CS 4803 / 7643: Deep Learning

Topics:

— Wral Networks (RNNSs)
— (Truncated) BackProp Through Time (BPTT)

— LSTMs

Dhruv Batra
Georgia Tech
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Administrativia

« HW3 Reminder

— Due: 10/07 11:59pm

— Theory: Convolutions, Representation Capacity, Double
Descent

— Implementation: Saliency methods (e.g. Grad-CAM) in
Python and PyTorch/Captum

* Project Teams

— https://gtvault-
my.sharepoint.com/:x:/g/personal/dbatra8 gatech edu/EY4
65X0OzWIOkXSSz2WagpoUBY8ux2gY9PsRzR6KngllIFEQ?e=
AtnKWI

— Project Title
— 1-3 sentence project summary TL;DR
— Team member names
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https://gtvault-my.sharepoint.com/:x:/g/personal/dbatra8_gatech_edu/EY4_65XOzWtOkXSSz2WgpoUBY8ux2gY9PsRzR6KnglIFEQ?e=4tnKWI

Administrativia

« Guest Lecture: Arjun Majumdar
— Next class (10/8)
— Transformers, BERT, VILBERT
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https://arjunmajum.qgithub.io/
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https://arjunmajum.github.io/

Recap from last time
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-
New Topic: RNNs

one to one one to many many to one many to many many to many

INFINITE RECURSION

INFINITE RECURSION

INFINITE RECURSION

INFINITE RECURSION

YOu GOTTA KNOW WHEN TO QUIT

INFINITE RECURSION

You GOTTA KNOW WHEN TO QUIT

INFINITE RECURSION

(C) Dhruv Batra YOou GOTTA KNOW WHEN TO QUIT 5




W%wdw New Words

* Recurrent Neural Networks (RNNs)

. ﬁEQQESLVQ Neural Networks

— General family; think graphs instead of chains

T_y\g es:

“Vanilla”RNNs (Elman Networks)
— Long Short Term Memory (LSTMSH
— Gated Recurrent Units (GRUS)}

« Algorithms
— BackProp Through Time (BPTT)]
— BackProp Through Structure (BPTS)
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What's wrong with MLPs?

 Problem 1: Can’t model sequences]
— Fixed-sized Inputs & Outputs
— No temporal structure

* Problem 2: Pure feed-forward processinﬂ

— No “memory”, no feedback

/D y 6/&CY

Hidden Layers
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Why model sequences?

e be e
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Sequences are everywhere...

FW M/@/ =l FOREIGN MINISTER.

w& —)  THE SOUND OF

©=2 =0 a3=1 =3 a;=4 =2 ;=5
x = bringen sie bitte das auto zuriick

A/

= please return the car
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Sequences in Input or Output?

* It's a spectrum...

one to one one to many

2a B B
Input: No _
sequence Input: No sequence
Output: No Output: Sequence
sequence Example:
Example: Im2Caption
“standard”

classification /

regression
problems

(C) Dhruv Batra

many to one many to many many to many

— e — = s -
Input: Sequence Input: Sequence
Output: No Output: Sequence
PR
sequence Example: machine translation, video classification,
Example: sentence video captioning, open-ended question answering
classification,

multiple-choice
question answering

10



2 Key |ldeas

— in computation graphs = adding gradients

.[Parameter Sharing
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Computational Graph




2 Key |ldeas

« Parameter Sharing
— in computation graphs = adding gradients

-[“Unrolling”

— in computation graphs with parameter sharing
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How do we model sequences?

* No input




How do we model sequences?

* With inputs
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-
2 Key |ldeas

—~
« Parameter Sharing

— in computation graphs = adding gradients

-

* “Unrolling”
— in computation graphs with parameter sharing

« Parameter sharing + Unrolling
— Allows modeling arbitrary sequence lengths!
— Keeps numbers of parameters in check
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Recurrent Neural Network

3 -

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Recurrent Neural Network

usually want to
predict a vector at
some time steps

ot — (R o
T - | I
QW?W

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Recurrent Neural Network

We can process a sequence of vectors x by
applying a recurrence formula at every time step:

)= Ful(Pe i )

new state / old state input vector at T
some time step
some function - —

| <

with parameters W

Y = Fro(he)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Recurrent Neural Network

We can process a sequence of vectors x by
applying a recurrence formula at every time step:

hy = fw (ht—h wt)

e—

T
-

of parameters are used at every time step.

