL Algorithms
 - Overview, types of RL algorithms
 - Deep-Q Learning: A value based RL algorithm
 - Policy gradients: A policy-based RL algorithm

Recursive Bellman expansion (from definition of Q)

$$Q^*(s,a) = \underset{s_{t+1} \sim p(\cdot|s_t,a_t)}{\mathbb{E}} \left[\sum_{t \geq 0} \gamma^t r(s_t,a_t) \mid s_0 = s, a_0 = a \right]$$

RL setting:

- $\underline{\mathbb{T}(s,a,s')} \text{ unknown, how actions affect the environment}$ $\underline{\mathcal{R}(s,a,s')} \text{ unknown, what/when are the good actions?}$
- Deep RL setting:
 - Large or continuous state space
 - Use deep neural networks to learn state representations

- Value-based RL
 - (Deep) Q-Learning, approximating $Q^*(s, a)$ with a deep Q-network (DQN)
- Policy-based RL
 - Directly approximate optimal policy π^* with a parametrized policy π^*_{θ}
- Model-based RL
 - Approximate transition function T(s',a,s) and reward function $\mathcal{R}(s,a)$
 - Plan by looking ahead in the (approx.) future!

Deep Q-Learning

- Intuition: Learn a parametrized Q-function from data $\{(s, \underline{a}, \underline{s'}, r)_i\}_{i=1}^N$
- Q-Learning with linear function approximators

$$Q(s, a; w, b) = \underline{w}_a^{\top} \underline{s} + \underline{b}_a$$

- Deep Q-Learning: Fit a deep Q-Network $\,Q(s,a; heta)\,$
 - Works well in practice
 - Q-Network can take RGB images

Image Credits: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Atari Games

- Objective: Complete the game with the highest score
- State: Raw pixel inputs of the game state
- Action: Game controls e.g. Left, Right, Up, Down
- Reward: Score increase/decrease at each time step

Figures copyright Volodymyr Mnih et al., 2013. Reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Atari Games

https://www.youtube.com/watch?v=V1eYniJ0Rnk

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Assume we have collected a dataset:

$$\{(s, a, s', r)_i\}_{i=1}^N$$

We want a Q-function that satisfies bellman optimality (Q-value)

$$Q^*(s,a) = \mathbb{E}_{s' \sim p(s'|s,a)} \left[\underline{r(s,a)} + \gamma \max_{\underline{a'}} \underline{Q^*(s',a')} \right]$$

Loss for a single data point:

$$\operatorname{MSE\ Loss} := \left(\underbrace{Q_{new}(\overline{s}, \overline{a}) - (\underline{r} + \gamma \max_{a} Q_{old}(\underline{s}', \underline{a})}_{\operatorname{Predicted\ Q-Value}} \right)^{2}$$

lacksquare Minibatch of $\{(\underline{s},a,\underline{s}',\underline{r})_i\}_{i=1}^B$

$$MSE Loss := \left(\underbrace{Q_{new}(s, a)} - \underbrace{r} + \max_{a} \underbrace{Q_{old}(s', \underline{a})} \right)^{2}$$

- In practice, for stability:
 - Freeze Q_{old} and update Q_{new} parameters
 - Set $Q_{old} \leftarrow Q_{new}$ at regular intervals

- Assuming a fixed dataset, the MSE Loss can be optimized
 - This is known as the Fitted Q-Iteration algorithm
- However...

How to gather experience or "data"?

$$\{(s, a, s', r)_i\}_{i=1}^N$$

This is why RL is hard

- What should π_{gather} be?
 - Greedy? -> Local minimas, no exploration $\arg\max_a Q(s,a;\theta)$
- An exploration strategy:
 - ϵ -greedy

$$\underline{a_t} = \begin{cases} \underset{a}{\text{arg max}} Q(s, a) & \text{with probability } 1 - \epsilon \\ \text{random action} & \text{with probability } \epsilon \end{cases} \quad \underline{\sim} \quad$$

