CS 4803 /7643
Deep Learning, Fall 2020

Reinforcement Learning: Module 2/3

Presented by Nirbhay Modhe

https://nirbhayjm.github.io/

Previous Lecture
RL: Definitions, interaction API, tasks/challenges

-

MDPs: Theoretical framework underlying RL, solving MDPs

Today
Policy (continued): How an agents acts at states

-

Value function (Utility): How good is a particular state or state-action pair?

Algorithms for solving MDPs (Value lteration)

Departure from known rewards and transitions: Reinforcement Learning (RL), Deep RL

) Recap & Overview Ge%;sgﬁ&

Markov Decision Processes (MDPs) MDP

States, Actions, Reward dist., TIg_QS_i’[iCMﬁL, (3, AR, T, 7)
Discount factor (gamma)

Policy: State Action
Mapping from states to actions (deterministic) A— 2
Distribution of actions given states (stochastic) B —— 1

1 m
n=|S| n. T n. T
m = | Al
Deterministic Stochastic

) Recap: MDPs, Policy Gegrala |

=

Markov Decision Processes (MDPs) MDP

States, Actions, Reward dist., Transition dist., (3, AR, T, 7)
Discount factor (gamma)

Policy: State Action

Mapping from states to actions (deterministic) A— 2
Distribution of actions given states (stochastic)

What is a good policy?
Maximize discounted sum of future rewards _
Discount factor: 7Y v

p—

Worth Now Worth Next Step Worth In Two Steps

=

) Recap: MDPs, Policy Gegrala |

Formally, the optimal policy is defined as:

discounted sum of future rewards

*

T :argmgxl@ Z'y s

L

Solving MDPs: Optimal policy Gegrgla |

=

Formally, the optimal policy is defined as:
discounsjiof future rewards
* t
7 = arg max £ g Yore|m
7
t>0

so ~ p(80),at ~ m(:|8t),8t+1 ~ p(|8¢,a1)

Expectation over initial state, actions from policy,
next states from transition distribution

Solving MDPs: Optimal policy Gegrgla |

=

Some optimal policies for three different grid world MDPs (gamma=0.99)

Varying reward for non-absorbing states (states other than +1/-1)

| | > | | >

A Fou A 1=

\L - | | ‘
R(s) =-0.03 R(s)=-0.4 R(s) =-2.0

Image Credit: Byron Boots, CS 7641

) Optimal policy examples Gegrala |

=

For example, with an MDP with 5 states as shown, starting at the middle cell:

-)

% i

Actions: (Right, Left)
Deterministic transitions
What is the optimal policy for:

v=1
—_— \0
v=0.1"

Slides adapted from: Byron Boots, CS 7641

=

) Discounting future rewards Gegrala)

A value function is a prediction of discounted sum of future reward

e

State value function / V-function/ V : S j R)

How good is this state?

Am | likely to win/lose the game from this state?

State-Action value function / Q-function/ Q@ : S x A - R
How good is this state-action pair?
In this state, what is the impact of this action on my future?

) Value Function Gegrgia |

=

For a policy that produces a trajectory sample (sq, ag, S1,G1,52)

Ep— —

The V-function of the policy at state s, is the expected cumulative reward
from state s:

i i vy
VE(s) =E | D y'rilso = s.m -
_tZO -
so ~ p(so) »Mﬂﬁ)astﬂ NP(‘|3t,a_)

- ——

) Value Function Georgia &

For a policy that produces a trajectory sample (sq, ag, S1,G1,52)

The Q-function of the policy at state s and action a, is the expected
cumulative reward upon taking action a in state s (and following policy

thereafter):
)
QW(\&&[J 77“75!80—8 ag = a,m /\
-F ; S\ N
3 !

