CS 4803 /7643
Deep Learning, Fall 2020

Reinforcement Learning: Module 3/3
—

Presented by Nirbhay Modhe



https://nirbhayjm.github.io/

Previous Lecture
MDPs: Value function, optimal quantities, algorithms for solving MDPs

RL: No rewards and transitions (RL), function approximation (deep RL).

Today
RL Algorithms
Overview, types of RL algorithms
Deep-Q Learning: A value based RL algorithm
Policy gradients: A policy-based RL algorithm

) Recap & Overview Gegrala |

=



Recursive Bellman expansion (from definition of Q)

—

(Expected) return fromt =0
e

o= E. > _'r(sear) | so=s,a0 =a
—_—eee t~YT (]St e
[St—l—l’vp('|5t9at) LZO 1
T — — .

o 0.
— )

-

Revisit: Deriving Optimality Equations Gegrgla |

=



RL setting:

T(s,a, s’) unknown, how actions affect the environment

/
R(s,a, s") unknown, what/when are the good actions?

—

Deep RL setting:

Large or continuous state space

=

Use deep neural networks to learn state representations

e

) Recap: Learning Based Methods Gegrala)

=



Value-based RL
(Deep) Q-Learning, approximating Q™ (s, a) with a deep Q-network (DQN)

I=—- ==

Policy-based RL
Directly approximate optimal policy 7" with a parametrized policy@

Model-based RL
> Approximate transition function 7'(s’, a, s) and reward function R(s, a)
Plan by looking ahead in the (approx.) future!

) Broad Types of RL Algorithms Georaa |

=



Deep

Q-Learning

Georgia
groia |



Intuition: Learn a parametrized Q-function from data {(S, a, S/z 7“)7; f\il

Q-Learning with linear function approx?ators ] (Q ( -ST,_, 0Lu>
Q(S, a; w, b) = w, S + ba FC-4 (Q-values)
- - E FC-256

Deep Q-Learning: Fit a deep Q-Network Q(S, a, 9)

Works well in practice 1 | |
J— —_— .—%

Q-Network can take RGB images

Image Credits: Fei-Fei Li, Justin Johnson,
Serena Yeung, CS 231n

) Deep Q-Learning Gegrala |



Atari Games

Objective: Complete the game with the highest score
State: Raw pixel inputs of the game state

Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

Figures copyright Volodymyr Mnih et al., 2013. Reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Georgia

Case study: Playing Atari Games grola |

=




Atari Games

TR

£
L

https://www.youtube.com/watch?v=V1eYniJORnk

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Georgia @1

Case study: Playing Atari Games Tech

=



https://www.youtube.com/watch?v=V1eYniJ0Rnk

Assume we have collected a dataset:

{(87 a, 8,7 T)’L}i\i

We want a Q-function that satisfies bellman optimality (Q-value)

*(s,a) = E + ymax Q*(s’, a’
—7 ¢ ES—CL) s’ ~p(s’|s,a) [._.(__——)— 7 XQ% )]
@in-l =

. . Qy,
Loss for-asigieata point: —_—

2
MSE Loss := (an (37a) — (r + ymax Qota(s', a)))
\ ) \ Y J

Predicted Q-Value Target Q-Value

) Deep Q-Learning Gegrala |



Minibatch of { (s a, s’ 7); i,

o ———

Forward pass:

State — Q-Network » Q-Values per action
BxD
Compute loss: (Qnew(37 a) — (r + 'yma:: FC-4 (Q-values) J
—— —— _———— — a —
\ ) N FC-256
9 v L‘CﬁNetwork <
new

Backward pass: 8L0 SS

aenew

) Deep Q-Learning Gegrala |

=



2
MSE Loss := | Qnew(s,a) — max Qold(sla C_Q))

a ?]

¥

In practice, for stability:

Freeze Qold and update Qnew parameters
—————

el

Set (Qpiq < (Dnew atregularintervals

L — ]

) Deep Q-Learning Gegrala |

=



Assuming a fixed dataset, the MSE Loss can be optimized
This is known as the Fitted Q-lteration algorithm

However...

How to gather experience or “data”?
/ N
{wi =1

This is why RL is hard

) Deep Q-Learning Gegrala |

=



Tgather —— Environment g Data/ {(%_,___@i_é’,}?:)z N
/ ’ £

.Sd-i S

| L U —
" Train
Update ) l

Toather ' Ttrained
v —_——————

Challenge 1: Exploration vs Exploitation

Challenge 2: Non iid, highly correlated data

How to gather experience? Gegrala)

=



What should TTgather be?

Greedy? -> Local minimas, no exploration

arg max (s, a; 0)

An exploration strategy:

e-greedy
argmax Q(s,a) with probability 1 — €
ar = & B
. random action with probability _e___] S5 > 0.

) Exploration Problem



Samples are correlated => high variance gradients => inefficient learning
— ——

Current Q-network parameters determines next training samples => can lead
to bad feedback loops

e.g. if maximizing action is to move right, training samples will be
dominated by samples going right, may fall into local minima

v start
— pi= EE———

W

=

) Correlated Data Problem Gegroia |



Correlated data: addressed by using experience replay

" /
A replay buffer stores transitions (S, a,Ss ,7“)

P

Continually update replay buffer as game (experience) episodes are
played, older samples discarded

Train Q-network on random minibatches of transitions from the repl@
memory, instead of consecutive samples

Larger the buffer, lower the correlation

) Experience Replay Gegrgla |

=



Algorithm 1 Deep Q-learning with Experience Replay
/ Initialize replay memory D to capacity N

Experience Replay

Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {x1 } and preprocessed sequenced ¢1 = ¢(s1)
fort =1 T do .
With probability € select a random action a; EpSl Ion-g reedy
otherwise select a; = max, Q*(¢(s:), a; 0)
Execute action a; in emulator and observe reward r; and image x4 1
Set 8441 = 8¢, a¢, Tt11 and preprocess ¢y 1 = P(S¢11)
Store transition (¢¢, at, r¢, Pr41) in D
Sample random minibatch of transitions (¢, a;, 7;, ¢;+1) from D

Sety; — { Tj tor terminal ¢ 1 Q Update

r; +ymaxy Q(¢jt1,a’;0) for non-terminal ¢

Perform a gradient descent step on (y; — Q(¢;, a;;6))” according to equation 3
end for
end for

Source: Mnih, Volodymyr, et al. "Playing atari with deep reinforcement learning."