ﬁotice: the same function and the same sej

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Pl BN o) o2 PUYrl hy)
(Vanilla) Recurrent Neural Network

The state consists of a single “hidden” vector h:

Sefylmox
— ~
S eonel” EZCW@& + by

f
m> fW ht 1751315
I \

® 2> hy = tanh(Whnhe—1 1.+ We gfﬂ?t

L=,4=L —

h, e~
L er @m N @

Sometimes called a “Vanilla RNN” or an “Elman RNN” ’é’l‘érProf J y'ETman
Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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RNN: Computational Graph

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




RNN: Computational Graph

h0_>fW _>h1_>fW _>h2_>fW _>h;>,_> _’hT
X1 X2 X3

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



RNN: Computational Graph

Re-use the same weight matrix at every time-step

h0_>fW _>h1_>fW _>h2_>fW _>h;>,_> _’hT
X1 X2 X3
W

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



RNN: Computational Graph: Many@&llarﬁ'y//2

i L]
ho > fyy ™1 hy W
?A B
X1 X2
W
é

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



RNN: Computational Graph: Many to One

h0_>fW _>h1_>fW _>h2_>fW _>h;>,_> _’hT
X1 X2 X3
W i

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



RNN: Computational Graph: One to Many
/ /

157
yr‘é& ' yo 2" Y3 yr

—3 ] T

ho—»]‘;Wl h; fW hz—»fW—>h3—>“.—>hT
W/AL

"J\“}

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Sequence to Sequence: Many-to-one + one-to-many

ne to many: Produce output

sequence from single input vector

Many to one: Encode input
sequence in a single vector

y;z__
T

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Plan for Today

« Recurrent Neural Networks (RNNs)
— Example Problem: (Character-level) Language modeling
— Learning: (Truncated) BackProp Through Time (BPTT)
— Visualizing RNNs
— Example: Image Captioning
— Inference: Beam Search
— Multilayer RNNs
— Problems with gradients in “vanilla” RNNs
— LSTMs (and other RNN variants)
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Language Modeling

| of-brt
 Given a dataset, build an accurate model:

[Bs: ¥ --y1) o

fe)(‘lg,_, ;1_. - - 'gi'tB

i The next word | O v

G from on it $
~ 1 2 3 4 5 6 7 , 8 9 0
~ \AZ ~ - + s 1 1 ~ ~

(C) Dhruv Batra Image Credit: https://ofir.io/Neural-Language-Modeling-From-Scratch/ 30



P(“j; j—r} = ‘)éb)>| {2; ):j‘> 2 F(j{.'jl—-ﬂ-t) :

\/—V
P - ¢ Imof A,
Example: (M> Sw‘
Character-level
anguage Model
Vocabulary: > ) h,
[h!_e,lag] =
—— /]\
Example training e 3 ;
Sequence: input layer 8 (1)6— (1) ?(\
Fhf-‘“Q”, | | 0 0 0 0
- input chars: ‘rl_ i ‘Iz i
. M
v
€20,1

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Example:
Character-level

he = tanh(Wpnhe—1 + Wepxs + bn)

Language Model

>
> &

input chars:

Vocabulary: ) 03] |10
idden layer || -0.1 » 0.3

[h,e,l,0] he© 09| 0.1
- ™

Example training : 5
sequence: input layer gz !
“hello” L 0
o

M\

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

\

0.1
-0.5
-0.3

W_hh| -

| - [ .




gt

o =%,
Y% 47
—
target chars: "¢’ I I “0”
Example: 05 0.1 02
Character-level ouputiaver 281 ioll  [ge| |01
Language Model s 5| RCA g Cir gy ¥l
T e
vocabulary: waen oy | 531 59 | G [ 92
[h,e,l,0] 0.9 0.1 0.3 0.7
» b we
Example training 1 0 0 0
Sequence: input layer 8 (1) (1) (1)
{3 L) 0 0 0 0
he' IO input chars:  “h” ﬁ bl “I
Y %

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Chaa

rox_enmbadiig

Example:

Character-level

[T

Language Model

Vocabulary:

[h,e,l,0]

hidden layer

Example training

sequence:
“hello”

input layer

input chars:  “h”

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

0.3

-0.1

0.9

1
0
0
0
h

A4

Y

0.1

-0.5
-0.3

hy = tanh(Wphe—1 + thCEt th\)

W_hh

2 e/R

<~ |loaoco

>0S

heR

-0.3

07

W_xh

0
0
1
0
I



—
Distributed Representations Toy Example

 Local vs Distributed

! b d g
wopaen O O O O

a @000 o

J==1e] Jele ,

‘() coeo

l> 000®
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—
Distributed Representations Toy Example

« Can we interpret each dimension?

(a) (b)

no pattern O O O O no pattern

@000
o] JYele

) coceo )

S 0000 O
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Power of distributed representations!

lecal @ @ O @ =VR+HR+HE = ?
Distributed ‘ ‘ O ’ = V+H+E = O

(C) Dhruv Batra 37
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¥ .
Example:

Character-level
Language Model

Vocabulary:
[h,e,l,0]

Example training
sequence:
“hello”

L

==

target charsy ‘e’ r
g( 1.0 0.5
2.2 0.3
output layer 30 1.0
4.1 | 12
0.3 140
hidden layer | -0.1 » 0.3
0.9 0.1
1 0
: 0 1
t

input layer 0 0
0 0
input chars:  “h” ‘e
>

- \,8%

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

0.1 0.2
05 -1.5
1.9 -0.1
-1.1 2.2
T TW_hy
0.1 W hh -0.3
> -0.5 — 0.9
-0.3 (047
T TW_xh
0 0
0 0
1 1
0 0
HI" “IU
Ry
~ 3t
ye



