CS 4803 / 7643 Deep Learning, Fall 2020

Reinforcement Learning: Module 2/3

Presented by Nirbhay Modhe

Previous Lecture

- RL: Definitions, interaction API, tasks/challenges
- MDPs: Theoretical framework underlying RL, solving MDPs

Today

- Policy (continued): How an agents acts at states
- Value function (Utility): How good is a particular state or state-action pair?
- Algorithms for solving MDPs (Value Iteration)
- Departure from known rewards and transitions: Reinforcement Learning (RL), Deep RL

$$\mathsf{MDP} \\ (\mathcal{S}, \mathcal{A}, \mathcal{R}, \mathbb{T}, \gamma)$$

- Policy:
 - Mapping from states to actions (deterministic)
 - Distribution of actions given states (stochastic)

State	Action
Α —	→ 2
в —	→ 1

$$n=|\mathcal{S}|$$
 n π n π n π Deterministic Stochastic

- Markov Decision Processes (MDPs)
 - States, Actions, Reward dist., Transition dist.,
 Discount factor (gamma)

 $\mathsf{MDP} \\ (\mathcal{S}, \mathcal{A}, \mathcal{R}, \mathbb{T}, \gamma)$

- Policy:
 - Mapping from states to actions (deterministic)
 - Distribution of actions given states (stochastic)

State	Action
Α —	→ 2
в —	→ 1

- What is a good policy?
 - Maximize discounted sum of future rewards
 - Discount factor: γ

Worth In Two Steps

Formally, the optimal policy is defined as:

Formally, the optimal policy is defined as:

Expectation over initial state, actions from policy, next states from transition distribution

- Some optimal policies for three different grid world MDPs (gamma=0.99)
 - Varying reward for non-absorbing states (states other than +1/-1)

Image Credit: Byron Boots, CS 7641

For example, with an MDP with 5 states as shown, starting at the middle cell:

- Actions: (Right, Left)
- Deterministic transitions
- What is the optimal policy for:

$$\gamma = 1$$

$$\gamma = 0.1$$

Slides adapted from: Byron Boots, CS 7641

- A value function is a prediction of discounted sum of future reward
- State value function / **V**-function / $V: \mathcal{S} \rightarrow \mathbb{R}$
 - How good is this state?
 - Am I likely to win/lose the game from this state?
- **State-Action** value function / **Q**-function / $Q: \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$
 - How good is this state-action pair?
 - In this state, what is the impact of this action on my future?

- For a policy that produces a trajectory sample $(s_0, a_0, s_1, a_1, s_2 \cdots)$
- The V-function of the policy at state s, is the expected cumulative reward from state s:

$$V^{\overline{\sigma}}(s) = \mathbb{E}\left[\sum_{t\geq 0} \gamma^t r_t | s_0 = s, \pi\right]$$
 $s_0 \sim p\left(s_0\right), a_t \sim \pi \mathcal{N}\cdot |s_t|, s_{t+1} \sim p\left(\cdot |s_t|, a_t\right)$

- For a policy that produces a trajectory sample $(s_0, a_0, s_1, a_1, s_2 \cdots)$
- The **Q-function** of the policy at state **s** and action **a**, is the expected cumulative reward upon taking action **a** in state **s** (and following policy thereafter):

$$Q^{\pi}(s, \underline{a}) = \mathbb{E}\left[\sum_{t\geq 0} \gamma^t r_t | s_0 = s, a_0 = a, \underline{\pi}\right]$$

$$s_0 \sim p\left(s_0\right), a_t \sim \pi\left(\cdot | s_t\right), s_{t+1} \sim p\left(\cdot | s_t, a_t\right)$$

- The V and Q functions corresponding to the optimal policy π^{\star}

$$V^*(s) = \mathbb{E}\left[\sum_{t \geq 0} \gamma^t r_t | s_0 = s, \underline{\pi}^*
ight]$$

$$Q^*(s,a) = \mathbb{E}\left[\sum_{t\geq 0} \gamma^t r_t | s_0 = s, a_0 = a, \pi^*\right]$$