) Deep Q-Learning Algorithm Gegrala |

=



Policy

Gradients,
Actor-Critic

Georgia
Toch

!



Transition and
Reward Function

Ye N
°° Known? 2
VA /
”5 Use Value/Policy < ( Estimate Transition & Estimate Q values from
Iteration L Reward Function data (DQNs, etc)
Directly Optimize
Policy v

Obtain "optimal"
policy

E — =

Overview Gegrgia |

=




Class of policies defined by parameters (9

o (als) :S—+ A

Eg: O can be parameters of linear transformation, deep network, etc.
) _
Want to maximize: ‘/’ L
J(r)=E E R(s¢, ar)
| t=1 i
In other words,
T T
Tt = ar]E ZR(St, at)] ) () = argmax E Z R(st,aq)
@ t=1 -2—- . t=1 1y

) Parametrized Policy Gegrgla |

=



raw pixels hidden layer

Pong from Pixels Gegrala)

=



forward pass R Supervised Learning
> log probabilities (correct label is provided)

-1.2 | -0.36
. block of differentiable compute | “—— —/
image (e.g. neural net) gradients —_—r
— e . - - | =
- — 1.0 0
backward pass
forward pass Reinforcement Learning
log probaYilities
12 1 -0.36 [y —— sample an action:
image block of differentiable compute -
9 (e.g. neural net)
—— ——— |

A

eventual reward -1.0

backward pass

Image Source: http://karpathy.github.io/2016/05/31/rl/

Policy Gradient: Loss Function Gegrala)

=




Slightly re-writing the notation

Let T — (So, aop,...ST, aTJJdenote a trajectory
L

79(7-) — p@@ — Po (307 ?’07 .. ST a’T)

—

— gl
— p(SO) Po (at | St) 'p(5t+1 \ Staat)
pon) [T o |20 -p (o | sy

arg max Erpo(r) [R(T)]

Gathering Data/Experience Gegrala)

=



J(@) — ETNPO (1) [R(T)]
=K

atNW('|St),8t+1NP('|8t,CLt)

ZR(st, a)

t

How to gather data?

We already have a poIiCy:

Sample N trajectories{ﬂ;}f,};\il by acting accordingto 719

Gathering Data/Experience Gegrala)

=



Sample trajectories 7, = {s1,a1,...s7,ar}; by acting according to 7g

L _J e —

Compute policy gradient as

VoJ (0 LZ ZW log g (a; | 5}) ET:R (51 | ai)

t=1

Update policy parameters: ) «— W OJ

Run the pqlicy a.nd : Computfe policy
sample trajectories gradient

t

——- Update policy

Slide credit: Sergey Levine

) The REINFORCE Algorithm Ge%%iﬁ&



VoJ(6)

=z~

N T

Z ng log ¢ (ai | S;) :

1 t=1

&

~
I
—

R(s

1
t

| a

)
t

)



)

5 T~pe<T3 @)’

,ll_____l

Expectation as integral

Exchange integral and gradient

Deriving The Policy Gradient Gegeth

&



HR(r)

Z@ J(9)4: E’T(‘\Jpe (7') [Y@ log 7T9(

- d Doesn’t depend on
(v, 11@9&&9&) +> " logmo(arls) + _demphoreriomrer )] oo raeabiiies!
t=1 t=1 —
- T )
J \t 1 \_

Deriving The Policy Gradient Gegggg&



Sample trajectories 7, = {s1, a1, ... s, ar}; by acting according to 7g

——

Compute policy gradient as

1 o
Vol (0) ~ > 1D Velogm (aj | s

A ——

Update policy parameters: ) <« 0 + oV J(Q)
‘F

Run the pqlicy a.nd : Computfe policy
sample trajectories gradient

t

——- Update policy

Slide credit: Sergey Levine

) The REINFORCE Algorithm Gegroia |

=



DOWN,_ o UP ».
>® LOSE
DOWN, o UP o LOSE:(

@

WIN

°

Slide credit: Dhruv Batra

Tech

=

Drawbacks of Policy Gradients Gegrgla |



Credit assignment is hard!
Which specific action led to increase in reward
Suffers from high variance, leading to unstable training

How to reduce the variance?

Subtract an action independent baseline from the reward

LV@J(H) = Erpy () Zve log mg (at | st) Z (st,at) §b(s¢) ]

t=1 t=1

Why does it work? ,
What is the best choice of b? Homewor

) Drawbacks of Policy Gradients Gegrala |

J




REINFORCE, use raw reward values

VodJ(m9) = Eqmr, [Vologmg(als)R(s,a)l

Actor-critic, use Q-values (learnt from data)

VoJ(m9) = Eqnr, [Vo logz@(afs)@m (s, a)]

Advantage actor-critic, use Q minus V values (i.e. Advantage)

————————
]

VGJ <7T9) — anﬁe [VQ log 779(& ’ S) (Qﬂe (87 a) — Ve (S))]

) Policy Gradient Variants Gegrala |

=



