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Administrivia

‣ Homework 2 Due Tommorrow

‣ Reading: RNNs 
‣ Goldberg 10, 11 
‣ Jurafsky and MarFn, Chapter 9

https://u.cs.biu.ac.il/~yogo/nnlp.pdf



Recall: Word Vectors

good
enjoyable

bad

dog

great

is



Recall: Word2vec - ConFnuous Bag-of-Words
‣ Predict word from context the dog bit the man

dog

the

+

sum, size d P (w|w�1, w+1)

soRmaxMulFply 
by W

‣ Matrix factorizaFon approaches useful for learning 
vectors from really large data

Mikolov et al. (2013)



GloVe (Global Vectors)

Pennington et al. (2014)

X
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�2‣ Loss         = 

‣ Also operates on counts matrix, weighted 
regression on the log co-occurrence matrix

‣ Constant in the dataset size (just need counts), quadraFc in voc size

‣ By far the most common non-contextual word vectors used today 
(10000+ citaFons)

word pair 
counts

|V|

|V|



Using Word Embeddings
‣ Approach 1: learn embeddings as parameters from your data

‣ Approach 2: iniFalize using GloVe/word2vec/ELMo, keep fixed

‣ Approach 3: iniFalize using GloVe, fine-tune
‣ Faster because no need to update these parameters

‣ Works best for some tasks, not used for ELMo, oRen used for BERT

‣ ORen works precy well



ComposiFonal SemanFcs
‣ What if we want embedding representaFons for whole sentences?

‣ Is there a way we can compose vectors to make sentence 
representaFons? Summing? RNNs?



This Lecture

‣ Vanishing gradient problem

‣ Recurrent neural networks

‣ LSTMs / GRUs

‣ ApplicaFons / visualizaFons



RNN Basics



RNN MoFvaFon
‣ Feedforward NNs can’t handle variable length input: each posiFon in the 

feature vector has fixed semanFcs

‣ Instead, we need to:

1) Process each word in a uniform way

the  movie  was   great that   was   great     !

2) …while sFll exploiFng the context that that token occurs in

‣ These don’t look related (great is in two different orthogonal subspaces)



RNN AbstracFon
‣ Cell that takes some input x, has some hidden state h, and updates that 

hidden state and produces output y (all vector-valued)

previous h next h

(previous c) (next c)

input x

output y



RNN Uses
‣ Transducer: make some predicFon for each element in a sequence

‣ Acceptor/encoder: encode a sequence into a fixed-sized vector and use 
that for some purpose

the  movie  was   great

predict senFment (matmul + soRmax)

translate

the  movie  was   great

DT      NN    VBD     JJ

paraphrase/compress

output y = score for each tag, then soRmax



Elman Networks

input xt

prev 
hidden 
state ht-1 ht

output yt

‣ Computes output from hidden state

‣ Updates hidden state based on input 
and current hidden state

‣ Long history! (invented in the late 1980s)

yt = tanh(Uht + by)

Elman (1990)

ht = tanh(Wxt + V ht�1 + bh)



Training Elman Networks

the  movie  was   great

predict senFment

‣ “BackpropagaFon through Fme”: build the network as one big 
computaFon graph, some parameters are shared

‣ RNN potenFally needs to learn how to “remember” informaFon for a 
long Fme!

it was my favorite movie of 2016, though it wasn’t without problems -> +

‣ “Correct” parameter update is to do a becer job of remembering the 
senFment of favorite



Vanishing Gradient

‣ Gradient diminishes going through tanh; if 
not in [-2, 2], gradient is almost 0

<- gradient<- smaller gradient<- Fny gradient

hcp://colah.github.io/posts/2015-08-Understanding-LSTMs/



LSTMs/GRUs



Gated ConnecFons
‣ Designed to fix “vanishing gradient” problem using gates

‣ Vector-valued “forget gate” f computed 
based on input and previous hidden state

‣ Sigmoid: elements of f are in (0, 1)

f = �(W xfxt +Whfht�1)

ht = ht�1 � f + func(xt)

=

ht-1 f ht

ht = tanh(Wxt + V ht�1 + bh)

gated Elman

‣  If f ≈ 1, we simply sum up a funcFon of 
all inputs — gradient doesn’t vanish!