Training TlmejI\/ILE;/ “Teacher Forcmg‘

Pbb 373 r‘ P('j-k ) I -j; l>

target chars: "€’

=
Example 1.0 0.5
Character-level output layer | %% P
Language Model - st L
w ]
VocabUIary: hidden layer .(()):2 > g)g
[h,e,l,0] 0.9 0.1
Example training : 5
sequence: input ayer | o !
{3 L) 0 0
hEI IO input chars:  “h” et
X

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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R EEEEEEEE—————
Test Time: Sample / Argmax / Beam Search

Example: sample -2
Character-level o
Soft .
Language Model Y
Sampling o4
output layer _%-%(/
S\ 41
Vocabulary: T
[h,e’I’O] hidden Jayer .(()):: -
t’ty e
At test-time sample I
characters one at a nputlayer | O
time, feed back to N
model =

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



- ______________________________________________________
Test Time: Sample

Example: Sample ;ﬁf:\
Character-level 03
Soft
Language Model T
. A
Sampling o
output layer _23%
4.1
Vocabulary: T
[h ’e ) I ’O] hidden layer .(())::
0.9
At test-time sample I .
characters one at a input layer | 0 d
time, feed back to S \'(’
model =

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



- ______________________________________________________
Test Time: Sample

Example: Sample f\\ a
Character-level 03 ||| 2
Soft | |
Language Model R A A
. A A
Sampling ]| [os
output layer _23% 3%
4.1 12
Vocabulary: T ]
[h,e,I,O] hidden layer (()):: > (1)2 —
0.9 0.1
At test-time sample I l
characters one at a inputlayer | |
time, feed back to NP, - \'(’
model

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Test Time: Sample

R

Example:
Character-level
Language Model
Sampling

Vocabulary:
[h,e,l,0]

At test-time sample
characters one at a
time, feed back to
model

Sample

Softmax

output layer

hidden layer | -

input layer

input chars:

“e”
.03 A1 A1
A3 A7 .02
.00 .68 .08
.03 79
A A A
1.0 0.1 0.2
22 0.5 15
-3.0 1.9 0.1
4.1 1.1 29
| T [ w_hy
0.3 1.0 0.1 |wlhnl 03
0.1 0.3 0.5 ——| 0.9
0.9 0.1 e 0.7
| T T v
1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 0
h “e” i “
— :

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Lets do Monday.

Monday works

Either day works

for me. for me.
—_— — e —
« 1S N =
Reply Reply all Forward
—




Forward through entire sequence to

BaCkp ropq&at|on th roug hilme compute loss, then backward through

entire sequence to compute gradient

Loss

-
o

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Truncated Backpropagation through time

Loss

TN

== \

Run forward and backward
through chunks of the
sequence instead of whole
sequence

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Truncated Backpropagation through time

Pl

Loss

RN

\

/N

Carry hidden states
forward in time forever,
but only backpropagate
for some smaller
number of steps

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Truncated Backpropagatior:2 t\hrough time L_@

N
S U S RS B

; 2B/
U/b /Y\&)/ :{ s W Vl
- Y W —
r T T o

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



THE SONNETS

by William Shakespeare

From fairest creatures we desire increase,
That thereby beauty's rose might never die,
But as the riper should by time decease,
His tender heir might bear his memory:
But thou, contracted to thine own bright eyes,
Feed'st thy light's flame with self-substantial fuel,
Making a famine where abundance lies,
Thyself thy foe, to thy sweet self too cruel:
Thou that art now the world's fresh ornament,
And only herald to the gaudy spring,
Within thine own bud buriest thy content,
And tender churl mak'st waste in niggarding:
Pity the world, or else this glutton be,
To eat the world's due, by the grave and thee.

‘When forty winters shall besiege thy brow,
And dig deep trenches in thy beauty's field,
Thy youth's proud livery so gazed on now,
Will be a tatter'd weed of small worth held:
Then being asked, where all thy beauty lies,
Where all the treasure of thy lusty days;
To say, within thine own deep sunken eyes,
Were an all-eating shame, and thriftless praise.
How much more praise deserv'd thy beauty's use,
If thou couldst answer 'This fair child of mine
Shall sum my count, and make my old excuse,'
Proving his beauty by succession thine!
This were to be new made when thou art old,
And see thy blood warm when thou feel'st it cold.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



A 3
. . _gyntdfiqfhatawiaoihrdemot_,lytdws__g=itfti, astai f ogoh eoase rrranbyne 'nhthnee e
at flrSt- plia tklrgd t o idoe ns,smtt h ne etie h,hregtrs nigtike,aoaenns 1lng

¢ train more

———— =

—Tmont thithey.' fomesscerliund_

Keushey._Thom here
sheulke, anmerenith ol sivh I lalterthend Bleipile shuwy fil on aseterlome

coaniogennc Phe lism thond hon at. MeiDimorotion in ther thize."