- Samples are correlated => high variance gradients => inefficient learning
- Current Q-network parameters determines next training samples => can lead to bad feedback loops
 - e.g. if maximizing action is to move right, training samples will be dominated by samples going right, may fall into local minima

- Correlated data: addressed by using experience replay
 - ightharpoonup A replay buffer stores transitions (s,a,s^{\prime},r)
 - Continually update replay buffer as game (experience) episodes are played, older samples discarded
 - Train Q-network on random minibatches of transitions from the replay memory, instead of consecutive samples
- Larger the buffer, lower the correlation

Algorithm 1 Deep Q-learning with Experience Replay

```
Initialize replay memory \mathcal{D} to capacity N
                                                                            Experience Replay
Initialize action-value function Q with random weights
for episode = 1, M do
    Initialise sequence s_1 = \{x_1\} and preprocessed sequenced \phi_1 = \phi(s_1)
    for t = 1 T do
                                                                     Epsilon-greedy
         With probability \epsilon select a random action a_t
         otherwise select a_t = \max_a Q^*(\phi(s_t), a; \theta)
         Execute action a_t in emulator and observe reward r_t and image x_{t+1}
         Set s_{t+1} = s_t, a_t, x_{t+1} and preprocess \phi_{t+1} = \phi(s_{t+1})
         Store transition (\phi_t, a_t, r_t, \phi_{t+1}) in \mathcal{D}
         Sample random minibatch of transitions (\phi_j, a_j, r_j, \phi_{j+1}) from \mathcal{D}
        Set y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}
                                                                                                   Q Update
```

Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ according to equation 3

end for

Source: Mnih, Volodymyr, et al. "Playing atari with deep reinforcement learning."

Policy Gradients, Actor-Critic

Class of policies defined by parameters heta

$$\pi_{\theta}(a|s) : \mathcal{S} \to \mathcal{A}$$

- Eg: θ can be parameters of linear transformation, deep network, etc.

Want to maximize:
$$J(\underline{\pi}) = \mathbb{E}\left[\sum_{t=1}^{T} \mathcal{R}(s_t, a_t)\right]$$

In other words,

$$\pi^* = \arg\max_{\pi: \mathcal{S} \to \mathcal{A}} \mathbb{E}\left[\sum_{t=1}^T \mathcal{R}(s_t, a_t)\right] \longrightarrow \underline{\theta}^* = \arg\max_{\theta} \mathbb{E}\left[\sum_{t=1}^T \mathcal{R}(s_t, a_t)\right]$$

Image Source: http://karpathy.github.io/2016/05/31/rl/

Slightly re-writing the notation

Let
$$\tau=(s_0,a_0,\dots s_T,a_T)$$
 denote a trajectory
$$\pi_{\theta}(\tau)=p_{\theta}(\tau)=\underbrace{p_{\theta}\left(s_0,a_0,\dots s_T,a_T\right)}_{T}$$

$$=\underbrace{p(s_0)\prod_{t=0}^{T}p_{\theta}\left(a_t\mid s_t\right)\cdot p\left(\underline{s_{t+1}}\mid \underline{s_t},a_t\right)}_{T}$$

$$\arg\max_{\theta} \mathbb{E}_{\underline{\tau \sim p_{\theta}(\tau)}} \left[\mathcal{R}(\tau) \right]$$

$$J(\theta) = \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[\mathcal{R}(\tau) \right]$$

$$= \mathbb{E}_{a_{t} \sim \pi(\cdot|s_{t}), s_{t+1} \sim p(\cdot|s_{t}, a_{t})} \left[\sum_{t=0}^{T} \mathcal{R}(s_{t}, a_{t}) \right]$$

- How to gather data?
 - We already have a policy: π_{θ}
 - Sample N trajectories $\{ au_i\}_{i=1}^N$ by acting according to $\pi_{ heta}$

$$\approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \underline{r(s_t^i, a_t^i)}$$

- Sample trajectories $au_i = \{s_1, a_1, \dots s_T, a_T\}_i$ by acting according to $\pi_{ heta}$
- Compute policy gradient as

