
Binary Classifica-on

Wei Xu
(many slides from Greg Durrett and Vivek Srikumar)

Administrivia

‣ Homework 1 is released (due 2/12)

‣ Two wri?en ques-ons

‣ One programming tast: Logis-c Regression for Text Classifica-on (Hate Speech)

This Lecture

‣ Linear classifica-on fundamentals

‣ (Today) Three discrimina-ve models: logis-c regression, perceptron, SVM

‣ (Monday) Naive Bayes, maximum likelihood in genera-ve models

‣ Different mo-va-ons but very similar update rules / inference!

Classifica-on (recap)

‣ Embed datapoint in a feature space

+++ +
+ +
++

- - -
-

--
--

-

‣ Linear decision rule:

 = [0.5, 1.6, 0.3]

 [0.5, 1.6, 0.3, 1]

x y 2 {0, 1}

f(x) 2 Rn

‣ Datapoint with label

but in this lecture and are interchangeablexf(x)

w>f(x) + b > 0

f(x)

‣ Can delete bias if we augment feature space:

w>f(x) > 0

Naive Bayes (recap)
‣ Data point , label x = (x1, ..., xn) y 2 {0, 1}

P (y|x)‣ Inference: Compute , predict to classifyargmaxyP (y|x)

argmaxyP (y|x) = argmaxy logP (y|x) = argmaxy

"
logP (y) +

nX

i=1

logP (xi|y)
#

‣ Learning: Find values of that maximize data likelihood
‣ i.e. maximize by reading counts off the data

P (y), P (xi|y)
P (x, y)

Bayes rule

‣ Model:
P (x, y) = P (y)

nY

i=1

P (xi|y)
condi-onal independence

Maximum Likelihood for Naive Bayes (recap)

—

+this movie was great! would watch again

that film was awful, I’ll never watch again

—I didn’t really like that movie
dry and a bit distasteful, it misses the mark —
great poten=al but ended up being a flop —

+I liked it well enough for an ac=on flick
I expected a great film and le@ happy +

+brilliant direc=ng and stunning visuals

P (y|x) / P (+)P (great|+)

P (�)P (great|�)[] =
1/4
1/8[]=

2/3
1/3[]it was great

P (y|x) / P (y)
nY

i=1

P (xi|y)

P (+) =
1

2

P (�) =
1

2

prior

P (great|+) =
1

2

P (great|�) =
1

4
P (great|�) =

1

4

word
likelihood

This is Bernoulli (binary features) document model!

Naive Bayes

7 h.p://socialmedia-class.org/slides_AU2017/Shimodaira_note07.pdf

Problems with Naive Bayes

‣ Naive Bayes is naive, but another problem is that it’s genera&ve:
spends capacity modeling P(x, y), when what we care about is P(y|x)

‣ Correlated features compound: beau&ful and gorgeous are not independent!

the film was beau=ful, stunning cinematography and gorgeous sets, but boring —
P (xbeautiful|+) = 0.1

P (xstunning|+) = 0.1

P (xgorgeous|+) = 0.1

P (xbeautiful|�) = 0.01

P (xstunning|�) = 0.01

P (xgorgeous|�) = 0.01

P (xboring|�) = 0.1P (xboring|+) = 0.01

‣ Discrimina-ve models model P(y|x) directly (Logis-c regression, SVMs,
most neural networks, …)

Logis-c Regression

Logis-c Regression

‣ To learn weights: maximize discrimina-ve log likelihood of data P(y|x)

P (y = +|x) = logistic(w>x)

P (y = +|x) =
exp(

Pn
i=1 wixi)

1 + exp(
Pn

i=1 wixi)

L(xj , yj = +) = logP (yj = +|xj)

=
nX

i=1

wixji � log

1 + exp

nX

i=1

wixji

!!

sum over features

P (y = 1|x) � 0.5 , w>x � 0P (y = +|x) = logistic(w>x)‣ Decision rule:

deriv. of exp
@ex

@x
= ex

deriv. of log
@ log x

@x
=

1

x

Logis-c Regression

@L(xj , yj)

@wi
= xji �

@

@wi
log

1 + exp

nX

i=1

wixji

!!