¢ train more

Aftair fall unsuch that the hall for Prince Velzonski's that me of
her hearly, and behs to so arwage fiving were to it beloge, pavu say falling misfort
how, and Gogition is so overelical and ofter.

L ¢ train more
“Why do what that day," replied Natasha, and wishing to himself the fact the
princess, Princess Mary was easier, fed in had oftened him.
Pierre aking his soul came to the packs and drove up his father-in-law women.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



PANDARUS :ZD
Alas, I think he shall be come approached and the day
/_".— —

When little srain would be attain'd into being never fed,
And who is but a chain and subjects of his death,
I should not sleep.

Second Senator:

They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish
The earth and thoughts of many states.

DUKE VINCENTIO:
Well, your wit is in the care of side and that.

Second Lord:

e ————

They would be ruled after this chamber, and

my fair nues begun out of the fact, to be conveyed,

Whose noble souls I'll have the heart of the wars.

Clown:
Come, sir, I will make did behold your worship.

VIOLA- K/

I'll drink it.

VIOLA:

Why, Salisbury must find his flesh and thought

That which I am not aps, not a man and in fire,

To show the reining of the raven and the wars

To grace my hand reproach within, and not a fair are hand,
That Caesar and my goodly father's world;

When I was heaven of presence and our fleets,

We spare with hours, but cut thy council I am great,
Murdered and by thy master's ready there

My power to give thee but so much as hell:

Some service in the noble bondman here,

Would show him to her wine.

KING LEAR:

0, if you were a feeble sight, the courtesy of your law,
Your siéﬁf—;nd several breath, will wear the gods

With his heads, and my hands are wonder'd at the deeds,
So drop upon your lordship's head, and your opinion
Shall be against your honour.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



The Stacks Project: open source algebraic geometry textbook

2 The Stacks Project
home about tagsexplained taglookup browse search bibliography recentcomments blog add slogans
Browse chapters Parts
1. Preliminaries
Part Chapter online TeXsource view pdf 2. Schemes
Preliminaries 3. Topics in Scheme Theory
1. Introduction online tex()  pdf > 4. Algebraic Spaces
: ; 5. Topics in Geometry
2. Conventions onI!ne tex() pdf > 6. Deformation Theory
3. SetTheory online tex()  pdf > 7. Algebraic Stacks
4. Categories online tex() pdf > 8. Miscellany
5. Topology onI!ne tex() pdf > Statistics
6. Sheaves on Spaces online tex() pdf >
7. Sites and Sheaves online tex() pdf > The Stacks project now consists of
8. Stacks online tex()  pdf > o 455910 lines of code
9. Fields online tex() pdf > o 14221 tags (56 inactive tags)
10. Commutative Algebra online tex() pdf > o 2366 sections

Latex SO u rce http://stacks.math.columbia.edu/
——_’/_\ The stacks project is licensed under the GNU Free Documentation License

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


http://stacks.math.columbia.edu/
https://github.com/stacks/stacks-project/blob/master/COPYING

4 ¥

Eor @,.=1 . Where £,,, =0 _hence we can find a closed subset HinH and
any setSFon X, U is a closed immersion of S, then U — T is a separated algébraic
space.

Proof. Proof of (1). It also start we get
—

S=Spec(R)=U xx U xxU
and the comparicoly in the fibre product covering we have to prove the lemma
generated by [[Z xy U — V. Consider the maps M along the set of points
Schypps and U — U is the fibre category of S in U in Section, ?? and the fact that

any U affine, see Morphisms, Lemma ??. Hence we obtain a scheme S and any
open subset W C U in Sh(G) such that Spec(R’) — S is smooth or an

U= U U i XS; U, i
which has a nonzero morphism we may assume that f; is of finite presentation over
S. We claim that Oy, is a scheme where z,2’, 5" € S’ such that Ox ,» — O, _, is
separated. By Algebra, Lemma ?? we can define a map of complexes GLg/ (2" /8<

and we win.

To prove study we see that F|y is a covering of A”, and 7T; is an object of Fx s for
i > 0 and F, exists and let F; be a presheaf of Ox-modules on C as a F-module.
In particular F = U/F we have to show that

‘]’\7. =1I° ®Spcc(k) OS.S = l}lf)
is a unique morphism of algebraic stacks. Note that

Arrows = (Sch/S) 7o ¢, (Sch/S) fpps

and

V =T(S,0) — (U,Spec(A))

is an open subset of X. Thus U is affine. This is a continuous map of X is the

inverse, the groupoid scheme S.
iProof. See discussion of sheaves of sets. \ O

The result for prove any open covering follows from the less of Example ??. It may
replace S by Xpaces,étale Which gives an open subspace of X and T' equal to Sz,
see Descent, Lemma ??. Namely, by Lemma ?? we see that R is geometrically
regular over S.

Lemma 0.1. .Assume (3) and (3) by the construction in the description.