Recursive Bellman expansion (from definition of Q)

$$\begin{aligned} Q^*(s,a) &= \underset{\substack{a_t \sim \pi^*(\cdot|s_t)\\ s_{t+1} \sim p(\cdot|s_t,a_t)}}{\mathbb{E}} \left[\sum_{t \geq 0} \gamma^t r(s_t,a_t) \mid s_0 = s, a_0 = a \right] \\ & \text{(Reward at t = 0) + gamma * (Return from expected state at t=1)} \\ &= \gamma^0 r(s,a) + \underset{\substack{s' \sim p(\cdot|s,a)\\ s' \sim p(s'|s,a)}}{\mathbb{E}} \left[\gamma \underset{\substack{a_t \sim \pi^*(\cdot|s_t)\\ s_{t+1} \sim p(\cdot|s_t,a_t)}}{\mathbb{E}} \left[\sum_{t \geq 1} \gamma^{t-1} r(s_t,a_t) \mid s_1 = s' \right] \right] \\ &= r(s,a) + \gamma \underset{\substack{s' \sim p(s'|s,a)\\ s' \sim p(s'|s,a)}}{\mathbb{E}} \left[V^*(s') \right] \\ &= \underset{\substack{s' \sim p(s'|s,a)\\ s' \sim p(s'|s,a)}}{\mathbb{E}} \left[r(s,a) + \gamma V^*(s') \right] \end{aligned}$$

Equations relating optimal quantities

$$V^*(s) = \max_{\underline{a}} Q^*(s, \underline{a})$$

$$\underline{\pi^*(s)} = \arg\max_{\underline{a}} \underline{Q^*(s, a)}$$

Recursive Bellman optimality equation

$$Q^*(s,a) = \underset{s' \sim p(s'|s,a)}{\mathbb{E}} [r(s,a) + \gamma V^*(s')]$$

$$= \sum_{s'} p(s'|s,a) [r(s,a) + \gamma V^*(s')]$$

$$= \sum_{s'} p(s'|s,a) \left[\underline{r(s,a)} + \gamma \max_{a} Q^*(s',a') \right]$$

$$V^*(s) = \max_{a} \sum_{s'} p(s'|s,a) [r(s,a) + \gamma V^*(s')]$$

Based on the bellman optimality equation

$$V^*(s) = \max_{a} \sum_{s'} p\left(s'|s,a\right) \left[r(s,a) + \gamma V^*\left(s'\right)\right]$$

- Algorithm
- \triangleright Initialize values of all states $n \times 1$

- While not converged:
 - For each state: $V^{i+1}(s) \leftarrow \max_{a} \sum_{s'} p(s'|s,a) \left[r(s,a) + \gamma V^{i}(s') \right]$
- Repeat until convergence (no change in values)

$$V^0 \to V^1 \to V^2 \to \cdots \to V^i \to \cdots \to V^*$$

Time complexity per iteration $O(|\mathcal{S}|^2|\mathcal{A}|)$

Value Iteration Update:

$$\underbrace{V^{i+1}(s)}_{a} \leftarrow \underbrace{\max_{s'}}_{s'} p(s'|s,a) \left[r(s,a) + \gamma V^{i}(s')\right]$$

Q-Iteration Update:

$$Q^{i+1}(s,\underline{a}) \leftarrow$$

Policy iteration: Start with arbitrary π_0 and refine it.

$$(\pi_0) \rightarrow \pi_1 \rightarrow \pi_2 \rightarrow \dots \rightarrow \pi^*$$

- Involves repeating two steps:
 - Policy Evaluation: Compute V^{π} (similar to Value Iteration)
 - Policy Refinement: Greedily change actions as per $\sqrt[t]{\pi}$

For Value Iteration:

Time complexity per iteration
$$O(|\mathcal{S}|^2|\mathcal{A}|)$$

- 3x4 Grid world?
- Chess/Go?

 ✓ | 120
- Atari Games with integer image pixel values [0, 255] of size 16x16 as state?

- Value Iteration
 - Bellman update to state value estimates
- Q-Value Iteration
 - Bellman update to (state, action) value estimates
- Policy Iteration
 - Policy evaluation + refinement

Reinforcement Learning, Deep RL

- Recall RL assumptions:
 - $lacktriangleq \mathbb{T}(s,a,s')$ unknown, how actions affect the environment.
 - $\mathcal{R}(s,a,s')$ unknown, what/when are the good actions?
- But, we can learn by trial and error.
 - Gather experience (data) by performing actions.
 - Approximate unknown quantities from data.

Reinforcement Learning

- Old Dynamic Programming Demo
 - https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html
- RL Demo
 - https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.html

Slide credit: Dhruv Batra

- In addition to not knowing the environment, sometimes the state space is too large.
- Recall: Value iteration not scalable (chess, RGB images as state space, etc)
- Solution: Deep Learning! ... more precisely, function approximation.
 - Use deep neural networks to learn state representations
 - Useful for continuous action spaces as well

Deep Reinforcement Learning

In today's class, we looked at

- Dynamic Programming for solving MDPs
 - Value, Q-Value Iteration
 - Policy Iteration
- Reinforcement Learning (RL)
 - The challenges of (deep) learning based methods

Next class:

- Value-based RL algorithms
 - Deep Q-Learning
- Policy-based RL algorithms (policy gradients)