= xji �
1

1 + exp (
Pn

i=1 wixji)

@

@wi

1 + exp

nX

i=1

wixji

!!

= xji �
1

1 + exp (
Pn

i=1 wixji)
xji exp

nX

i=1

wixji

!

= xji � xji
exp (

Pn
i=1 wixji)

1 + exp (
Pn

i=1 wixji)
= xji(1� P (yj = +|xj))

L(xj , yj = +) = logP (yj = +|xj) =
nX

i=1

wixji � log

1 + exp

nX

i=1

wixji

!!

@f

@x
=

@f

@g

@g

@x
=

@f(g)

@g

@g(x)

@x

chain rule:

Logis-c Regression

If P(+) is close to 1, make very li?le update
Otherwise make wi look more like xji, which will increase P(+)

‣ Gradient of wi on posi-ve example

‣ Gradient of wi on nega-ve example

If P(+) is close to 0, make very li?le update
Otherwise make wi look less like xji, which will decrease P(+)

= xji(�P (yj = +|xj))

= xji(yj � P (yj = +|xj))

‣ Recall that yj = 1 for posi-ve instances, yj = 0 for nega-ve instances.

xj(yj � P (yj = 1|xj))‣ Can combine these gradients as @L(xj , yj)

@wi
=

Gradient Decent

xj(yj � P (yj = 1|xj))‣ Can combine these gradients as @L(xj , yj)

@wi
=

data points (j)log likelihood of data P(y|x)

‣ Gradient vector:

‣ Training set log-likelihood:

Gradient Decent

‣ Gradient decent (or ascent) is an itera-ve op-miza-on algorithm for finding
the minimum (or maximum) of a func-on.

Repeat until convergence {

} learning rate (step size)

L

Lmin

L(w)

Lmin

w

Learning Rate

15 Credit: Jeremy Jordan

L(w)

w

L(w) L(w)

w w

Regulariza-on
‣ Regularizing an objec-ve can mean many things, including an

L2-norm penalty to the weights: mX

j=1

L(xj , yj)� �kwk22

‣ Keeping weights small can prevent overfikng

‣ For most of the NLP models we build, explicit regulariza-on isn’t necessary

‣ Early stopping

‣ For neural networks: dropout and gradient clipping
‣ Large numbers of sparse features are hard to overfit in a really bad way

Logis-c Regression: Summary
‣ Model:

‣ Learning: gradient ascent on the (regularized) discrimina-ve log-likelihood

‣ Inference:

argmaxyP (y|x) fundamentally same as Naive Bayes

P (y = 1|x) � 0.5 , w>x � 0

P (y = +|x) =
exp(

Pn
i=1 wixi)

1 + exp(
Pn

i=1 wixi)

Logis-c Regression vs. Naive Bayes
‣ Both are (log) linear models

‣ Logis-c regression doesn’t assume condi-onal independence of features
‣ Weights are trained independently
‣ Can handle highly correlated overlapping features

w>f(x) > 0

‣ Naive Bayes assume condi-onal independence of features
‣ Weights are trained jointly

Perceptron/SVM

Perceptron

‣ Simple error-driven learning approach similar to logis-c regression

‣ Decision rule:

‣ If incorrect: if posi-ve,

if nega-ve,
w w + x

w w � x w w � xP (y = 1|x)
w w + x(1� P (y = 1|x))

Logis-c Regressionw>x > 0

h(p://ciml.info/dl/v0_99/ciml-v0_99-ch04.pdf

‣ Algorithm is very similar to logis-c regression.
‣ Only hyper-parameter is max number of itera-ons (LR uses learning rate)
‣ Guaranteed to eventually separate the data if the data are separable

(LR always converge)

http://ciml.info/dl/v0_99/ciml-v0_99-ch04.pdf

Linear Separability

‣ In general, two groups are linearly separable in n-dimensional space,
if they can be separated by an (n-1)-dimensional hyperplane.

What does “converge” mean?

‣ It means that it can make an en-re pass through the training data
without making any more updates.