Suppose X = lim |X| (by the formal open covering X and a single map Proj y(A) =
Spec(B) over U compatible with the complex

Set(A) = T(X, Ox.0y)-

LVhen in this case of to show that Q — Cz/x is stable under the following result
n the second conditions of (1), and (3). This finishes the proof. By Definition 7?7
without element is when the closed subschemes are catenary. If T is surjective we
may assume that T is connected with residue fields of S. Moreover there exists a
closed subspace Z C X of X where U in X' is proper (some defining as a closed
subset of the uniqueness it suffices to check the fact that the following theorem

(1) f is locally of finite type. Since S = Spec(R) and Y = Spec(R).

roof. This is form all sheaves of sheaves on X. But given a scheme U and a
surjective étale morphism U — X. Let UNU = [],_, Ui be the scheme X over
at the schemes X; — X and U = lim; Xj. O

The following lemma surjective restrocomposes of this implies that F,, = F,, =

Let X be a locally Noetherian scheme over S, E = Fxg. Set T =
ince I™ C I™ are nonzero over ig < p is a subset of Jp 00 Ay works.

In Situation 7?7. Hence we may assume q' = 0.

Proof. We will use the property we see that p is the mext functor (??). On the

other hand, by Lemma ?? we see that
D(Ox+) = Ox(D)

where K is an F-algebra where 4,4, is a scheme over S.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




—

Proof. Omitted. O

Lemma 0.1. Let C be a set of the construction.
Let C be a gerber covering. Let F be a quasi-coherent sheaves of O-modules. We
have to show that

Ooy = Ox(L)

Proof. This is an algebraic space with the composition of sheaves F on Xy 4. we
have

Ox(F) = {morphy xo, (G,F)}
where G defines an isomorphism F — F of O-modules. O
Lemma 0.2. This is an integer Z is injective.

Proof. See Spaces, Lemma ?7. O

Lemma 0.3. Let S be a scheme. Let X be a scheme and X is an affine open
covering. Let U C X be a canonical and locally of finite type. Let X be a scheme.
Let X be a scheme which is equal to the formal complex.

The following to the construction of the lemma follows.
Let X be a scheme. Let X be a scheme covering. Let

b: X =Y 2Y2Y>Y xxY X
be a morphism of algebraic spaces over S and Y .

Proof. Let X be a nonzero scheme of X. Let X be an algebraic space. Let F be a
quasi-coherent sheaf of Ox-modules. The following are equivalent

(1) F is an algebraic space over S.

(2) If X is an affine open covering.

Consider a common structure on X and X the functor Ox(U) which is locally of
finite type. 0

This since F € F and z € G the diagram
S
§

gor,

R

Spec(Ky)

Morgets

is a limit. Then G is a finite type and assume S 15 and G is a finite
type f.. This is of finite type diagrams, and

e the composition of G is a regular sequence,

e Oy is a sheaf of rings.

0

Proof. We have see that X = Spec(R) and F is a finite type representable by
algebraic space. The property F is a finite morphism of algebraic stacks. Then the
cohomology of X is an open neighbourhood of U. ]

Proof. This is clear that G is a finite presentation, see Lemmas ?7.
A reduced above we conclude that U is an open covering of C. The functor F is a
“field

Oxz—F -1(Ox,u)— 0,_\',10.\‘)\(0.%,,)
is an isomorphism of covering of Oy,. If F is the unique element of F such that X
is an isomorphism.
The property F is a disjoint union of Proposition ?? and we can filtered set of
presentations of a scheme O x-algebra with F are opens of finite type over S.
If F is a scheme theoretic image points. ]

If F is a finite direct sum Ox, is a closed immersion, see Lemma ??. This is a
sequence of F is a similar morphism.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




O This repository Explore Gist Blog Help glwrpathy +- C‘. L+ 2 T2

torvalds / linux @ Watch- 3711 4 Star 23054  YFork 9,141
/

Linux kermel source tree

<O
520,037 commits 1 branch 420 releases 5,039 contributors Code

¥ 74
Pull requests

m P branch: master-  linux / +

Merge branch 'drm-fixes’ of git:/people.freedesktop.org/~airiedlinux «-

M torvalds authored 9 hours ago latest commit 4b1706927d £ ;‘}Se

M Documentation Merge gitJ//igit kemel.org/pub/scmAinux/kemel/git/nabiarget-pending 6 days ago

M arch Merge branch x86-urgent-for-linus’ of git//git. kemel.org/pub/scm a day ago h

Graphs

M block block: discard bdi_unregister() in favour of bdi_destroy() 9 days ago

M crypto Merge git/igit kemel.org/pub/scmAinux/kemel/githerbert/crypto-2.6 10 days ago HTTPS clone URL

M drivers Merge branch ‘drm-fixes’ of git//people.freedeskiop.org/~airedlinux 9 hours ago https://github.c &
M firmware firmwara/fihex2fw.c: restore missing default in switch statement 2 months ago You can clone with HTTPS.
M fs vis: read file_handle only once in handle_to_path 4 days ago SSH, or Subversion. @