LSTMs

‣ “Cell” c in addiFon to hidden state h

‣ Vector-valued forget gate f depends on the h hidden state

‣ Basic communicaFon flow: x -> c -> h -> output, each step of this 
process is gated in addiFon to gates from previous Fmesteps

ct = ct�1 � f + func(xt,ht�1)

f = �(W xfxt +Whfht�1)



LSTMs

xj

f
g

i
o

hjhj-1

cj-1 cj

hcp://colah.github.io/posts/2015-08-Understanding-LSTMs/

‣ f, i, o are gates that control informaFon flow
‣ g reflects the main computaFon of the cell

hj

Hochreiter & Schmidhuber (1997)



LSTMs

g
i

hjhj-1

cj-1 cj

‣ Can we ignore the old value of c for this Fmestep?

‣ Can we ignore a parFcular input x?
‣ Can an LSTM sum up its inputs x?

‣ Can we output something without changing c?

xj

hj

f o



LSTMs

g
i

hjhj-1

cj-1 cj

hcp://colah.github.io/posts/2015-08-Understanding-LSTMs/
Goldberg lecture notes

‣ Ignoring recurrent state enFrely:

‣ Lets us discard stopwords

‣ Summing inputs:

‣ Lets us get feedforward layer over token

‣ Ignoring input:

‣ Lets us compute a bag-of-words 
representaFonxj

hj

f o



LSTMs

‣ Gradient sFll diminishes, but in a controlled way and generally by less — 
usually iniFalize forget gate = 1 to remember everything to start

<- gradientsimilar gradient <-

hcp://colah.github.io/posts/2015-08-Understanding-LSTMs/



GRUs

f
g

i
o

hjhj-1

cj-1 cj

hj-1

sj-1

xj

sj

‣ GRU: faster, a bit simpler‣ LSTM: more complex and 
slower, may work a bit becer

X

hj

sj

σ X

+
1-z z

σ tanh
r

‣ Two gates: z (forget, mixes s and 
h) and r (mixes h and x)

xj

hj



GRUs
‣ Also solves the vanishing gradient problem, simpler than LSTM

‣ z controls mixing of hidden state h with new input x

ht = (1� z)� ht�1 + z� func(xt,hj�1)

z = �(Wxt + Uht�1)

‣ Faster to train and someFmes work becer than LSTMs

Cho et al. (2014)

z = �(Wxt + Uht�1)



What do RNNs produce?

‣ Encoding of each word — can pass this to another layer to make a 
predicFon (can also pool these to get a different sentence encoding)

=

‣ Encoding of the sentence — can pass this a decoder or make a 
classificaFon decision about the sentence

the  movie  was   great

‣ RNN can be viewed as a transformaFon of a sequence of vectors into a 
sequence of context-dependent vectors



MulFlayer BidirecFonal RNN

‣ Sentence classificaFon 
based on concatenaFon 
of both final outputs

‣ Token classificaFon based on 
concatenaFon of both direcFons’ 
token representaFons

the  movie  was   great the  movie  was   great



Training RNNs

the  movie  was   great

‣ Loss = negaFve log likelihood of probability of gold predicFons, 
summed over the tags

‣ Loss terms filter back through network

P (ti|x)

‣ Example: language modeling (predict next word given context)



Training RNNs

the  movie  was   great

‣ Loss = negaFve log likelihood of probability of gold label (or use SVM 
or other loss)

P (y|x)

‣ Backpropagate through enFre network

‣ Example: senFment analysis



ApplicaFons



What can LSTMs model?
‣ SenFment

‣ TranslaFon

‣ Language models

‣ Encode one sentence, predict

‣ Move leR-to-right, per-token predicFon

‣ Encode sentence + then decode, use token predicFons for acenFon 
weights (later in the course)



Visualizing LSTMs
‣ Train character LSTM language model (predict next character based on 

history) over two datasets: War and Peace and Linux kernel source code

hcp://karpathy.github.io/2015/05/21/rnn-effecFveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