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i}^{N} \left[\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta} \left(a_{t}^{i} \mid s_{t}^{i} \right) \cdot \sum_{t=1}^{T} \mathcal{R} \left(s_{t}^{i} \mid a_{t}^{i} \right) \right]$$

- Update policy parameters: $heta \leftarrow heta + \alpha
abla_{ heta} J(heta)$

Slide credit: Sergey Levine

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i}^{N} \left[\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta} \left(a_{t}^{i} \mid s_{t}^{i} \right) \cdot \sum_{t=1}^{T} \mathcal{R} \left(s_{t}^{i} \mid a_{t}^{i} \right) \right]$$

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \mathbb{E}_{\tau \sim p_{\theta}(\tau)} [\mathcal{R}(\tau)]$$

$$= \nabla_{\theta} \int \pi_{\theta}(\tau) \mathcal{R}(\tau) d\tau$$

$$= \int \nabla_{\theta} \pi_{\theta}(\tau) \mathcal{R}(\tau) d\tau$$

$$= \int \nabla_{\theta} \pi_{\theta}(\tau) \mathcal{R}(\tau) d\tau$$

$$= \int \pi_{\theta}(\tau) \nabla_{\theta} \log \pi_{\theta}(\tau) \mathcal{R}(\tau) d\tau$$

$$= \mathbb{E}_{\tau \sim p_{\theta}(\tau)} [\nabla_{\theta} \log \pi_{\theta}(\tau) \mathcal{R}(\tau)]$$

Expectation as integral

Exchange integral and gradient

$$\nabla_{\theta} \log \pi(\tau) = \underbrace{\left(\frac{\nabla_{\theta} \pi(\tau)}{\pi(\tau)} \right)}_{\pi(\tau)}$$

$$\begin{split} \nabla_{\theta} J(\theta) &= \mathbb{E}_{\tau \sim p_{\theta}(\tau)} [\nabla_{\theta} \log \pi_{\theta}(\tau) \mathcal{R}(\tau)] \\ \nabla_{\theta} \left[\log_{p(s_{\theta})} + \sum_{t=1}^{T} \log \pi_{\theta}(a_{t}|s_{t}) + \sum_{t=1}^{T} \log_{p(s_{t+1}+s_{t},a_{t})} \right] & \text{Doesn't depend on Transition probabilities!} \\ &= \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \cdot \sum_{t=1}^{T} \mathcal{R}(s_{t}, a_{t}) \right] \end{split}$$

- Sample trajectories $au_i = \{s_1, a_1, \dots s_T, a_T\}_i$ by acting according to π_{θ}
- Compute policy gradient as

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i}^{N} \left[\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta} \left(a_{t}^{i} \mid s_{t}^{i} \right) \cdot \sum_{t=1}^{T} \mathcal{R} \left(s_{t}^{i} \mid a_{t}^{i} \right) \right]$$

Update policy parameters: $heta \leftarrow heta + lpha
abla_{ heta} J(heta)$

Slide credit: Sergey Levine

Slide credit: Dhruv Batra

- Credit assignment is hard!
 - Which specific action led to increase in reward
 - Suffers from **high variance**, leading to unstable training
- How to reduce the variance?
 - Subtract an action independent baseline from the reward

$$\boxed{ \nabla_{\theta} J(\theta) = \mathbb{E}_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta} \left(a_{t} \mid s_{t} \right) \cdot \sum_{t=1}^{T} \left(\mathcal{R}\left(s_{t}, a_{t} \right) - b(s_{t}) \right) \right] }$$

REINFORCE, use raw reward values

$$\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{a \sim \pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(a|s) \mathcal{R}(s, a) \right]$$

Actor-critic, use Q-values (learnt from data)

$$\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{a \sim \pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(a|s) Q^{\pi_{\theta}}(s, a) \right]$$

Advantage actor-critic, use Q minus V values (i.e. Advantage)

$$\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{a \sim \pi_{\theta}} \left[\nabla_{\theta} \log \pi_{\theta}(a \mid s) \left(Q^{\pi_{\theta}}(s, a) - V^{\pi_{\theta}}(s) \right) \right]$$