M include Merge branch ‘perf-urgent-for-linus’ of git//git kemel.org/pub/scm/ a day ago & Clone in Desktop
M init init: fix regression by supporting devices with major:minor:offset fo a month ago (‘5 Download ZIP

LR VMarnna hennmnh Var line' Af st s barmal aesbeu b B ou e arnal n manth Ase

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



————m

vo:Ld do _command (struct seq file *m, void *v)

{
int |column = 32l<< (cmd[2] & 0x80); Generated

if (state)
cmd = (int)(int_state ® (in_8(&ch->ch_flags) & Cmd) ? 2 : 1); C COde

else

seq = 1;
for (i = 0; i < 16; i++) {
— — — —
if (k & (1 << 1))
pipe = (in_use & UMXTHREAD UNCCA) +
((count & 0x00000000f£f£f£f£f£f£f8) & 0x000000f) << 8;

if (count == 0)
sub(pid, ppc_md.kexec_ handle, 0x20000000);

pipe_set bytes(i, 0);

subsystem_info = &of changes[PAGE_SIZE];
rek _controls(offset, idx, &soffset);

Now we want to deliberately put it to device
control check polarity(&context, val, 0);
for (i = 0; i < COUNTER; i++) \ly

seq_puts(s, “policy ");

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




$include <asm/io.h>

finclude <asm/prom.h>
$include <asm/e820.h>
$include <asm/system info.h>
$include <asm/setew.h>

$include <asm/pgproto.h>

fdefine REG PG vesa slot addr pack

fdefine PFM NOCOMP AFSR(O, load)

fdefine STACK DDR(type) (func)

fdefine SWAP ALLOCATE (nr) (e)

fdefine emulate sigs() arch get unaligned child()

$define access rw(TST) asm volatile("movd %%esp, %0, %3 : ¢ XY (0)); \
if ( type & DO READ)

static void stat PC_SEC _ read mostly offsetof(struct seq argsqueue, \
pC>[1]);

static void
os_prefix(unsigned long sys)

{
§ifdef CONFIG PREEMPT
PUT_PARAM RAID(2, sel) = get_state state();
set_pid sum((unsigned long)state, current_state_str(),
(unsigned long)=-1->lr full; low;

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Searching for interpretable cells

Karpathy, Johnson, and Fei-Fei:‘Visualizing and Understanding Recurrent Networks,|ICLR Workshop 2016

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Searching for interpretable cells

lter fille ld"SWSitring FEpres@ntation firom Wser-space
pack_string(W@lid *Mbufp, size_t HrEmamn, s¥ze_: Wen)

) Pgrenmssre madin ) )
)

;
lem@nted Sitring filelds, PRATHINAX
st lid th

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016

Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Searching for interpretable cells
Smiles 1 meant merely to say what I saia.c o oo cooelerpemerraTing

guote detection cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016

Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Searching for interpretable cells

Cell sensitive to position in line:

The soleée importance of the crossing of the Berezina lies in the fact
that it plainly and indubitably proved the fallacy of all the plans for
cutting off the enemy's retreat and the soundness of the only possible
line of action--the one Kutuzov and the general mass of the army
demanded--namely, simply to follow the enemy up. The French crowd fled
at a continually increasing speed and all its energy was directed to
reaching its goal. It fled like a wounded animal and it was impossible
to block its path. This was shown not so much by the arrangements it
made for crossing as by what took place at the bridges. when the bridges
broke down, unarmed soldiers, people from Moscow and women with children
who were with the French transport, all--carried on by vis inertiae--
pressed forward into boats and into the ice-covered water and did not,

surrender.

line length tracking cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016

Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Searching for interpretable cells

if statement cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016

Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Searching for interpretable cells

Cell that turns on inside comments and quotes:

i quote/comment cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016

Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Searching for interpretable cells

wifdef CONFIG_AUDITSYSCALL
static inline int audit_match_class_bits(int class, u32 *"mask)
{
in
for ©; 1 < AUDIT_BITMAS

ZE; i++)
)

o (1 = K_SI
if (laski ] & classes[class][1i]

code depth cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016

Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Plan for Today

« Recurrent Neural Networks (RNNs)
— Example Problem: (Character-level) Language modeling
— Learning: (Truncated) BackProp Through Time (BPTT)
— Visualizing RNNs
— Example: Image Captioning
— Inference: Beam Search
— Multilayer RNNs
— Problems with gradients in “vanilla” RNNs
— LSTMs (and other RNN variants)
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Multilayer RNNs 1

ht = tanh W' (hi_l)
t hl
t—1

h € R™ Wt [n x 2n]

depth

time

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



V - - Bengio et al, “Learning long-term dependencies with gradient descent
a n I I I a R N N G ra d I e nt F I OW is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

ht = tanh(Whhht_l + thazt)

_ hi—1
h,_; > stack L—» h, = tanh <(Whh W) ( Ty >>

\ T / — tann (1 ("))

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



V - - Bengio et al, “Learning long-term dependencies with gradient descent
a n I I I a R N N G ra d I e nt F I OW is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