Visualizing LSTMs
‣ Train character LSTM language model (predict next character based on 

history) over two datasets: War and Peace and Linux kernel source code

‣ Counter: know when to generate \n
‣ Visualize acFvaFons of specific cells (components of c) to understand them

hcp://karpathy.github.io/2015/05/21/rnn-effecFveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/


Visualizing LSTMs

‣ Binary switch: tells us if we’re in a quote or not
‣ Visualize acFvaFons of specific cells to see what they track

‣ Train character LSTM language model (predict next character based on 
history) over two datasets: War and Peace and Linux kernel source code

hcp://karpathy.github.io/2015/05/21/rnn-effecFveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


Visualizing LSTMs

‣ Stack: acFvaFon based on indentaFon
‣ Visualize acFvaFons of specific cells to see what they track

‣ Train character LSTM language model (predict next character based on 
history) over two datasets: War and Peace and Linux kernel source code

hcp://karpathy.github.io/2015/05/21/rnn-effecFveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


Visualizing LSTMs

‣ Uninterpretable: probably doing double-duty, or only makes sense in the 
context of another acFvaFon

‣ Visualize acFvaFons of specific cells to see what they track

‣ Train character LSTM language model (predict next character based on 
history) over two datasets: War and Peace and Linux kernel source code

hcp://karpathy.github.io/2015/05/21/rnn-effecFveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


What can LSTMs model?
‣ SenFment

‣ TranslaFon

‣ Language models

‣ Encode one sentence, predict

‣ Move leR-to-right, per-token predicFon

‣ Encode sentence + then decode, use token predicFons for acenFon 
weights (next lecture)

‣ Textual entailment/similarity

‣ Encode two sentences, predict



SemanFc Similarity

37

Q: How much is 1 tablespoon of water?

A: In Australia one tablespoon (measurement unit) is 20 mL.

A: It is abbreviated as t, tb, tbs, tbsp, tblsp, or tblspn.

answer

non-answer

Question Answering

paraphrase

non⁃paraphrase

Ezekiel Ansah wearing 3D glasses wout the lens.

Ezekiel Ansah is wearing real3D glasses with the lenses punched out.

I wore the 3D glasses wout lenses before Ezekiel Ansah.

Paraphrase Identification

Wuwei Lan, Wei Xu. “Neural Network Models for Paraphrase IdenFficaFon, SemanFc Textual Similarity, Natural Language Inference, and QuesFon Answering”  
Best Paper Award at COLING (2018) 



SemanFc Similarity
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Twitter Paraphrase Corpus
(BUCC 2013; SemEval 2015;  

EMNLP 2017; ongoing)

Multi-instance Learning
(TACL 2014)

Multi-task Subword Model
(NAACL 2018)

Pairwise Interaction Models
(COLING 2018; ongoing)

related to  
natural language  

generation

Xu et al. (2013, 2014, 2015), Lan et al. (2017, 2018)



Natural Language Inference

A man inspects the uniform of a figure The man is sleeping

An older and younger man smiling Two men are smiling and 
laughing at cats playing

A boy plays in the snow A boy is outsideentails

contradicts

neutral

‣ Long history of this task: “Recognizing Textual Entailment” challenge in 
2006 (Dagan, Glickman, Magnini)

‣ Early datasets: small (hundreds of pairs), very ambiFous (lots of world 
knowledge, temporal reasoning, etc.)

Premise Hypothesis



SNLI Dataset

Bowman et al. (2015)

‣ Show people capFons for (unseen) images and solicit entailed / neural / 
contradictory statements

‣ >500,000 sentence pairs

100D LSTM: 78% accuracy
300D LSTM: 80% accuracy 
                (Bowman et al., 2016)
300D BiLSTM: 83% accuracy 
                (Liu et al., 2016)

‣ Encode each sentence and process

‣ Later: becer models for this



Takeaways
‣ RNNs can transduce inputs (produce one output for each input) or 

compress the whole input into a vector

‣ Useful for a range of tasks with sequenFal input: senFment analysis, 
language modeling, natural language inference, machine translaFon

‣ Next Fme: CNNs and neural CRFs