‣ In other words, Perceptron has correctly classified every training
example.

h(p://ciml.info/dl/v0_99/ciml-v0_99-ch04.pdf

‣ Geometrically, this means that it was found some hyperplane that
correctly segregates the data into posi-ve and nega-ve examples

http://ciml.info/dl/v0_99/ciml-v0_99-ch04.pdf

Perceptron

Frank Rosenbla. (1928-1971)
PhD 1956 from Cornell

Support Vector Machines (extracurricular)

‣ Many separa-ng hyperplanes — is there a best one?

+++ +
+ +
++

- - -
-

--
--

-

‣ Many separa-ng hyperplanes — is there a best one?

++
+ +

+
+

++

- - -
-

--
--

-
margin

Support Vector Machines (extracurricular)

‣ The hyperplane lies exactly halfway between the
nearest posi-ve point and nearest nega-ve point.

‣ Constraint formula-on: find w via following quadra-c program:

Minimize

s.t.

As a single constraint:

minimizing norm with
fixed margin <=>
maximizing margin

kwk22
8j w>xj � 1 if yj = 1

w>xj  �1 if yj = 0

8j (2yj � 1)(w>xj) � 1

‣ Generally no solu-on (data is generally non-separable) — need slack!

Support Vector Machines (extracurricular)

h.p://www.cs.toronto.edu/~mbrubake/teaching/C11/Handouts/SupportVectorMachines.pdf

N-Slack SVMs (extracurricular)

Minimize

s.t. 8j (2yj � 1)(w>xj) � 1� ⇠j 8j ⇠j � 0

‣ The are a “fudge factor” to make all constraints sa-sfied⇠j

�kwk22 +
mX

j=1

⇠j

‣ Take the gradient of the objec-ve:
@

@wi
⇠j = 0 if ⇠j = 0

@

@wi
⇠j = (2yj � 1)xji if ⇠j > 0

= xji if yj = 1, �xji if yj = 0

‣ Looks like the perceptron! But updates more frequently
h.p://www.cs.toronto.edu/~mbrubake/teaching/C11/Handouts/SupportVectorMachines.pdf

LR, Perceptron, SVM

Logis-c regression

Perceptron

x(1� P (y = 1|x)) = x(1� logistic(w>x))

x if w>x < 0, else 0

SVM (ignoring regularizer)

Hinge (SVM)

Logis-c
Perceptron

0-1

Lo
ss

w>x

*gradients are for maximizing things, which is why they are flipped

x if w>x < 1, else 0

‣ Gradients on Posi-ve Examples

h.p://ciml.info/dl/v0_99/ciml-v0_99-ch07.pdf

Sen-ment Analysis

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)

the movie was gross and overwrought, but I liked it

this movie was great! would watch again

‣ Bag-of-words doesn’t seem sufficient (discourse structure, nega-on)

this movie was not really very enjoyable

‣ There are some ways around this: extract bigram feature for “not X” for
all X following the not

+
+
—

Sen-ment Analysis

‣ Simple feature sets can do pre?y well!

Bo Pang, Lillian Lee, Shivakumar Vaithyanathan (2002)

Sen-ment Analysis

Wang and Manning (2012)

Before neural nets had taken off
— results weren’t that great

Naive Bayes is doing well!

Ng and Jordan (2002) — NB
can be be?er for small data

81.5 89.5Kim (2014) CNNs

Summary

‣ Logis-c regression: P (y = 1|x) =
exp (

Pn
i=1 wixi)

(1 + exp (
Pn

i=1 wixi))

Gradient (unregularized):

‣ Logis-c regression, perceptron, and SVM are closely related

Decision rule: P (y = 1|x) � 0.5 , w>x � 0

x(y � P (y = 1|x))

‣ All gradient updates: “make it look more like the right thing and less like the
wrong thing”

Op-miza-on — next …

‣ Range of techniques from simple gradient descent (works pre?y well)
to more complex methods (can work be?er), e.g., Newton’s method,
Quasi-Newton methods (LBFGS), Adagrad, Adadelta, etc.

‣ Most methods boil down to: take a gradient and a step size, apply the
gradient update -mes step size, incorporate es-mated curvature
informa-on to make the update more effec-ve

QA Time

34