Backpropagation from h;
to h,; multiplies by W

(actually W,
ht = tanh(Whhht_l + thazt)

he— iack ﬂ; h, :tanh((whh W) (h:t;))
\ T / — tann (1 ("))

v

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Vanilla RNN Gradient Flow

ho i T

Bengio et al, “Learning long-term dependencies with gradient descent
is difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

“\—> h3 > itack

—> h1 —1 > stack “\—> h2 —1 > stack

) f ) f ) f

Computing gradient
of hg involves many

factors of W

(and repeated tanh)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



- - Bengio et al, “Learning long-term dependencies with gradient descent
a n I a ra I e n OW is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,

ICML 2013

R N N N

. _ Largest singular value > 1:
Computing gradient  Exploding gradients
of hg involves many

factors of W Largest singular value < 1:
(and repeated tanh)  vanishing gradients

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



- - Bengio et al, “Learning long-term dependencies with gradient descent
a n I a ra I e n OW is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,

ICML 2013

R N N N

. _ Largest singular value > 1: _, Gradient clipping: Scale
Computing gradient Exploding gradients gradient if its norm is too big
of ho involves many grad_norm = np.sum(grad * grad)
factors of W Largest singular value < 1: if grad_norm > threshold:

(and repeated tanh) Vanishing gradients grad *= (threshold / grad_norm)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



- - Bengio et al, “Learning long-term dependencies with gradient descent
a n I a ra I e n OW is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,

ICML 2013
e N\ e N\ e N\ e N\
W—> —> tanh W—> —> tanh W—> —> tanh W—> —> tanh

R N N N

. _ Largest singular value > 1:
Computing gradient  Exploding gradients
of hy involves many
factors of W Largest singular value < 1:
(and repeated tanh) | vanishing gradients

—» Change RNN architecture

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Long Short Term Memory (LSTM)

Vanilla RNN LSTM

(2w
o Tt
tanh

ct=[fOc1+10g
ht = 0 ® tanh(c;)

Q O = .
Q

h; = tanh (W (hH))
Lt

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation
1997

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Meet LSTMs

76



LSTMs Intuition: Memory

« Cell State / Memory

(C) Dhruv Batra 77



LSTMs Intuition: Forget Gate

 Should we continue to remember this “bit” of
information or not?

fe=0Wy-[hs—1,2¢] + by)

(C) Dhruv Batra 78



LSTMs Intuition: Input Gate

« Should we update this “bit” of information or not?
— If so, with what?

| W =0 (Wi'[ht—lyxt] T bi)
y‘c‘;:\-?_élm C, = tanh(We - [hi—1,2¢] + be)

(C) Dhruv Batra 79



LSTMs Intuition: Memory Update

« Forget that + memorize this

ftT wr‘%% Cy = fi* Cro1 +1iy  C

(C) Dhruv Batra 80



LSTMs Intuition: Output Gate

« Should we output this “bit” of information to “deeper”
layers?

Ot — J<Wo [ht—lamt] + bo)
hs = o4 * tanh (C})

(C) Dhruv Batra 81



LSTMs Intuition: Additive Updates

Backpropagation from
ci to c.1 only
elementwise

< “«— < ¢, multiplication by f, no

(R D) Mattrix multiply by W

(C) Dhruv Batra 82



LSTMs Intuition: Additive Updates

& h) 6.
g TUninterrupted gr_ﬁdient flow! T\
> —»—® D= T - —>
A lelell A
N\ YN T J>

| |
) ) &)
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LSTMs Intuition: Additive Updates

&) O, 6%

TUninterrupted radient flow!

< l ~
A Iclrll Itlhllgl | A
\I J—bIT J—b\l )—P

7O AUOD EXE
e

= 7O AUOD EXE =>

Similar to ResNet! EIEN ELEL ElE
BlE|E L0 <> 0 1ELoS S LB HE M L

Bkl BIR RIS

I~ [0l ool | 8% o8 | o8
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LSTMs

» A pretty sophisticated cell

&) O, ®

1 ! 1
- N\ N O D
> >
B Lobs l &
| /"CIF /_»\| o>
) (x) &)
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- ______________________________________________________
LSTM Variants #1: Peephole Connections

« Let gates see the cell state / memory

fit =0 (Ws-|Ceo1,hi—1,2¢] + by)
it =0 (W;-[Cy=1,ht—1,2¢] + b;)
—

Ot = O-(WO°[Ct7ht—17$t] =+ bo)
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LSTM Variants #2: Coupled Gates

« Only memorize new if forgetting old

F@-P Ct:ft*ct—1+(1_ft)*ét

(C) Dhruv Batra 87



LSTM Variants #3: Gated Recurrent Units

« Changes:
— No explicit memory; memory = hidden output
— Z = memorize new and forget old

ze =0 (W - [hy—1, 7))
re =0 (Wi« [hy—1,34])
hy = tanh (W - [ry % he_1, z¢])

ht:(l—Zt)*ht_l—FZt*iLt
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Other RNN Variants