So ~ p(80),at ~ 7 (:[8t),8t41 ~ P (|8, at)

(s,
@s d) >
Q1)

) Action-Value Function Gegrala |

The V and Q functions corresponding to the optimal policy 7T *

) Optimal V & Q functions Gegrala |

=

Recursive Bellman expansion (from definition of Q)

(Expected) return fromt =0

Q*<S,CL> — a WI*E(150) Zwtr(st,at) ‘ Sop = S,ap0 = a
T (]St
st41~p(-|st,at) t20

(Reward att = 0) + gamma * (Return from expected state at t=1)

='r(s,a)+ |, E |y E 1Yy (s ar) s =
sop(lsa) | arvm (s |
St+1Np('|St,at) -

=r(s,a)+y, E [V'(s)]

s'~p(s']s;a)

= E = [r(s,a) +9V7(s)]

s'~p(s']s,a)

Bellman Optimality Equations Gegrala |

=

Equations relating optimal quantities

N V*(s) = max 9*(3, a)

TE—

—

p——

VY
Recursive Bellman optimality equation S

v
Q)= E [r(s,a)+vi(s)] bl

—_— s'~p(s’']s,a)

=Y p(|0 r(s.0) +9V ()] o2 /I Nt

Sl

_Zp (s | s,a [MqtymaxQ);]

(s'|s,a)[r r(sq@) + V" (s
‘ J

Bellman Optimality Equations Gegrgla |

Techl|

Based on the bellman optimality equation

maXZp "Is,a) [r(s a)‘l“’YV*(9l

—_——
Algorithm
Initialize values of all states _}:_)4 ﬂ‘ \/ C§> \/O /?k

While not converged:

- .
For each state: 1711 (s) p(8’|s,a) [7(s,a) + vV (s')]

—7 '_/’)—’—\J \s’ ——L__'/; s
Repeat until convergence (no change in values) " Homework
Visvisvis ooV —H/"‘)E(7a 2

) 112
Time complexity per iteration O(|S|2 |~A|) 0

= — 7/
) Value Iteration Ge‘%é%‘ﬁ&

Value lteration Update: \/ [57 :W @(&_,44)

| J/.
Vi(s) Zp(s’]s,a) 7 (s, a)=—|— vyz(s’)}

S)

Q-lteration Update:)/

Q"' (s,a) +

) Q-lteration Gegrgia |

=

Policy iteration: Start with arbitrary 777 and refine it.

jm%@—) .. —=at @ﬁ(é,%

Involves repeating two steps: \/‘

s
Policy Evaluation: Compute @(’siﬁilar to Value lteration) %
—_ -

Pollcy Refinement: Greedlly change actions as per ‘/O(SD

-6

@’% v N7 —>@—> “ —(m*)— ©

) nx L SV¥
—_— 7 —

k . *
TT; often convergesto 7T much soonerthan /™% to /™

Why do policy iteration?

—

) POIicy Iteration Gegr;gclﬁgh

For Value lteration:

b
Time complexity per iteration O(|S|2 |,A|)

3x4 Grid world? 12 L

=

|20
Chess/Go?<—) @ —_

Atari Games with integer image pixel values [0, 255] of S|zee 16x16 as state?
16x16& =

D 256

) State Spaces & Time Complexity Gegrala |

ecC

Value Iteration

Bellman update to state value estimates

Q-Value lteration

Bellman update to (state, action) value estimates

Policy Iteration

Policy evaluation + refinement

Summary: MDP Algorithms Gegrala |

=

Reinforcement

Learning,
Deep RL

Georgia
grgia |

Recall RL assumptions:

T(s,a, s’) unknown, how actions affect the environment.

—
R
/

/
R(s,a, s") unknown, what/when are the good actions?

)

But, we can learn by trial and error.
Gather experience (data) by performing actions.

Approximate unknown quantities from data.

Reinforcement Learning}

Learning Based Methods: RL Gegrala)

=

Old Dynamic Programming Demo
https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld dp.html

RL Demo
https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld td.html

Slide credit: Dhruv Batra

Learning Based Methods: RL Gegrala)

=

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html
https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.html

In addition to not knowing the environment, sometimes the state space is too
large.

Recall: Value iteration not scalable (chess, RGB images as state space, etc)

Solution: Deep Learning! ... more precisely, function approximation.
F — — ——
Use deep neural networks to learn state representations
Useful for continuous action spaces as well

Deep Reinforcement Learning

Georgia 6]

=

Learning Based Methods: Deep RL Tech

In today'’s class, we looked at
Dynamic Programming for solving MDPs
Value, Q-Value lteration
Policy lteration

Reinforcement Learning (RL)
The challenges of (deep) learning based methods

Next class:
Value-based RL algorithms
Deep Q-Learning
Policy-based RL algorithms (policy gradients)

) Summary Gegrala |

=