[An Empirical Exploration of
Recurrent Network Architectures,
Jozefowicz et al., 2015]

MUTI:
z = sigm(Wegxe +by)
r = sigm(Wex, + Wy he + ;)
hyyy = tanh(Wyy(r © hy) + tanh(zy) + by,) © 2
hy ®(1-2)
MUT2:
z = sigm(Wegx, + Wighe +5,)
r = sigm(x; + Wyh, +b;)
hev1 = tanh(Whn(r © he) + Wznze + bn) © 2
+ hg J (1 - :)
MUTS3:

e

= sigm(Wex, + Wy, tanh(hy) + b,)
r = sigm(Wexe + Wichy + b;)
tanh(Whyn(r © he) + Wepze + by) G
+ ho(l1-2)

(8]

higq



Plan for Today

« Recurrent Neural Networks (RNNs)
— Example Problem: (Character-level) Language modeling
— Learning: (Truncated) BackProp Through Time (BPTT)
— Visualizing RNNs
— Example: Image Captioning
— Inference: Beam Search
— Multilayer RNNs
— Problems with gradients in “vanilla” RNNs
— LSTMs (and other RNN variants)
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-
Neural Image Captioning

4096-dim

v v v T v
Convolution Layer Pooling Layer Convolution Layer Pooling Layer Fully-Connected MLP
+ Non-Linearity + Non-Linearity
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-
Neural Image Captioning

Image Embedding (VGGNet)

4096-dim
\\‘\,'\ \\\\ \oo
{0570,
v v v T v
Convolution Layer Pooling Layer Convolution Layer Pooling Layer Fully-Connected MLP
+ Non-Linearity + Non-Linearity
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Neural Image Captioning

P(next) P(next) P(next) P(next) P(next) P(next)

<start> Two people and two horses.

4096-dim
Sl 0 RES o)
S~y Yo
oy N —ci%’o

®Image Embedding (VGGNet)
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Neural Image Captioning

P(next) P(next) P(next) P(next) P(next) P(next)

<start> Two people and two horses.

4096-dim
Sl 0 T o)
S~y Yo
oy N —Ci%’o

®Image Embedding (VGGNet)
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.
Sequence Model Factor Graph

Y1 Y2 Y3 Ya Ys

Py |yt -5 Ye—1)
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s
Beam Search Demo

* http://dbs.cloudcv.org/captioning&mode=interactive

(C) Dhruv Batra 96


http://dbs.cloudcv.org/captioning&mode=interactive

Image Captioning: Example Results

A cat sitting on a A cat is sitting on a tree A dog is running in the A white teddy bear sitting in
Suitcase on the floor branch grass with a frisbee the grass

Two people walking on A tennis player in action Two giraffes standing in a A man riding a dirt bike on
the beach with surfboards on the court grassy field a dirt track

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


https://github.com/karpathy/neuraltalk2
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/luggage-antique-cat-1643010/
https://pixabay.com/en/cat-kitten-tree-green-summer-1647775/
https://pixabay.com/en/adorable-animal-canine-cute-dog-1849992/
https://pixabay.com/en/teddy-plush-bears-cute-teddy-bear-1623436/
https://pixabay.com/en/beach-beach-sports-blur-blurry-1853903/
https://pixabay.com/en/tennis-head-ramos-vinolas-clay-934841/
https://pixabay.com/en/giraffe-animals-wildlife-africa-2064520/
https://pixabay.com/en/moto-cross-motorbike-sports-jump-214928/

Captions generated using peuraltalk2
Allimages are CCO Public domain. fur

Image Captioning: Failure Cases e

A bird is perched on

Awbma'n is ho/c/ng a
cat in her hand

A manina
baseball uniform
throwing a ball

oS e A woman standing on a
s @ beach holding a surfboard

A person holding a

computer mouse on a desk

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


https://github.com/karpathy/neuraltalk2
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/woman-female-model-portrait-adult-983967/
https://pixabay.com/en/handstand-lake-meditation-496008/
https://pixabay.com/en/spider-web-tree-branches-pattern-617769/
https://pixabay.com/en/baseball-player-shortstop-infield-1045263/

Typical VQA Models

Neural Network
Softmax
4096-dim  over top K answers

\.@ ol

—> Ply=1]x)

Image Embedding (VGGNet)

T T T T T
Convolution Layer Pooling Layer Convolution Layer Pooling Layer Fully-Connected MLP

+ Non-Linearity + Non-Linearity @

Input Softmax
(Features Il)  classifier

—> P(y=2x)

Question Embedding (LSTM)

‘How many horses are in this image?’
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Summary

- RNNs allow a lot of flexibility in architecture design

- Vanilla RNNs are simple but don’t work very well

- Common to use LSTM or GRU: their additive interactions
improve gradient flow

- Backward flow of gradients in RNN can explode or vanish.
Exploding is controlled with gradient clipping. Vanishing is
controlled with additive interactions (LSTM)

- Better/simpler architectures are a hot topic of current research

- Better understanding (both theoretical and empirical) is needed.



